首页 > 最新文献

Studies in Mycology最新文献

英文 中文
Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Chaetomiaceae的分类、系统发育和鉴定,重点是嗜热物种。
IF 14.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2022-07-01 Epub Date: 2022-04-01 DOI: 10.3114/sim.2022.101.03
X W Wang, P J Han, F Y Bai, A Luo, K Bensch, M Meijer, Kraak B, D Y Han, B D Sun, P W Crous, J Houbraken
<p><p><i>Chaetomiaceae</i> comprises phenotypically diverse species, which impact biotechnology, the indoor environment and human health. Recent studies showed that most of the traditionally defined genera in <i>Chaetomiaceae</i> are highly polyphyletic. Many of these morphology-based genera, such as <i>Chaetomium</i>, <i>Thielavia</i> and <i>Humicola</i>, have been redefined using multigene phylogenetic analysis combined with morphology; however, a comprehensive taxonomic overview of the family is lacking. In addition, the phylogenetic relationship of thermophilic <i>Chaetomiaceae</i> species with non-thermophilic taxa in the family is largely unclear due to limited taxon sampling in previous studies. In this study, we provide an up-to-date overview on the taxonomy and phylogeny of genera and species belonging to <i>Chaetomiaceae</i>, including an extensive taxon sampling of thermophiles. A multigene phylogenetic analysis based on the ITS (internal transcribed spacers 1 and 2 including the 5.8S nrDNA), LSU (D1/D2 domains of the 28S nrDNA), <i>rpb2</i> (partial RNA polymerase II second largest subunit gene) and <i>tub2</i> (β-tubulin gene) sequences was performed on 345 strains representing <i>Chaetomiaceae</i> and 58 strains of other families in <i>Sordariales</i>. Divergence times based on the multi-gene phylogeny were estimated as aid to determine the genera in the family. Genera were delimited following the criteria that a genus must be a statistically well-supported monophyletic clade in both the multigene phylogeny and molecular dating analysis, fall within a divergence time of over 27 million years ago, and be supported by ecological preference or phenotypic traits. Based on the results of the phylogeny and molecular dating analyses, combined with morphological characters and temperature-growth characteristics, 50 genera and 275 species are accepted in <i>Chaetomiaceae</i>. Among them, six new genera, six new species, 45 new combinations and three new names are proposed. The results demonstrate that the thermophilic species fall into seven genera (<i>Melanocarpus</i>, <i>Mycothermus</i>, <i>Remersonia</i>, <i>Thermocarpiscus</i> <i>gen. nov</i>., <i>Thermochaetoides</i> <i>gen. nov</i>., <i>Thermothelomyces</i> and <i>Thermothielavioides</i>). These genera cluster in six separate lineages, suggesting that thermophiles independently evolved at least six times within the family. A list of accepted genera and species in <i>Chaetomiaceae</i>, together with information on their MycoBank numbers, living ex-type strains and GenBank accession numbers to ITS, LSU, <i>rpb2</i> and <i>tub2</i> sequences is provided. Furthermore, we provide suggestions how to describe and identify <i>Chaetomiaceae</i> species. <b>Taxonomic novelties:</b> <b>new genera:</b> <i>Parvomelanocarpus</i> X.Wei Wang & Houbraken<i>, Pseudohumicola</i> X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, <i>Tengochaeta</i> X.Wei Wang & Houbraken, <i>Thermocarpiscus</i> X.Wei Wang & Houb
链格孢属(Chaetomiaceae)由表型多样的物种组成,对生物技术、室内环境和人类健康都有影响。最近的研究表明,Chaetomiaceae 中大多数传统定义的属都是高度多态的。其中许多基于形态学的属,如Chaetomium、Thielavia和Humicola,已通过多基因系统发育分析结合形态学进行了重新定义;然而,目前还缺乏对该科分类学的全面概述。此外,由于以往研究中的分类群取样有限,该科中嗜热茶菌属(Chaetomiaceae)物种与非嗜热类群的系统发育关系在很大程度上并不清楚。在本研究中,我们提供了蝶形花科属和种的分类学和系统发育的最新概况,包括嗜热类群的广泛类群取样。基于ITS(内部转录间隔序列1和2,包括5.8S nrDNA)、LSU(28S nrDNA的D1/D2结构域)、rpb2(部分RNA聚合酶II第二大亚基基因)和tub2(β-tubulin基因)序列,对345株Chaetomiaceae菌株和58株Sordariales其他科的菌株进行了多基因系统发育分析。根据多基因系统发育估算了分化时间,以帮助确定该科的属。划分属的标准是:属必须是在多基因系统发育和分子测年分析中都得到充分统计支持的单系支系,属于距今 2700 多万年的分化时间范围内,并得到生态偏好或表型特征的支持。根据系统进化和分子测年分析的结果,结合形态特征和温度生长特征,Chaetomiaceae 中有 50 属 275 种被接受。其中,提出了 6 个新属、6 个新种、45 个新组合和 3 个新名称。研究结果表明,嗜热物种可分为 7 个属(Melanocarpus 属、Mycothermus 属、Remersonia 属、Thermocarpiscus 新属、Thermochaetoides 新属、Thermothelomyces 属和 Thermothielavioides 属)。这些属聚集在六个独立的世系中,表明嗜热菌在该家族中至少独立进化了六次。我们提供了一份已被接受的链格孢属(Chaetomiaceae)的属和种的清单,以及它们的 MycoBank 编号、活的外型菌株和 ITS、LSU、rpb2 和 tub2 序列的 GenBank 登录号等信息。此外,我们还就如何描述和鉴定链格孢属(Chaetomiaceae)物种提出了建议。分类学新发现:新属:Parvomelanocarpus X.Wei Wang & Houbraken, Pseudohumicola X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, Tengochaeta X.Wei Wang & Houbraken, Thermocarpiscus X.Wei Wang & Houbraken, Thermochaetoides X.Wei Wang & Houbraken, Xanthiomyces X.Wei Wang & Houbraken;新种:Botryotrichum geniculatum X.Wei Wang, P.J. Han & F.Y. Bai, Chaetomium subaffine Sergejeva ex X.Wei Wang & Houbraken, Humicola hirsuta X.Wei Wang, P.J. Han & F.Y. Bai, Subramaniula latif.X.Wei Wang & Houbraken, Subramaniula latifusispora X.Wei Wang, P.J. Han & F.Y. Bai, Tengochaeta nigropilosa X.Wei Wang & Houbraken, Trichocladium tomentosum X.Wei Wang, P.J. Han & F.Y. Bai; New combinations:Achaetomiella gracilis (Udagawa) Houbraken, X.Wei Wang, P.J. Han & F.Y. Bai, Allocanariomyces americanus (Cañete-Gibas et al.) Cañete-Gibas, Wiederhold, X.Wei Wang & Houbraken, Amesia dreyfussii (Arx) X.Wei Wang & Houbraken, Amesia raii (G. Malhotra & Mukerken)X.Wei Wang & Houbraken, Arcopilus macrostiolatus (Stchigel et al.) X.Wei Wang & Houbraken, Arcopilus megasporus (Sörgel ex Seth) X.Wei Wang & Houbraken, Arcopilus purpurascens (Udagawa & Y. Sugiy.)X.Wei Wang & Houbraken, Arxotrichum deceptivum (Malloch & Benny) X.Wei Wang & Houbraken, Arxotrichum gangligerum (L.M. Ames) X.Wei Wang & Houbraken, Arxotrichum officinarum (M. Raza & L. Cai) X.X.Wei Wang & Houbraken, Arxotrichum piluliferoides (Udagawa & Y. Horie) X.Wei Wang & Houbraken, Arxotrichum repens (Guarro & Figueras) X.Wei Wang & Houbraken, Arxotrichum sinense (K.T. Chen) X.Wei Wang & Houbraken, Botryotrichum inquinatum (Udagawa & S. Ueda) X.Wei Wang & Houbraken, Botryotrichum inquinatum (Udagawa & S. Ueda)X.Wei Wang & Houbraken, Botryotrichum retardatum (A. Carter & R.S. Khan) X.Wei Wang & Houbraken, Botryotrichum trichorobustum (Seth) X.Wei Wang & Houbraken, Botryotrichum vitellinum (A. Carter) X.Wei Wang & Houbraken, Collar
{"title":"Taxonomy, phylogeny and identification of <i>Chaetomiaceae</i> with emphasis on thermophilic species.","authors":"X W Wang, P J Han, F Y Bai, A Luo, K Bensch, M Meijer, Kraak B, D Y Han, B D Sun, P W Crous, J Houbraken","doi":"10.3114/sim.2022.101.03","DOIUrl":"10.3114/sim.2022.101.03","url":null,"abstract":"&lt;p&gt;&lt;p&gt;&lt;i&gt;Chaetomiaceae&lt;/i&gt; comprises phenotypically diverse species, which impact biotechnology, the indoor environment and human health. Recent studies showed that most of the traditionally defined genera in &lt;i&gt;Chaetomiaceae&lt;/i&gt; are highly polyphyletic. Many of these morphology-based genera, such as &lt;i&gt;Chaetomium&lt;/i&gt;, &lt;i&gt;Thielavia&lt;/i&gt; and &lt;i&gt;Humicola&lt;/i&gt;, have been redefined using multigene phylogenetic analysis combined with morphology; however, a comprehensive taxonomic overview of the family is lacking. In addition, the phylogenetic relationship of thermophilic &lt;i&gt;Chaetomiaceae&lt;/i&gt; species with non-thermophilic taxa in the family is largely unclear due to limited taxon sampling in previous studies. In this study, we provide an up-to-date overview on the taxonomy and phylogeny of genera and species belonging to &lt;i&gt;Chaetomiaceae&lt;/i&gt;, including an extensive taxon sampling of thermophiles. A multigene phylogenetic analysis based on the ITS (internal transcribed spacers 1 and 2 including the 5.8S nrDNA), LSU (D1/D2 domains of the 28S nrDNA), &lt;i&gt;rpb2&lt;/i&gt; (partial RNA polymerase II second largest subunit gene) and &lt;i&gt;tub2&lt;/i&gt; (β-tubulin gene) sequences was performed on 345 strains representing &lt;i&gt;Chaetomiaceae&lt;/i&gt; and 58 strains of other families in &lt;i&gt;Sordariales&lt;/i&gt;. Divergence times based on the multi-gene phylogeny were estimated as aid to determine the genera in the family. Genera were delimited following the criteria that a genus must be a statistically well-supported monophyletic clade in both the multigene phylogeny and molecular dating analysis, fall within a divergence time of over 27 million years ago, and be supported by ecological preference or phenotypic traits. Based on the results of the phylogeny and molecular dating analyses, combined with morphological characters and temperature-growth characteristics, 50 genera and 275 species are accepted in &lt;i&gt;Chaetomiaceae&lt;/i&gt;. Among them, six new genera, six new species, 45 new combinations and three new names are proposed. The results demonstrate that the thermophilic species fall into seven genera (&lt;i&gt;Melanocarpus&lt;/i&gt;, &lt;i&gt;Mycothermus&lt;/i&gt;, &lt;i&gt;Remersonia&lt;/i&gt;, &lt;i&gt;Thermocarpiscus&lt;/i&gt; &lt;i&gt;gen. nov&lt;/i&gt;., &lt;i&gt;Thermochaetoides&lt;/i&gt; &lt;i&gt;gen. nov&lt;/i&gt;., &lt;i&gt;Thermothelomyces&lt;/i&gt; and &lt;i&gt;Thermothielavioides&lt;/i&gt;). These genera cluster in six separate lineages, suggesting that thermophiles independently evolved at least six times within the family. A list of accepted genera and species in &lt;i&gt;Chaetomiaceae&lt;/i&gt;, together with information on their MycoBank numbers, living ex-type strains and GenBank accession numbers to ITS, LSU, &lt;i&gt;rpb2&lt;/i&gt; and &lt;i&gt;tub2&lt;/i&gt; sequences is provided. Furthermore, we provide suggestions how to describe and identify &lt;i&gt;Chaetomiaceae&lt;/i&gt; species. &lt;b&gt;Taxonomic novelties:&lt;/b&gt; &lt;b&gt;new genera:&lt;/b&gt; &lt;i&gt;Parvomelanocarpus&lt;/i&gt; X.Wei Wang & Houbraken&lt;i&gt;, Pseudohumicola&lt;/i&gt; X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, &lt;i&gt;Tengochaeta&lt;/i&gt; X.Wei Wang & Houbraken, &lt;i&gt;Thermocarpiscus&lt;/i&gt; X.Wei Wang & Houb","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"101 ","pages":"121-243"},"PeriodicalIF":14.1,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9365047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40348346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Species diversity, systematic revision and molecular phylogeny of Ganodermataceae (Polyporales, Basidiomycota) with an emphasis on Chinese collections. 灵芝科(多孢子门,担子菌门)的物种多样性、系统修订和分子系统发育——以中国标本为重点。
IF 16.5 1区 生物学 Q1 MYCOLOGY Pub Date : 2022-07-01 Epub Date: 2022-05-20 DOI: 10.3114/sim.2022.101.05
Y-F Sun, J-H Xing, X-L He, D-M Wu, C-G Song, S Liu, J Vlasák, G Gates, T B Gibertoni, B-K Cui
<p><p><i>Ganodermataceae</i> is one of the main families of macrofungi since species in the family are both ecologically and economically important. The double-walled basidiospores with ornamented endospore walls are the characteristic features of <i>Ganodermataceae</i>. It is a large and complex family; although many studies have focused on <i>Ganodermataceae</i>, the global diversity, geographic distribution, taxonomy and molecular phylogeny of <i>Ganodermataceae</i> still remained incompletely understood. In this work, taxonomic and phylogenetic studies on worldwide species of <i>Ganodermataceae</i> were carried out by morphological examination and molecular phylogenetic analyses inferred from six gene loci including the internal transcribed spacer regions (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the second largest subunit of RNA polymerase II gene (<i>rpb2</i>), the translation elongation factor 1-α gene (<i>tef1</i>), the small subunit mitochondrial rRNA gene (mtSSU) and the small subunit nuclear ribosomal RNA gene (nSSU). A total of 1 382 sequences were used in the phylogenetic analyses, of which 817 were newly generated, including 132 sequences of ITS, 139 sequences of nLSU, 83 sequences of <i>rpb2</i>, 124 sequences of <i>tef1</i>, 150 sequences of mtSSU and 189 sequences of nSSU. The combined six-gene dataset included sequences from 391 specimens representing 146 taxa from <i>Ganodermataceae</i>. Based on morphological and phylogenetic analyses, 14 genera were confirmed in <i>Ganodermataceae</i>: <i>Amauroderma</i>, <i>Amaurodermellus</i>, <i>Cristataspora</i>, <i>Foraminispora</i>, <i>Furtadoella</i>, <i>Ganoderma</i>, <i>Haddowia</i>, <i>Humphreya</i>, <i>Magoderna</i>, <i>Neoganoderma</i>, <i>Sanguinoderma</i>, <i>Sinoganoderma</i>, <i>Tomophagus</i> and <i>Trachydermella</i>. Among these genera, <i>Neoganoderma gen. nov.</i> is proposed for <i>Ganoderma neurosporum</i>; <i>Sinoganoderma gen. nov.</i> is proposed for <i>Ganoderma shandongense</i>; <i>Furtadoella gen. nov.</i> is proposed to include taxa previously belonging to <i>Furtadoa</i> since <i>Furtadoa</i> is a homonym of a plant genus in the <i>Araceae</i>; <i>Trachydermella gen. nov.</i> is proposed to include <i>Trachyderma tsunodae</i> since <i>Trachyderma</i> is a homonym of a lichen genus in the <i>Pannariaceae</i>. Twenty-three new species, <i>viz</i>., <i>Ganoderma acaciicola</i>, <i>G. acontextum</i>, <i>G. alpinum</i>, <i>G. bubalinomarginatum</i>, <i>G. castaneum</i>, <i>G. chuxiongense</i>, <i>G. cocoicola</i>, <i>G. fallax</i>, <i>G. guangxiense</i>, <i>G. puerense</i>, <i>G. subangustisporum</i>, <i>G. subellipsoideum</i>, <i>G. subflexipes</i>, <i>G. sublobatum</i>, <i>G. tongshanense</i>, <i>G. yunlingense</i>, <i>Haddowia macropora</i>, <i>Sanguinoderma guangdongense</i>, <i>Sa. infundibulare</i>, <i>Sa. longistipitum</i>, <i>Sa. melanocarpum</i>, <i>Sa. microsporum</i> and <i>Sa. tricolor</i> are described. In addition, another 33 known
灵芝科是大型真菌的主要科之一,因为该科的物种具有重要的生态和经济意义。双壁担子孢子,孢子内壁有纹饰,是灵芝科植物的特征。这是一个庞大而复杂的家庭;虽然对灵芝科的研究较多,但对其全球多样性、地理分布、分类及分子系统发育的认识仍不完全。本文通过形态学分析和分子系统发育分析,对世界范围内的灵皮科植物进行了分类和系统发育研究,包括内部转录间隔区(ITS)、核糖体RNA基因大亚基(nLSU)、RNA聚合酶II基因第二大亚基(rpb2)、翻译伸长因子1-α基因(tef1)、线粒体rRNA小亚基基因(mtSSU)和核糖体RNA小亚基基因(nSSU)。系统发育分析共获得1382条序列,其中新生成序列817条,包括ITS序列132条、nLSU序列139条、rpb2序列83条、tef1序列124条、mtSSU序列150条、nSSU序列189条。合并的6个基因数据集包括来自灵芝科146个分类群的391个标本的序列。通过形态学和系统发育分析,确定了灵芝科14属:Amauroderma、Amaurodermellus、Cristataspora、Foraminispora、Furtadoella、Ganoderma、Haddowia、Humphreya、Magoderna、Neoganoderma、Sanguinoderma、Sinoganoderma、Tomophagus和Trachydermella。其中,神经孢子灵芝被命名为新灵芝(Neoganoderma gen. 11);建议将山东灵芝命名为Sinoganoderma gen.;由于Furtadoa是天南星科一个植物属的同音异义,因此建议将以前属于Furtadoa的分类群包括在内;由于厚皮菌是板蓝科中一个地衣属的同音名,故建议将厚皮菌包括在癣菌科中。新种23种:松香灵芝、附子灵芝、高山灵芝、野野灵芝、castaneum、chuxiongense、cocoicola、fallax、广仙灵芝、葛根灵芝、亚光灵芝、亚光灵芝、亚光灵芝、亚光灵芝、亚光灵芝、亚光灵芝、铜山灵芝、云岭灵芝、大气孔灵芝、广东血皮灵芝、广东血皮灵芝。infundibulare Sa。longistipitum Sa。melanocarpum Sa。小孢子菌和Sa。三色旗被描述。此外,本文还详细介绍了另外33种已知物种,以供比较。本文报道了灵芝科10属担子孢子的扫描电镜。同时提供了灵芝科公认属和灵芝、灵芝属、灵芝属、灵芝属、血皮属、灵芝属等公认种的密钥。共有灵芝科植物278种,其中分布于中国的有59种。新属:Furtadoella B.K. Cui & yf Sun, Neoganoderma B.K. Cui & yf Sun, Sinoganoderma B.K. Cui, J.H. Xing & yf Sun和trachyderella B.K. Cui & yf Sun;新物种:灵芝acaciicola B.K.崔,J.H.邢& Y.F.太阳,g . acontextum B.K.崔,J.H.邢& Vlasak g . alpinum B.K.崔,J.H.邢& Y.F.太阳,g . bubalinomarginatum B.K.崔,J.H.邢& Y.F.太阳,g . castaneum B.K.崔,J.H.邢& Y.F.太阳,g . chuxiongense B.K.崔,J.H.邢& Y.F.太阳,g . cocoicola B.K.崔,J.H.邢& Y.F.太阳,g . fallax B.K.崔,J.H.邢& Vlasak g . guangxiense B.K.崔,J.H.邢& Y.F.太阳,g . puerense B.K.崔,J.H.邢& Y.F.太阳,g . subangustisporum B.K.崔,邢建宏,孙云峰,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江,黄浦江。崔伯奎,孙永峰,萨。longistitium崔伯奎,孙云峰,萨。崔宝凯,孙永峰,孙莎。小孢子菌崔B.K. &孙云峰,萨。三色崔炳坤、孙永飞;新组合:Furtadoella biseptata (Costa-Rezende et .)brasiliensis (Singer)崔宝坤,孙永峰,傅莹。牛角菌(Gulaid & Ryvarden)崔b.k. &孙云峰,神经孢子新灵芝(J.S. Furtado)崔b.k. &孙云峰,山东灵芝(赵j.d. &徐丽伟)崔b.k.,邢家辉&孙云峰,tsunodae厚皮(Yasuda ex Lloyd)崔b.k. &孙云峰。引用本文:孙云峰,邢建华,何小林,吴德明,宋春光,刘松,Vlasák J, Gates G, Gibertoni TB,崔伯康(2022)。灵芝科(多孢子门,担子菌门)的物种多样性、系统修订和分子系统发育——以中国标本为重点。真菌学研究101:287-415。doi: 10.3114 / sim.2022.101.05。
{"title":"Species diversity, systematic revision and molecular phylogeny of <i>Ganodermataceae</i> (<i>Polyporales</i>, <i>Basidiomycota</i>) with an emphasis on Chinese collections.","authors":"Y-F Sun,&nbsp;J-H Xing,&nbsp;X-L He,&nbsp;D-M Wu,&nbsp;C-G Song,&nbsp;S Liu,&nbsp;J Vlasák,&nbsp;G Gates,&nbsp;T B Gibertoni,&nbsp;B-K Cui","doi":"10.3114/sim.2022.101.05","DOIUrl":"https://doi.org/10.3114/sim.2022.101.05","url":null,"abstract":"&lt;p&gt;&lt;p&gt;&lt;i&gt;Ganodermataceae&lt;/i&gt; is one of the main families of macrofungi since species in the family are both ecologically and economically important. The double-walled basidiospores with ornamented endospore walls are the characteristic features of &lt;i&gt;Ganodermataceae&lt;/i&gt;. It is a large and complex family; although many studies have focused on &lt;i&gt;Ganodermataceae&lt;/i&gt;, the global diversity, geographic distribution, taxonomy and molecular phylogeny of &lt;i&gt;Ganodermataceae&lt;/i&gt; still remained incompletely understood. In this work, taxonomic and phylogenetic studies on worldwide species of &lt;i&gt;Ganodermataceae&lt;/i&gt; were carried out by morphological examination and molecular phylogenetic analyses inferred from six gene loci including the internal transcribed spacer regions (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the second largest subunit of RNA polymerase II gene (&lt;i&gt;rpb2&lt;/i&gt;), the translation elongation factor 1-α gene (&lt;i&gt;tef1&lt;/i&gt;), the small subunit mitochondrial rRNA gene (mtSSU) and the small subunit nuclear ribosomal RNA gene (nSSU). A total of 1 382 sequences were used in the phylogenetic analyses, of which 817 were newly generated, including 132 sequences of ITS, 139 sequences of nLSU, 83 sequences of &lt;i&gt;rpb2&lt;/i&gt;, 124 sequences of &lt;i&gt;tef1&lt;/i&gt;, 150 sequences of mtSSU and 189 sequences of nSSU. The combined six-gene dataset included sequences from 391 specimens representing 146 taxa from &lt;i&gt;Ganodermataceae&lt;/i&gt;. Based on morphological and phylogenetic analyses, 14 genera were confirmed in &lt;i&gt;Ganodermataceae&lt;/i&gt;: &lt;i&gt;Amauroderma&lt;/i&gt;, &lt;i&gt;Amaurodermellus&lt;/i&gt;, &lt;i&gt;Cristataspora&lt;/i&gt;, &lt;i&gt;Foraminispora&lt;/i&gt;, &lt;i&gt;Furtadoella&lt;/i&gt;, &lt;i&gt;Ganoderma&lt;/i&gt;, &lt;i&gt;Haddowia&lt;/i&gt;, &lt;i&gt;Humphreya&lt;/i&gt;, &lt;i&gt;Magoderna&lt;/i&gt;, &lt;i&gt;Neoganoderma&lt;/i&gt;, &lt;i&gt;Sanguinoderma&lt;/i&gt;, &lt;i&gt;Sinoganoderma&lt;/i&gt;, &lt;i&gt;Tomophagus&lt;/i&gt; and &lt;i&gt;Trachydermella&lt;/i&gt;. Among these genera, &lt;i&gt;Neoganoderma gen. nov.&lt;/i&gt; is proposed for &lt;i&gt;Ganoderma neurosporum&lt;/i&gt;; &lt;i&gt;Sinoganoderma gen. nov.&lt;/i&gt; is proposed for &lt;i&gt;Ganoderma shandongense&lt;/i&gt;; &lt;i&gt;Furtadoella gen. nov.&lt;/i&gt; is proposed to include taxa previously belonging to &lt;i&gt;Furtadoa&lt;/i&gt; since &lt;i&gt;Furtadoa&lt;/i&gt; is a homonym of a plant genus in the &lt;i&gt;Araceae&lt;/i&gt;; &lt;i&gt;Trachydermella gen. nov.&lt;/i&gt; is proposed to include &lt;i&gt;Trachyderma tsunodae&lt;/i&gt; since &lt;i&gt;Trachyderma&lt;/i&gt; is a homonym of a lichen genus in the &lt;i&gt;Pannariaceae&lt;/i&gt;. Twenty-three new species, &lt;i&gt;viz&lt;/i&gt;., &lt;i&gt;Ganoderma acaciicola&lt;/i&gt;, &lt;i&gt;G. acontextum&lt;/i&gt;, &lt;i&gt;G. alpinum&lt;/i&gt;, &lt;i&gt;G. bubalinomarginatum&lt;/i&gt;, &lt;i&gt;G. castaneum&lt;/i&gt;, &lt;i&gt;G. chuxiongense&lt;/i&gt;, &lt;i&gt;G. cocoicola&lt;/i&gt;, &lt;i&gt;G. fallax&lt;/i&gt;, &lt;i&gt;G. guangxiense&lt;/i&gt;, &lt;i&gt;G. puerense&lt;/i&gt;, &lt;i&gt;G. subangustisporum&lt;/i&gt;, &lt;i&gt;G. subellipsoideum&lt;/i&gt;, &lt;i&gt;G. subflexipes&lt;/i&gt;, &lt;i&gt;G. sublobatum&lt;/i&gt;, &lt;i&gt;G. tongshanense&lt;/i&gt;, &lt;i&gt;G. yunlingense&lt;/i&gt;, &lt;i&gt;Haddowia macropora&lt;/i&gt;, &lt;i&gt;Sanguinoderma guangdongense&lt;/i&gt;, &lt;i&gt;Sa. infundibulare&lt;/i&gt;, &lt;i&gt;Sa. longistipitum&lt;/i&gt;, &lt;i&gt;Sa. melanocarpum&lt;/i&gt;, &lt;i&gt;Sa. microsporum&lt;/i&gt; and &lt;i&gt;Sa. tricolor&lt;/i&gt; are described. In addition, another 33 known ","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"101 ","pages":"287-415"},"PeriodicalIF":16.5,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9365044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40348348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes 菌丝体基因组和转录组对子实体形态发生的启示
IF 16.5 1区 生物学 Q1 MYCOLOGY Pub Date : 2021-12-10 DOI: 10.1101/2021.12.09.471732
L. Nagy, P. Vonk, M. Künzler, C. Földi, M. Virágh, R. Ohm, F. Hennicke, B. Bálint, Á. Csernetics, B. Hegedüs, Z. Hou, X. Liu, S. Nan, M. Pareek, N. Sahu, B. Szathmári, T. Varga, H. Wu, X. Yang, Z. Merényi
Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates tissue differentiation, growth and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim to comprehensively identify conserved genes related to fruiting body morphogenesis and distill novel functional hypotheses for functionally poorly characterized genes. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide informed hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defense, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ∼10% of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi.
成菇真菌的子实体是真菌产生的最复杂的结构之一。与营养菌丝不同,子实体的生长是决定性的,并遵循遗传编码的发育程序,协调组织分化、生长和性孢子形成。尽管经过一个多世纪的研究,我们对子实体形态发生的分子细节了解有限,缺乏对这一复杂过程的遗传学综合。在本文中,我们旨在全面鉴定与子实体形态发生相关的保守基因,并对功能不明确的基因提出新的功能假设。根据这一分析结果,我们报道了921个保守的发育表达基因家族,其中只有几十个以前在子实体发育中被报道过。基于文献数据、保守表达模式和功能注释,我们对这些基因家族在子实体发育中的潜在作用提出了有根据的假设,得出了迄今为止最完整的子实体形态发生分子过程描述。我们讨论了与结果、分化、生长、细胞表面和细胞壁、防御、转录调控和信号转导有关的基因。基于这些数据,我们得出了子实体发育的一般模型,其中包括早期的增殖阶段,主要涉及制定蘑菇体计划(通过细胞分裂和分化),以及通过细胞扩增以及减数分裂事件和产孢的第二阶段生长。总的来说,我们的讨论涵盖了1480个铜opsis cinerea的基因,以及它们在双孢蘑菇、绿环菌、蜜环菌、耳虫、双色Laccaria、香菇、tigrinus、Mycena kentingensis、Phanerochaete chrysporium、平菇(Pleurotus ostreatus)和裂叶菌(Schizophyllum commune)中的同源基因,为这些物种基因组中约10%的基因提供了功能假设。虽然这些基因作用的实验证据需要在未来建立,但我们的数据为指导真菌中结果相关基因的功能分析提供了路线图。我们预计,这里提出的基因纲要,结合功能基因组学方法的发展,将有助于揭示真菌中最壮观的多细胞发育过程之一的遗传基础。
{"title":"Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes","authors":"L. Nagy, P. Vonk, M. Künzler, C. Földi, M. Virágh, R. Ohm, F. Hennicke, B. Bálint, Á. Csernetics, B. Hegedüs, Z. Hou, X. Liu, S. Nan, M. Pareek, N. Sahu, B. Szathmári, T. Varga, H. Wu, X. Yang, Z. Merényi","doi":"10.1101/2021.12.09.471732","DOIUrl":"https://doi.org/10.1101/2021.12.09.471732","url":null,"abstract":"Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates tissue differentiation, growth and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim to comprehensively identify conserved genes related to fruiting body morphogenesis and distill novel functional hypotheses for functionally poorly characterized genes. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide informed hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defense, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ∼10% of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi.","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"104 1","pages":"1 - 85"},"PeriodicalIF":16.5,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43463552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Aspergillus fumigatus and aspergillosis: From basics to clinics 烟曲霉和曲霉病:从基础到临床
IF 16.5 1区 生物学 Q1 MYCOLOGY Pub Date : 2021-09-01 DOI: 10.1016/j.simyco.2021.100115
A. Arastehfar , A. Carvalho , J. Houbraken , L. Lombardi , R. Garcia-Rubio , J.D. Jenks , O. Rivero-Menendez , R. Aljohani , I.D. Jacobsen , J. Berman , N. Osherov , M.T. Hedayati , M. Ilkit , D. Armstrong-James , T. Gabaldón , J. Meletiadis , M. Kostrzewa , W. Pan , C. Lass-Flörl , D.S. Perlin , M. Hoenigl

The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.

烟曲霉(Aspergillus fumigatus)是一种通过空气传播的真菌,对人类造成严重的健康威胁,引起大量侵袭性感染和显著的死亡率,特别是在免疫功能低下的患者中。霉菌活性唑类药物是治疗曲霉病的一线药物。然而,全球临床和环境中出现的抗唑烟曲霉分离株,众所周知地限制了霉菌活性抗真菌药物的治疗选择,并可能导致高达100%的死亡率。尽管CYP51A的特异性突变是导致唑耐药的主要原因,但新一波具有野生型CYP51A基因型的唑耐药分离株对当前诊断工具的有效性提出了挑战。因此,全基因组测序的应用越来越受欢迎,以克服这些挑战。突出的棘白菌素耐受性,以及两性霉素B引起的肝脏和肾脏毒性,需要不断寻求新的抗真菌药物来对抗新出现的耐唑烟曲霉菌株。用于基因工程的动物模型和工具需要进一步完善,以便更好地了解针对烟曲霉的抗性机制、毒力和免疫反应。本文全面讨论了烟曲霉引起的临床挑战,并对如何解决这些挑战提出了见解。
{"title":"Aspergillus fumigatus and aspergillosis: From basics to clinics","authors":"A. Arastehfar ,&nbsp;A. Carvalho ,&nbsp;J. Houbraken ,&nbsp;L. Lombardi ,&nbsp;R. Garcia-Rubio ,&nbsp;J.D. Jenks ,&nbsp;O. Rivero-Menendez ,&nbsp;R. Aljohani ,&nbsp;I.D. Jacobsen ,&nbsp;J. Berman ,&nbsp;N. Osherov ,&nbsp;M.T. Hedayati ,&nbsp;M. Ilkit ,&nbsp;D. Armstrong-James ,&nbsp;T. Gabaldón ,&nbsp;J. Meletiadis ,&nbsp;M. Kostrzewa ,&nbsp;W. Pan ,&nbsp;C. Lass-Flörl ,&nbsp;D.S. Perlin ,&nbsp;M. Hoenigl","doi":"10.1016/j.simyco.2021.100115","DOIUrl":"https://doi.org/10.1016/j.simyco.2021.100115","url":null,"abstract":"<div><p>The airborne fungus <em>Aspergillus fumigatus</em> poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant <em>A</em>. <em>fumigatus</em> isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in <em>CYP</em><em>51A</em> are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type <em>CYP</em><em>51A</em> genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant <em>A</em>. <em>fumigatus</em> isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against <em>A</em>. <em>fumigatus</em>. This review paper comprehensively discusses the current clinical challenges caused by <em>A</em>. <em>fumigatus</em> and provides insights on how to address them.</p></div>","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"100 ","pages":"Article 100115"},"PeriodicalIF":16.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.simyco.2021.100115","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92099345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 78
Trends in the molecular epidemiology and population genetics of emerging Sporothrix species 新发孢子丝菌的分子流行病学和群体遗传学趋势
IF 16.5 1区 生物学 Q1 MYCOLOGY Pub Date : 2021-09-01 DOI: 10.1016/j.simyco.2021.100129
J.A. de Carvalho , M.A. Beale , F. Hagen , M.C. Fisher , R. Kano , A. Bonifaz , C. Toriello , R. Negroni , R.S. de M. Rego , I.D.F. Gremião , S.A. Pereira , Z.P. de Camargo , A.M. Rodrigues
<div><p><em>Sporothrix</em> (<em>Ophiostomatales</em>) comprises species that are pathogenic to humans and other mammals as well as environmental fungi. Developments in molecular phylogeny have changed our perceptions about the epidemiology, host-association, and virulence of <em>Sporothrix</em>. The classical agent of sporotrichosis, <em>Sporothrix schenckii</em>, now comprises several species nested in a clinical clade with <em>S. brasiliensis</em>, <em>S. globosa</em>, and <em>S. luriei</em>. To gain a more precise view of outbreaks dynamics, structure, and origin of genetic variation within and among populations of <em>Sporothrix</em>, we applied three sets of discriminatory AFLP markers (#3 EcoRI-GA/MseI-TT, #5 EcoRI-GA/MseI-AG, and #6 EcoRI-TA/MseI-AA) and mating-type analysis to a large collection of human, animal and environmental isolates spanning the major endemic areas. A total of 451 polymorphic loci were amplified <em>in vitro</em> from 188 samples, and revealed high polymorphism information content (<em>PIC</em> = 0.1765–0.2253), marker index (<em>MI</em> = 0.0001–0.0002), effective multiplex ratio (<em>E</em> = 15.1720–23.5591), resolving power (<em>Rp</em> = 26.1075–40.2795), discriminating power (<em>D</em> = 0.9766–0.9879), expected heterozygosity (<em>H</em> = 0.1957–0.2588), and mean heterozygosity (<em>H<sub>avp</sub></em> = 0.000007–0.000009), demonstrating the effectiveness of AFLP markers to speciate <em>Sporothrix</em>. Analysis using the program <span>structure</span> indicated three genetic clusters matching <em>S. brasiliensis</em> (population 1), <em>S. schenckii</em> (population 2), and <em>S. globosa</em> (population 3), with the presence of patterns of admixture amongst all populations. AMOVA revealed highly structured clusters (PhiPT = 0.458–0.484, <em>P</em> < 0.0001), with roughly equivalent genetic variability within (46–48 %) and between (52–54 %) populations. Heterothallism was the exclusive mating strategy, and the distributions of <em>MAT1-1</em> or <em>MAT1-2</em> idiomorphs were not significantly skewed (1:1 ratio) for <em>S. schenckii</em> (χ<sup>2</sup> = 2.522; <em>P</em> = 0.1122), supporting random mating. In contrast, skewed distributions were found for <em>S. globosa</em> (χ<sup>2</sup> = 9.529; <em>P</em> = 0.0020) with a predominance of <em>MAT1-1</em> isolates, and regional differences were highlighted for <em>S. brasiliensis</em> with the overwhelming occurrence of <em>MAT1-2</em> in Rio de Janeiro (χ<sup>2</sup> = 14.222; <em>P</em> = 0.0002) and Pernambuco (χ<sup>2</sup> = 7.364; <em>P</em> = 0.0067), in comparison to a higher prevalence of <em>MAT1-1</em> in the Rio Grande do Sul (χ<sup>2</sup> = 7.364; <em>P</em> = 0.0067). Epidemiological trends reveal the geographic expansion of cat-transmitted sporotrichosis due to <em>S. brasiliensis</em> via founder effect. These data support Rio de Janeiro as the centre of origin that has led to the spread of this disease to other regions in Brazil
孢子菌包括对人类和其他哺乳动物以及环境真菌具有致病性的物种。分子系统发育的发展改变了我们对孢子丝菌的流行病学、宿主关联和毒力的认识。孢子丝菌病的经典病原体申氏孢子丝菌现在包括几个物种,它们与巴西孢子丝菌、全球孢子丝菌和卢氏孢子丝菌一起窝在一个临床分支中。为了更准确地了解孢子丝虫种群内和种群间的暴发动态、结构和遗传变异的起源,我们对主要流行地区的大量人类、动物和环境分离株进行了三组特异性AFLP标记(#3 EcoRI-GA/MseI-TT、#5 EcoRI-GA/MseI-AG和#6 EcoRI-TA/MseI-AA)和交配型分析。从188份样品中共扩增出451个多态性位点,多态性信息含量(PIC = 0.1765 ~ 0.2253)、标记指数(MI = 0.0001 ~ 0.0002)、有效多重比(E = 15.1720 ~ 23.5591)、分辨能力(Rp = 26.1075 ~ 40.2795)、鉴别能力(D = 0.9766 ~ 0.9879)、期望杂合度(H = 0.1957 ~ 0.2588)和平均杂合度(Havp = 0.000007 ~ 0.000009)较高,表明AFLP标记对孢子丝菌的鉴别是有效的。应用程序结构分析发现,巴西血吸虫(S. brasiliensis)(居群1)、申氏血吸虫(居群2)和全球血吸虫(居群3)具有3个遗传集群,且居群间存在混合模式。AMOVA显示高度结构化的集群(PhiPT = 0.458-0.484, P <0.0001),种群内(46 - 48%)和种群间(52 - 54%)的遗传变异性大致相当。异源性是申氏弧菌的唯一交配策略,其MAT1-1和MAT1-2自形态分布不存在显著歪斜(χ2 = 2.522;P = 0.1122),支持随机配对。相比之下,球形棘球蚴呈偏态分布(χ2 = 9.529;P = 0.0020),以MAT1-1菌株为优势菌株,巴西血吸虫以MAT1-2菌株为优势菌株,区域差异明显(χ2 = 14.222;P = 0.0002)和伯南布哥(χ2 = 7.364;P = 0.0067),相比之下,南大德州的MAT1-1患病率较高(χ2 = 7.364;p = 0.0067)。流行病学趋势表明,由巴西孢子虫引起的猫传播孢子虫病通过奠基者效应在地理上扩大。这些数据支持里约热内卢是导致该疾病向巴西其他地区传播的起源中心。我们能够从分子数据中重建正在发生的疫情的来源、传播和演变,为旨在减缓疾病进展的决策提供高质量信息。其他用途包括监测、快速诊断、病例连接和指导获得适当的抗真菌治疗。
{"title":"Trends in the molecular epidemiology and population genetics of emerging Sporothrix species","authors":"J.A. de Carvalho ,&nbsp;M.A. Beale ,&nbsp;F. Hagen ,&nbsp;M.C. Fisher ,&nbsp;R. Kano ,&nbsp;A. Bonifaz ,&nbsp;C. Toriello ,&nbsp;R. Negroni ,&nbsp;R.S. de M. Rego ,&nbsp;I.D.F. Gremião ,&nbsp;S.A. Pereira ,&nbsp;Z.P. de Camargo ,&nbsp;A.M. Rodrigues","doi":"10.1016/j.simyco.2021.100129","DOIUrl":"https://doi.org/10.1016/j.simyco.2021.100129","url":null,"abstract":"&lt;div&gt;&lt;p&gt;&lt;em&gt;Sporothrix&lt;/em&gt; (&lt;em&gt;Ophiostomatales&lt;/em&gt;) comprises species that are pathogenic to humans and other mammals as well as environmental fungi. Developments in molecular phylogeny have changed our perceptions about the epidemiology, host-association, and virulence of &lt;em&gt;Sporothrix&lt;/em&gt;. The classical agent of sporotrichosis, &lt;em&gt;Sporothrix schenckii&lt;/em&gt;, now comprises several species nested in a clinical clade with &lt;em&gt;S. brasiliensis&lt;/em&gt;, &lt;em&gt;S. globosa&lt;/em&gt;, and &lt;em&gt;S. luriei&lt;/em&gt;. To gain a more precise view of outbreaks dynamics, structure, and origin of genetic variation within and among populations of &lt;em&gt;Sporothrix&lt;/em&gt;, we applied three sets of discriminatory AFLP markers (#3 EcoRI-GA/MseI-TT, #5 EcoRI-GA/MseI-AG, and #6 EcoRI-TA/MseI-AA) and mating-type analysis to a large collection of human, animal and environmental isolates spanning the major endemic areas. A total of 451 polymorphic loci were amplified &lt;em&gt;in vitro&lt;/em&gt; from 188 samples, and revealed high polymorphism information content (&lt;em&gt;PIC&lt;/em&gt; = 0.1765–0.2253), marker index (&lt;em&gt;MI&lt;/em&gt; = 0.0001–0.0002), effective multiplex ratio (&lt;em&gt;E&lt;/em&gt; = 15.1720–23.5591), resolving power (&lt;em&gt;Rp&lt;/em&gt; = 26.1075–40.2795), discriminating power (&lt;em&gt;D&lt;/em&gt; = 0.9766–0.9879), expected heterozygosity (&lt;em&gt;H&lt;/em&gt; = 0.1957–0.2588), and mean heterozygosity (&lt;em&gt;H&lt;sub&gt;avp&lt;/sub&gt;&lt;/em&gt; = 0.000007–0.000009), demonstrating the effectiveness of AFLP markers to speciate &lt;em&gt;Sporothrix&lt;/em&gt;. Analysis using the program &lt;span&gt;structure&lt;/span&gt; indicated three genetic clusters matching &lt;em&gt;S. brasiliensis&lt;/em&gt; (population 1), &lt;em&gt;S. schenckii&lt;/em&gt; (population 2), and &lt;em&gt;S. globosa&lt;/em&gt; (population 3), with the presence of patterns of admixture amongst all populations. AMOVA revealed highly structured clusters (PhiPT = 0.458–0.484, &lt;em&gt;P&lt;/em&gt; &lt; 0.0001), with roughly equivalent genetic variability within (46–48 %) and between (52–54 %) populations. Heterothallism was the exclusive mating strategy, and the distributions of &lt;em&gt;MAT1-1&lt;/em&gt; or &lt;em&gt;MAT1-2&lt;/em&gt; idiomorphs were not significantly skewed (1:1 ratio) for &lt;em&gt;S. schenckii&lt;/em&gt; (χ&lt;sup&gt;2&lt;/sup&gt; = 2.522; &lt;em&gt;P&lt;/em&gt; = 0.1122), supporting random mating. In contrast, skewed distributions were found for &lt;em&gt;S. globosa&lt;/em&gt; (χ&lt;sup&gt;2&lt;/sup&gt; = 9.529; &lt;em&gt;P&lt;/em&gt; = 0.0020) with a predominance of &lt;em&gt;MAT1-1&lt;/em&gt; isolates, and regional differences were highlighted for &lt;em&gt;S. brasiliensis&lt;/em&gt; with the overwhelming occurrence of &lt;em&gt;MAT1-2&lt;/em&gt; in Rio de Janeiro (χ&lt;sup&gt;2&lt;/sup&gt; = 14.222; &lt;em&gt;P&lt;/em&gt; = 0.0002) and Pernambuco (χ&lt;sup&gt;2&lt;/sup&gt; = 7.364; &lt;em&gt;P&lt;/em&gt; = 0.0067), in comparison to a higher prevalence of &lt;em&gt;MAT1-1&lt;/em&gt; in the Rio Grande do Sul (χ&lt;sup&gt;2&lt;/sup&gt; = 7.364; &lt;em&gt;P&lt;/em&gt; = 0.0067). Epidemiological trends reveal the geographic expansion of cat-transmitted sporotrichosis due to &lt;em&gt;S. brasiliensis&lt;/em&gt; via founder effect. These data support Rio de Janeiro as the centre of origin that has led to the spread of this disease to other regions in Brazil","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"100 ","pages":"Article 100129"},"PeriodicalIF":16.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166061621000166/pdfft?md5=2d66cf749c8b6b116da997ac6b51cd53&pid=1-s2.0-S0166061621000166-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92066454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Comparative genomic analysis of clinical Candida glabrata isolates identifies multiple polymorphic loci that can improve existing multilocus sequence typing strategy 临床光假丝酵母分离株的比较基因组分析鉴定出多个多态性位点,可以改进现有的多位点序列分型策略
IF 16.5 1区 生物学 Q1 MYCOLOGY Pub Date : 2021-09-01 DOI: 10.1016/j.simyco.2021.100133
A. Arastehfar , M. Marcet-Houben , F. Daneshnia , S.J. Taj-Aldeen , D. Batra , S.R. Lockhart , E. Shor , T. Gabaldón , D.S. Perlin

Candida glabrata is the second leading cause of candidemia in many countries and is one of the most concerning yeast species of nosocomial importance due to its increasing rate of antifungal drug resistance and emerging multidrug-resistant isolates. Application of multilocus sequence typing (MLST) to clinical C. glabrata isolates revealed an association of certain sequence types (STs) with drug resistance and mortality. The current C. glabrata MLST scheme is based on single nucleotide polymorphisms (SNPs) at six loci and is therefore relatively laborious and costly. Furthermore, only a few high-quality C. glabrata reference genomes are available, limiting rapid analysis of clinical isolates by whole genome sequencing. In this study we provide long-read based assemblies for seven additional clinical strains belonging to three different STs and use this information to simplify the C. glabrata MLST scheme. Specifically, a comparison of these genomes identified highly polymorphic loci (HPL) defined by frequent insertions and deletions (indels), two of which proved to be highly resolutive for ST. When challenged with 53 additional isolates, a combination of TRP1 (a component of the current MLST scheme) with either of the two HPL fully recapitulated ST identification. Therefore, our comparative genomic analysis identified a new typing approach combining SNPs and indels and based on only two loci, thus significantly simplifying ST identification in C. glabrata. Because typing tools are instrumental in addressing numerous clinical and biological questions, our new MLST scheme can be used for high throughput typing of C. glabrata in clinical and research settings.

在许多国家,光念珠菌是念珠菌病的第二大病因,由于其抗真菌药物耐药率的增加和新出现的多重耐药分离株,它是最受关注的具有医院重要性的酵母菌种之一。应用多位点序列分型(MLST)对临床分离的光棘球蚴(C. glabrata)进行分析,揭示了某些序列类型与耐药性和死亡率之间的关联。目前的glabrata MLST方案是基于6个位点的单核苷酸多态性(snp),因此相对费力和昂贵。此外,只有少数高质量的参考基因组可用,限制了临床分离株全基因组测序的快速分析。在这项研究中,我们提供了属于三个不同STs的另外七个临床菌株的长读基序列,并利用这些信息简化了C. glabrata MLST方案。具体来说,这些基因组的比较鉴定出了高多态性位点(HPL),这些位点由频繁的插入和缺失(indels)定义,其中两个被证明是ST的高度分辨率,当用53个额外的分离物挑战时,TRP1(当前MLST方案的一个组成部分)与两个HPL中的任何一个的组合完全再现了ST鉴定。因此,我们的比较基因组分析确定了一种结合snp和indels,仅基于两个位点的新分型方法,从而大大简化了C. glabrata的ST鉴定。由于分型工具有助于解决许多临床和生物学问题,我们的新MLST方案可用于临床和研究环境中的高通量分型。
{"title":"Comparative genomic analysis of clinical Candida glabrata isolates identifies multiple polymorphic loci that can improve existing multilocus sequence typing strategy","authors":"A. Arastehfar ,&nbsp;M. Marcet-Houben ,&nbsp;F. Daneshnia ,&nbsp;S.J. Taj-Aldeen ,&nbsp;D. Batra ,&nbsp;S.R. Lockhart ,&nbsp;E. Shor ,&nbsp;T. Gabaldón ,&nbsp;D.S. Perlin","doi":"10.1016/j.simyco.2021.100133","DOIUrl":"https://doi.org/10.1016/j.simyco.2021.100133","url":null,"abstract":"<div><p><em>Candida glabrata</em> is the second leading cause of candidemia in many countries and is one of the most concerning yeast species of nosocomial importance due to its increasing rate of antifungal drug resistance and emerging multidrug-resistant isolates. Application of multilocus sequence typing (MLST) to clinical <em>C. glabrata</em> isolates revealed an association of certain sequence types (STs) with drug resistance and mortality. The current <em>C. glabrata</em> MLST scheme is based on single nucleotide polymorphisms (SNPs) at six loci and is therefore relatively laborious and costly. Furthermore, only a few high-quality <em>C. glabrata</em> reference genomes are available, limiting rapid analysis of clinical isolates by whole genome sequencing. In this study we provide long-read based assemblies for seven additional clinical strains belonging to three different STs and use this information to simplify the <em>C. glabrata</em> MLST scheme. Specifically, a comparison of these genomes identified highly polymorphic loci (HPL) defined by frequent insertions and deletions (indels), two of which proved to be highly resolutive for ST. When challenged with 53 additional isolates, a combination of <em>TRP1</em> (a component of the current MLST scheme) with either of the two HPL fully recapitulated ST identification. Therefore, our comparative genomic analysis identified a new typing approach combining SNPs and indels and based on only two loci, thus significantly simplifying ST identification in <em>C. glabrata</em>. Because typing tools are instrumental in addressing numerous clinical and biological questions, our new MLST scheme can be used for high throughput typing of <em>C. glabrata</em> in clinical and research settings.</p></div>","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"100 ","pages":"Article 100133"},"PeriodicalIF":16.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166061621000208/pdfft?md5=7511e85e8764997b464763fdf771e7f5&pid=1-s2.0-S0166061621000208-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92066237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Exploring genetic diversity, population structure, and phylogeography in Paracoccidioides species using AFLP markers 利用AFLP标记探索副球虫物种的遗传多样性、种群结构和系统地理学
IF 16.5 1区 生物学 Q1 MYCOLOGY Pub Date : 2021-09-01 DOI: 10.1016/j.simyco.2021.100131
T.N. Roberto , J.A. de Carvalho , M.A. Beale , F. Hagen , M.C. Fisher , R.C. Hahn , Z.P. de Camargo , A.M. Rodrigues
<div><p>Paracoccidioidomycosis (PCM) is a life-threatening systemic fungal infection acquired after inhalation of <em>Paracoccidioides</em> propagules from the environment. The main agents include members of the <em>P. brasiliensis</em> complex (phylogenetically-defined species S1, PS2, PS3, and PS4) and <em>P. lutzii</em>. DNA-sequencing of protein-coding loci (e.g., <em>GP43</em>, <em>ARF</em>, and <em>TUB1</em>) is the reference method for recognizing <em>Paracoccidioides</em> species due to a lack of robust phenotypic markers. Thus, developing new molecular markers that are informative and cost-effective is key to providing quality information to explore genetic diversity within <em>Paracoccidioides</em>. We report using new amplified fragment length polymorphism (AFLP) markers and mating-type analysis for genotyping <em>Paracoccidioides</em> species. The bioinformatic analysis generated 144 <em>in silico</em> AFLP profiles, highlighting two discriminatory primer pairs combinations (#1 EcoRI-AC/MseI-CT and #2 EcoRI-AT/MseI-CT). The combinations #1 and #2 were used <em>in vitro</em> to genotype 165 <em>Paracoccidioides</em> isolates recovered from across a vast area of South America. Considering the overall scored AFLP markers <em>in vitro</em> (67–87 fragments), the values of polymorphism information content (<em>PIC</em> = 0.3345–0.3456), marker index (<em>MI</em> = 0.0018), effective multiplex ratio (<em>E</em> = 44.6788–60.3818), resolving power (<em>Rp</em> = 22.3152–34.3152), discriminating power (<em>D</em> = 0.5183–0.5553), expected heterozygosity (<em>H</em> = 0.4247–0.4443), and mean heterozygosity (<em>H</em><sub><em>avp</em></sub> = 0.00002–0.00004), demonstrated the utility of AFLP markers to speciate <em>Paracoccidioides</em> and to dissect both deep and fine-scale genetic structures. Analysis of molecular variance (AMOVA) revealed that the total genetic variance (65-66 %) was due to variability among <em>P. brasiliensis</em> complex and <em>P. lutzii</em> (PhiPT = 0.651–0.658, <em>P</em> < 0.0001), supporting a highly structured population. Heterothallism was the exclusive mating strategy, and the distributions of <em>MAT1-1</em> or <em>MAT1-2</em> idiomorphs were not significantly skewed (1:1 ratio) for <em>P. brasiliensis s. str.</em> (χ<sup>2</sup> = 1.025; <em>P</em> = 0.3113), <em>P. venezuelensis</em> (χ<sup>2</sup> = 0.692; <em>P</em> = 0.4054), and <em>P. lutzii</em> (χ<sup>2</sup> = 0.027; <em>P</em> = 0.8694), supporting random mating within each species. In contrast, skewed distributions were found for <em>P. americana</em> (χ<sup>2</sup> = 8.909; <em>P</em> = 0.0028) and <em>P. restrepiensis</em> (χ<sup>2</sup> = 4.571; <em>P</em> = 0.0325) with a preponderance of <em>MAT1-1</em>. Geographical distributions confirmed that <em>P. americana</em>, <em>P. restrepiensis</em>, and <em>P. lutzii</em> are more widespread than previously thought. <em>P. brasiliensis s. str.</em> is by far the most widely occurring lineage
副球孢子菌病(PCM)是一种危及生命的全身真菌感染后,从环境中吸入副球孢子繁殖体获得。主要病原体包括巴西疟原虫复合体成员(系统发育已确定的物种S1、PS2、PS3和PS4)和卢茨疟原虫。由于缺乏可靠的表型标记,蛋白质编码位点(如GP43、ARF和TUB1)的dna测序是识别副球虫物种的参考方法。因此,开发信息丰富、成本低廉的新分子标记是为探索副球虫遗传多样性提供高质量信息的关键。本文报道使用新的扩增片段长度多态性(AFLP)标记和配型分析对副球虫进行基因分型。生物信息学分析生成了144个硅片AFLP图谱,突出了两个区别性引物对组合(#1 EcoRI-AC/MseI-CT和#2 EcoRI-AT/MseI-CT)。使用组合#1和#2在体外对从南美洲广大地区回收的165株副球虫分离株进行基因分型。考虑到AFLP体外标记的总体评分(67 ~ 87个片段),多态性信息含量(PIC = 0.345 ~ 0.3456)、标记指数(MI = 0.0018)、有效多重比(E = 44.6788 ~ 60.3818)、分辨能力(Rp = 22.3152 ~ 34.3152)、鉴别能力(D = 0.5183 ~ 0.5553)、期望杂合度(H = 0.4247 ~ 0.4443)、平均杂合度(Havp = 0.00002 ~ 0.00004)的值,展示了AFLP标记对副球虫的分类和解剖深层和精细遗传结构的效用。分子方差分析(AMOVA)表明,总遗传变异(65 ~ 66%)主要是由巴西疟原虫复合体和卢茨疟原虫之间的变异引起的(PhiPT = 0.651 ~ 0.658, P <0.0001),支持高度结构化的人口。异源性是巴西种的唯一交配策略,巴西种MAT1-1和MAT1-2自胚分布不存在显著歪斜(χ2 = 1.025;P = 0.3113),委内瑞拉棘球绦虫(χ2 = 0.692;P = 0.4054), P. lutzii (χ2 = 0.027;P = 0.8694),支持每个物种的随机交配。美洲蠊呈偏态分布(χ2 = 8.909;P = 0.0028)和雷strepiensis (χ2 = 4.571;P = 0.0325),以MAT1-1为优势。地理分布证实美洲疟原虫、雷氏疟原虫和鲁氏疟原虫比以前认为的更为广泛。巴西疟原虫是迄今为止在拉丁美洲国家最广泛发生的谱系,在巴西的所有地区都有发生。该方法具有快速、可重复性好、高区分性等特点,对副球虫的分类学、生态学和流行病学研究具有重要的指导意义。
{"title":"Exploring genetic diversity, population structure, and phylogeography in Paracoccidioides species using AFLP markers","authors":"T.N. Roberto ,&nbsp;J.A. de Carvalho ,&nbsp;M.A. Beale ,&nbsp;F. Hagen ,&nbsp;M.C. Fisher ,&nbsp;R.C. Hahn ,&nbsp;Z.P. de Camargo ,&nbsp;A.M. Rodrigues","doi":"10.1016/j.simyco.2021.100131","DOIUrl":"https://doi.org/10.1016/j.simyco.2021.100131","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Paracoccidioidomycosis (PCM) is a life-threatening systemic fungal infection acquired after inhalation of &lt;em&gt;Paracoccidioides&lt;/em&gt; propagules from the environment. The main agents include members of the &lt;em&gt;P. brasiliensis&lt;/em&gt; complex (phylogenetically-defined species S1, PS2, PS3, and PS4) and &lt;em&gt;P. lutzii&lt;/em&gt;. DNA-sequencing of protein-coding loci (e.g., &lt;em&gt;GP43&lt;/em&gt;, &lt;em&gt;ARF&lt;/em&gt;, and &lt;em&gt;TUB1&lt;/em&gt;) is the reference method for recognizing &lt;em&gt;Paracoccidioides&lt;/em&gt; species due to a lack of robust phenotypic markers. Thus, developing new molecular markers that are informative and cost-effective is key to providing quality information to explore genetic diversity within &lt;em&gt;Paracoccidioides&lt;/em&gt;. We report using new amplified fragment length polymorphism (AFLP) markers and mating-type analysis for genotyping &lt;em&gt;Paracoccidioides&lt;/em&gt; species. The bioinformatic analysis generated 144 &lt;em&gt;in silico&lt;/em&gt; AFLP profiles, highlighting two discriminatory primer pairs combinations (#1 EcoRI-AC/MseI-CT and #2 EcoRI-AT/MseI-CT). The combinations #1 and #2 were used &lt;em&gt;in vitro&lt;/em&gt; to genotype 165 &lt;em&gt;Paracoccidioides&lt;/em&gt; isolates recovered from across a vast area of South America. Considering the overall scored AFLP markers &lt;em&gt;in vitro&lt;/em&gt; (67–87 fragments), the values of polymorphism information content (&lt;em&gt;PIC&lt;/em&gt; = 0.3345–0.3456), marker index (&lt;em&gt;MI&lt;/em&gt; = 0.0018), effective multiplex ratio (&lt;em&gt;E&lt;/em&gt; = 44.6788–60.3818), resolving power (&lt;em&gt;Rp&lt;/em&gt; = 22.3152–34.3152), discriminating power (&lt;em&gt;D&lt;/em&gt; = 0.5183–0.5553), expected heterozygosity (&lt;em&gt;H&lt;/em&gt; = 0.4247–0.4443), and mean heterozygosity (&lt;em&gt;H&lt;/em&gt;&lt;sub&gt;&lt;em&gt;avp&lt;/em&gt;&lt;/sub&gt; = 0.00002–0.00004), demonstrated the utility of AFLP markers to speciate &lt;em&gt;Paracoccidioides&lt;/em&gt; and to dissect both deep and fine-scale genetic structures. Analysis of molecular variance (AMOVA) revealed that the total genetic variance (65-66 %) was due to variability among &lt;em&gt;P. brasiliensis&lt;/em&gt; complex and &lt;em&gt;P. lutzii&lt;/em&gt; (PhiPT = 0.651–0.658, &lt;em&gt;P&lt;/em&gt; &lt; 0.0001), supporting a highly structured population. Heterothallism was the exclusive mating strategy, and the distributions of &lt;em&gt;MAT1-1&lt;/em&gt; or &lt;em&gt;MAT1-2&lt;/em&gt; idiomorphs were not significantly skewed (1:1 ratio) for &lt;em&gt;P. brasiliensis s. str.&lt;/em&gt; (χ&lt;sup&gt;2&lt;/sup&gt; = 1.025; &lt;em&gt;P&lt;/em&gt; = 0.3113), &lt;em&gt;P. venezuelensis&lt;/em&gt; (χ&lt;sup&gt;2&lt;/sup&gt; = 0.692; &lt;em&gt;P&lt;/em&gt; = 0.4054), and &lt;em&gt;P. lutzii&lt;/em&gt; (χ&lt;sup&gt;2&lt;/sup&gt; = 0.027; &lt;em&gt;P&lt;/em&gt; = 0.8694), supporting random mating within each species. In contrast, skewed distributions were found for &lt;em&gt;P. americana&lt;/em&gt; (χ&lt;sup&gt;2&lt;/sup&gt; = 8.909; &lt;em&gt;P&lt;/em&gt; = 0.0028) and &lt;em&gt;P. restrepiensis&lt;/em&gt; (χ&lt;sup&gt;2&lt;/sup&gt; = 4.571; &lt;em&gt;P&lt;/em&gt; = 0.0325) with a preponderance of &lt;em&gt;MAT1-1&lt;/em&gt;. Geographical distributions confirmed that &lt;em&gt;P. americana&lt;/em&gt;, &lt;em&gt;P. restrepiensis&lt;/em&gt;, and &lt;em&gt;P. lutzii&lt;/em&gt; are more widespread than previously thought. &lt;em&gt;P. brasiliensis s. str.&lt;/em&gt; is by far the most widely occurring lineage ","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"100 ","pages":"Article 100131"},"PeriodicalIF":16.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016606162100018X/pdfft?md5=100158edc53f37ee6facfac887aad254&pid=1-s2.0-S016606162100018X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92066455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Revision of Cerinomyces (Dacrymycetes, Basidiomycota) with notes on morphologically and historically related taxa 修订啤酒菌科(泪菌科、担子菌科)及其形态学和历史相关分类群
IF 16.5 1区 生物学 Q1 MYCOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.simyco.2021.100117
A. Savchenko , J.C. Zamora , T. Shirouzu , V. Spirin , V. Malysheva , U. Kõljalg , O. Miettinen

Cerinomyces (Dacrymycetes, Basidiomycota) is a genus traditionally defined by corticioid basidiocarps, in contrast to the rest of the class, which is characterized by gelatinous ones. In the traditional circumscription the genus is polyphyletic, and the monotypic family Cerinomycetaceae is paraphyletic. Aiming for a more concise delimitation, we revise Cerinomyces s.l. with a novel phylogeny based on sequences of nrDNA (SSU, ITS, LSU) and protein-coding genes (RPB1, RPB2, TEF1-α). We establish that monophyletic Cerinomyces s.s. is best characterized not by the corticioid morphology, but by a combination of traits: hyphal clamps, predominantly aseptate thin-walled basidiospores, and low content of carotenoid pigments. In our updated definition, Cerinomyces s.s. encompasses five well-supported phylogenetic clades divided into two morphological groups: (i-iii) taxa with arid corticioid basidiocarps, including the generic type C. pallidus; and (iv-v) newly introduced members with gelatinous basidiocarps, like Dacrymyces enatus and D. tortus. The remaining corticioid species of Cerinomyces s.l. are morphologically distinct and belong to the Dacrymycetaceae: our analysis places the carotenoid-rich Cerinomyces canadensis close to Femsjonia, and we transfer the clamps-lacking C. grandinioides group to Dacrymyces. In addition, we address genera related to Cerinomyces s.l. historically and morphologically, such as Ceracea, Dacryonaema and Unilacryma. Overall, we describe twenty-four new species and propose nine new combinations in both Cerinomycetaceae and Dacrymycetaceae.

Cerinomyces (Dacrymycetes,担子菌科)是一个传统上由皮质状担子菌定义的属,与该类的其他属不同,它们的特征是凝胶状的担子菌。在传统的界域中,该属是多系的,而单型的Cerinomycetaceae是副系的。为了更简洁地定义Cerinomyces s.l.,我们基于nrDNA (SSU, ITS, LSU)和蛋白质编码基因(RPB1, RPB2, TEF1-α)的序列对Cerinomyces s.l进行了新的系统发育。我们确定单系Cerinomyces s.s.的最佳特征不是皮质形态,而是菌丝夹,主要是无菌的薄壁担子孢子和低含量的类胡萝卜素色素。在我们的最新定义中,Cerinomyces s.s包括五个得到充分支持的系统发育分支,分为两个形态学组:(i-iii)具有干旱皮质样担子果的分类群,包括属型C. pallidus;(iv-v)新引进的具有胶状担子果的成员,如Dacrymyces enatus和D. tortus。其余的Cerinomyces s.l.的corticioid物种在形态上是不同的,属于泪霉科:我们的分析将富含类胡萝卜素的Cerinomyces canadensis靠近Femsjonia,我们将缺乏钳的C. grandinioides群转移到泪霉科。此外,我们还讨论了Ceracea、Dacryonaema和Unilacryma等与Cerinomyces s.l.在历史和形态学上相关的属。总体而言,我们在Cerinomycetaceae和Dacrymycetaceae中描述了24个新种并提出了9个新组合。
{"title":"Revision of Cerinomyces (Dacrymycetes, Basidiomycota) with notes on morphologically and historically related taxa","authors":"A. Savchenko ,&nbsp;J.C. Zamora ,&nbsp;T. Shirouzu ,&nbsp;V. Spirin ,&nbsp;V. Malysheva ,&nbsp;U. Kõljalg ,&nbsp;O. Miettinen","doi":"10.1016/j.simyco.2021.100117","DOIUrl":"10.1016/j.simyco.2021.100117","url":null,"abstract":"<div><p><em>Cerinomyces (Dacrymycetes</em>, <em>Basidiomycota</em>) is a genus traditionally defined by corticioid basidiocarps, in contrast to the rest of the class, which is characterized by gelatinous ones. In the traditional circumscription the genus is polyphyletic, and the monotypic family <em>Cerinomycetaceae</em> is paraphyletic. Aiming for a more concise delimitation, we revise <em>Cerinomyces s.l.</em> with a novel phylogeny based on sequences of nrDNA (SSU, ITS, LSU) and protein-coding genes (RPB1, RPB2, TEF1-α)<em>.</em> We establish that monophyletic <em>Cerinomyces s.s.</em> is best characterized not by the corticioid morphology, but by a combination of traits: hyphal clamps, predominantly aseptate thin-walled basidiospores, and low content of carotenoid pigments. In our updated definition, <em>Cerinomyces s.s.</em> encompasses five well-supported phylogenetic clades divided into two morphological groups: (i-iii) taxa with arid corticioid basidiocarps, including the generic type <em>C. pallidus</em>; and (iv-v) newly introduced members with gelatinous basidiocarps, like <em>Dacrymyces enatus</em> and <em>D. tortus</em>. The remaining corticioid species of <em>Cerinomyces s.l.</em> are morphologically distinct and belong to the <em>Dacrymycetaceae</em>: our analysis places the carotenoid-rich <em>Cerinomyces canadensis</em> close to <em>Femsjonia</em>, and we transfer the clamps-lacking <em>C. grandinioides</em> group to <em>Dacrymyces.</em> In addition, we address genera related to <em>Cerinomyces s.l.</em> historically and morphologically, such as <em>Ceracea</em>, <em>Dacryonaema</em> and <em>Unilacryma</em>. Overall, we describe twenty-four new species and propose nine new combinations in both <em>Cerinomycetaceae</em> and <em>Dacrymycetaceae</em>.</p></div>","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"99 ","pages":"Article 100117"},"PeriodicalIF":16.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39746216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and description of four new species 用先进的种界方法重新考察曲霉科黄足科的种界及4个新种的描述
IF 16.5 1区 生物学 Q1 MYCOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.simyco.2021.100120
F. Sklenář , Ž. Jurjević , J. Houbraken , M. Kolařík , M.C. Arendrup , K.M. Jørgensen , J.P.Z. Siqueira , J. Gené , T. Yaguchi , C.N. Ezekiel , C. Silva Pereira , V. Hubka

Since the last revision in 2015, the taxonomy of section Flavipedes evolved rapidly along with the availability of new species delimitation techniques. This study aims to re-evaluate the species boundaries of section Flavipedes members using modern delimitation methods applied to an extended set of strains (n = 90) collected from various environments. The analysis used DNA sequences of three house-keeping genes (benA, CaM, RPB2) and consisted of two steps: application of several single-locus (GMYC, bGMYC, PTP, bPTP) and multi-locus (STACEY) species delimitation methods to sort the isolates into putative species, which were subsequently validated using DELINEATE software that was applied for the first time in fungal taxonomy. As a result, four new species are introduced, i.e. A. alboluteus, A. alboviridis, A. inusitatus and A. lanuginosus, and A. capensis is synonymized with A. iizukae. Phenotypic analyses were performed for the new species and their relatives, and the results showed that the growth parameters at different temperatures and colonies characteristics were useful for differentiation of these taxa. The revised section harbors 18 species, most of them are known from soil. However, the most common species from the section are ecologically diverse, occurring in the indoor environment (six species), clinical samples (five species), food and feed (four species), droppings (four species) and other less common substrates/environments. Due to the occurrence of section Flavipedes species in the clinical material/hospital environment, we also evaluated the susceptibility of 67 strains to six antifungals (amphotericin B, itraconazole, posaconazole, voriconazole, isavuconazole, terbinafine) using the reference EUCAST method. These results showed some potentially clinically relevant differences in susceptibility between species. For example, MICs higher than those observed for A. fumigatus wild-type were found for both triazoles and amphotericin B for A. ardalensis, A. iizukae, and A. spelaeus whereas A. lanuginosus, A. luppiae, A. movilensis, A. neoflavipes, A. olivimuriae and A. suttoniae were comparable to or more susceptible as A. fumigatus. Finally, terbinafine was in vitro active against all species except A. alboviridis.

自2015年最后一次修订以来,随着新物种划界技术的出现,黄足类的分类学发展迅速。本研究旨在利用现代划界方法对从不同环境中收集的扩展菌株(n = 90)重新评估黄足科成员的种边界。分析采用3个保家基因(benA, CaM, RPB2)的DNA序列,分为两个步骤:应用几种单位点(GMYC, bGMYC, PTP, bPTP)和多位点(STACEY)物种划分方法将分离物分类为推定的物种,随后使用首次应用于真菌分类的DELINEATE软件进行验证。结果,引入了4个新种,即a . alboluteus、a . alboviridis、a . inusitatus和a . lanuginosus,并将a . capensis与a . iizukae同义。对新种及其近缘种进行了表型分析,结果表明不同温度下的生长参数和菌落特征对这些分类群的分化有重要意义。修订后的剖面有18个物种,其中大部分是已知的土壤物种。然而,该段最常见的物种具有生态多样性,发生在室内环境(6种)、临床样本(5种)、食物和饲料(4种)、粪便(4种)和其他不太常见的基质/环境中。由于临床材料/医院环境中存在部分黄pedes种,我们还采用参考EUCAST方法评估了67株菌株对两性霉素B、伊曲康唑、泊沙康唑、伏立康唑、依沙乌康唑、特比萘芬等6种抗真菌药物的敏感性。这些结果显示了物种间易感性的一些潜在的临床相关差异。例如,三唑类和两性霉素B对阿达尔阿卡虫、猪流感阿卡虫和spelaeus的mic值均高于野生型烟曲霉,而骆蝇、luppiae、movilensis、neoflavipes、olivimuriae和suttoniae的mic值与烟曲霉相当或更敏感。最后,特比萘芬对除白弧菌外的所有物种均有体外活性。
{"title":"Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and description of four new species","authors":"F. Sklenář ,&nbsp;Ž. Jurjević ,&nbsp;J. Houbraken ,&nbsp;M. Kolařík ,&nbsp;M.C. Arendrup ,&nbsp;K.M. Jørgensen ,&nbsp;J.P.Z. Siqueira ,&nbsp;J. Gené ,&nbsp;T. Yaguchi ,&nbsp;C.N. Ezekiel ,&nbsp;C. Silva Pereira ,&nbsp;V. Hubka","doi":"10.1016/j.simyco.2021.100120","DOIUrl":"10.1016/j.simyco.2021.100120","url":null,"abstract":"<div><p>Since the last revision in 2015, the taxonomy of section <em>Flavipedes</em> evolved rapidly along with the availability of new species delimitation techniques. This study aims to re-evaluate the species boundaries of section <em>Flavipedes</em> members using modern delimitation methods applied to an extended set of strains (n = 90) collected from various environments. The analysis used DNA sequences of three house-keeping genes (<em>benA</em>, <em>CaM</em>, <em>RPB2</em>) and consisted of two steps: application of several single-locus (GMYC, bGMYC, PTP, bPTP) and multi-locus (STACEY) species delimitation methods to sort the isolates into putative species, which were subsequently validated using DELINEATE software that was applied for the first time in fungal taxonomy. As a result, four new species are introduced, <em>i.e.</em> <em>A. alboluteus</em>, <em>A. alboviridis</em>, <em>A. inusitatus</em> and <em>A. lanuginosus</em>, and <em>A. capensis</em> is synonymized with <em>A. iizukae</em>. Phenotypic analyses were performed for the new species and their relatives, and the results showed that the growth parameters at different temperatures and colonies characteristics were useful for differentiation of these taxa. The revised section harbors 18 species, most of them are known from soil. However, the most common species from the section are ecologically diverse, occurring in the indoor environment (six species), clinical samples (five species), food and feed (four species), droppings (four species) and other less common substrates/environments. Due to the occurrence of section <em>Flavipedes</em> species in the clinical material/hospital environment, we also evaluated the susceptibility of 67 strains to six antifungals (amphotericin B, itraconazole, posaconazole, voriconazole, isavuconazole, terbinafine) using the reference EUCAST method. These results showed some potentially clinically relevant differences in susceptibility between species. For example, MICs higher than those observed for <em>A. fumigatus</em> wild-type were found for both triazoles and amphotericin B for <em>A. ardalensis, A. iizukae,</em> and <em>A. spelaeus</em> whereas <em>A. lanuginosus, A. luppiae, A. movilensis, A. neoflavipes, A. olivimuriae</em> and <em>A. suttoniae</em> were comparable to or more susceptible as <em>A. fumigatus</em>. Finally, terbinafine was <em>in vitro</em> active against all species except <em>A. alboviridis</em>.</p></div>","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"99 ","pages":"Article 100120"},"PeriodicalIF":16.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6f/90/main.PMC8688885.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39800411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
A phylogenetic overview of the Hydnaceae (Cantharellales, Basidiomycota) with new taxa from China 中国担子菌科(Cantharellales,担子菌科)新分类群的系统发育综述
IF 16.5 1区 生物学 Q1 MYCOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.simyco.2021.100121
Ting Cao , Ya-Ping Hu , Jia-Rui Yu , Tie-Zheng Wei , Hai-Sheng Yuan
<div><p>The family <em>Hydnaceae</em> (<em>Cantharellales</em>, <em>Basidiomycota</em>) is a group of fungi found worldwide which exhibit stichic nuclear division. The group is highly diverse in morphology, ecology, and phylogeny, and includes some edible species which are popular all over the world. Traditionally, <em>Hydnaceae</em> together with <em>Cantharellaceae</em>, <em>Clavulinaceae</em> and <em>Sistotremataceae</em> are four families in the <em>Cantharellales.</em> The four families were combined and redefined as “<em>Hydnaceae</em>”, however, a comprehensive phylogeny based on multiple-marker dataset for the entire <em>Hydnaceae sensu stricto</em> is still lacking and the delimitation is also unclear. We inferred Maximum Likelihood and Bayesian phylogenies for the family <em>Hydnaceae</em> from the data of five DNA regions: the large subunit of nuclear ribosomal RNA gene (nLSU), the internal transcribed spacer regions (ITS), the mitochondrial small subunit rDNA gene (mtSSU), the second largest subunit of RNA polymerase II (<em>RPB2</em>) and the translation elongation factor 1-alpha gene (<em>TEF1</em>). We also produced three more phylogenetic trees for <em>Cantharellus</em> based on 5.8S, nLSU, mtSSU, <em>RPB2</em> and <em>TEF1</em>, <em>Craterellus</em> and <em>Hydnum</em> both based on the combined nLSU and ITS. This study has reproduced the status of <em>Hydnaceae</em> in the order <em>Cantharellales</em>, and phylogenetically confirmed seventeen genera in <em>Hydnaceae.</em> Twenty nine new taxa or synonyms are described, revealed, proposed, or reported, including eight new subgenera (<em>Cantharellus</em> subgenus <em>Magnus</em>, <em>Craterellus</em> subgenus <em>Cariosi</em>, subg. <em>Craterellus</em>, subg. <em>Imperforati</em>, subg. <em>Lamelles</em>, subg. <em>Longibasidiosi</em>, subg. <em>Ovoidei</em>, and <em>Hydnum</em> subgenus <em>Brevispina</em>); seventeen new species (<em>Ca</em>. <em>laevihymeninus</em>, <em>Ca</em>. <em>magnus</em>, <em>Ca</em>. <em>subminor</em>, <em>Cr</em>. <em>badiogriseus</em>, <em>Cr</em>. <em>croceialbus</em>, <em>Cr</em>. <em>macrosporus</em>, <em>Cr</em>. <em>squamatus</em>, <em>H</em>. <em>brevispinum</em>, <em>H</em>. <em>flabellatum</em>, <em>H</em>. <em>flavidocanum</em>, <em>H</em>. <em>longibasidium</em>, <em>H</em>. <em>pallidocroceum</em>, <em>H</em>. <em>pallidomarginatum</em>, <em>H</em>. <em>sphaericum</em>, <em>H</em>. <em>tangerinum</em>, <em>H</em>. <em>tenuistipitum</em> and <em>H</em>. <em>ventricosum</em>); two synonyms (<em>Ca</em>. <em>anzutake</em> and <em>Ca</em>. <em>tuberculosporus</em> as <em>Ca</em>. <em>yunnanensis</em>), and two newly recorded species (<em>H</em>. <em>albomagnum</em> and <em>H</em>. <em>minum</em>). The distinguishing characters of the new species and subgenera as well as their allied taxa are discussed in the notes which follow them. The delimitation and diversity in morphology, ecology, and phylogeny of <em>Hydnaceae</em> is discussed. Notes
担子菌科(Cantharellales,担子菌科)是一组在世界范围内发现的具有黏性核分裂的真菌。该群体在形态、生态和系统发育上高度多样化,包括一些在世界各地流行的可食用物种。传统上,水螅科(hydrnaceae)与canthrelllaceae、Clavulinaceae和Sistotremataceae是canthrelllales中的四个科。将四个科合并并重新定义为“水螅科”,但目前仍缺乏基于多标记数据的完整水螅科严格意义的系统发育,其划分也不明确。从核糖体RNA大亚基(nLSU)、内部转录间隔区(ITS)、线粒体rDNA小亚基(mtSSU)、RNA聚合酶II第二大亚基(RPB2)和翻译延伸因子1- α基因(TEF1) 5个DNA区域的数据推断了水龙科植物的最大似然和贝叶斯系统发育。我们还构建了3个基于5.8S的cantharelllus、nLSU、mtSSU、RPB2和TEF1,以及基于nLSU和ITS组合的Craterellus和Hydnum的系统进化树。本研究重现了水螅科在斑蝥目中的地位,并在系统发育上证实了水螅科中的17个属。本文描述、揭示、建议或报道了29个新的分类群或近名,包括8个新的亚属(Cantharellus Magnus亚属,Craterellus Cariosi亚属,subg.)。Craterellus subg。Imperforati subg。Lamelles subg。Longibasidiosi subg。卵母花亚属和灯盏花亚属);17个新种(laevihymeninus、magnus、subminor、badiogriseus、croceialbus、macrosporus、squamatus、brevispinum、flabellatum、flavidocanum、longibasidium、pallidocroceum、pallidomarginatum、sphaerum、tangerinum、tenuistipitum和h脑室);2个同名种(如云南云杉)和2个新记录种(如albomagnum和H. minum)。本文在附注中讨论了新种、亚属及其相关分类群的特征。讨论了水螅科植物的分界、形态、生态学和系统发育的多样性。提供了本研究在系统发育上已被认可的水螅科植物的17个属,以及水螅科植物的分类钥匙。
{"title":"A phylogenetic overview of the Hydnaceae (Cantharellales, Basidiomycota) with new taxa from China","authors":"Ting Cao ,&nbsp;Ya-Ping Hu ,&nbsp;Jia-Rui Yu ,&nbsp;Tie-Zheng Wei ,&nbsp;Hai-Sheng Yuan","doi":"10.1016/j.simyco.2021.100121","DOIUrl":"10.1016/j.simyco.2021.100121","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The family &lt;em&gt;Hydnaceae&lt;/em&gt; (&lt;em&gt;Cantharellales&lt;/em&gt;, &lt;em&gt;Basidiomycota&lt;/em&gt;) is a group of fungi found worldwide which exhibit stichic nuclear division. The group is highly diverse in morphology, ecology, and phylogeny, and includes some edible species which are popular all over the world. Traditionally, &lt;em&gt;Hydnaceae&lt;/em&gt; together with &lt;em&gt;Cantharellaceae&lt;/em&gt;, &lt;em&gt;Clavulinaceae&lt;/em&gt; and &lt;em&gt;Sistotremataceae&lt;/em&gt; are four families in the &lt;em&gt;Cantharellales.&lt;/em&gt; The four families were combined and redefined as “&lt;em&gt;Hydnaceae&lt;/em&gt;”, however, a comprehensive phylogeny based on multiple-marker dataset for the entire &lt;em&gt;Hydnaceae sensu stricto&lt;/em&gt; is still lacking and the delimitation is also unclear. We inferred Maximum Likelihood and Bayesian phylogenies for the family &lt;em&gt;Hydnaceae&lt;/em&gt; from the data of five DNA regions: the large subunit of nuclear ribosomal RNA gene (nLSU), the internal transcribed spacer regions (ITS), the mitochondrial small subunit rDNA gene (mtSSU), the second largest subunit of RNA polymerase II (&lt;em&gt;RPB2&lt;/em&gt;) and the translation elongation factor 1-alpha gene (&lt;em&gt;TEF1&lt;/em&gt;). We also produced three more phylogenetic trees for &lt;em&gt;Cantharellus&lt;/em&gt; based on 5.8S, nLSU, mtSSU, &lt;em&gt;RPB2&lt;/em&gt; and &lt;em&gt;TEF1&lt;/em&gt;, &lt;em&gt;Craterellus&lt;/em&gt; and &lt;em&gt;Hydnum&lt;/em&gt; both based on the combined nLSU and ITS. This study has reproduced the status of &lt;em&gt;Hydnaceae&lt;/em&gt; in the order &lt;em&gt;Cantharellales&lt;/em&gt;, and phylogenetically confirmed seventeen genera in &lt;em&gt;Hydnaceae.&lt;/em&gt; Twenty nine new taxa or synonyms are described, revealed, proposed, or reported, including eight new subgenera (&lt;em&gt;Cantharellus&lt;/em&gt; subgenus &lt;em&gt;Magnus&lt;/em&gt;, &lt;em&gt;Craterellus&lt;/em&gt; subgenus &lt;em&gt;Cariosi&lt;/em&gt;, subg. &lt;em&gt;Craterellus&lt;/em&gt;, subg. &lt;em&gt;Imperforati&lt;/em&gt;, subg. &lt;em&gt;Lamelles&lt;/em&gt;, subg. &lt;em&gt;Longibasidiosi&lt;/em&gt;, subg. &lt;em&gt;Ovoidei&lt;/em&gt;, and &lt;em&gt;Hydnum&lt;/em&gt; subgenus &lt;em&gt;Brevispina&lt;/em&gt;); seventeen new species (&lt;em&gt;Ca&lt;/em&gt;. &lt;em&gt;laevihymeninus&lt;/em&gt;, &lt;em&gt;Ca&lt;/em&gt;. &lt;em&gt;magnus&lt;/em&gt;, &lt;em&gt;Ca&lt;/em&gt;. &lt;em&gt;subminor&lt;/em&gt;, &lt;em&gt;Cr&lt;/em&gt;. &lt;em&gt;badiogriseus&lt;/em&gt;, &lt;em&gt;Cr&lt;/em&gt;. &lt;em&gt;croceialbus&lt;/em&gt;, &lt;em&gt;Cr&lt;/em&gt;. &lt;em&gt;macrosporus&lt;/em&gt;, &lt;em&gt;Cr&lt;/em&gt;. &lt;em&gt;squamatus&lt;/em&gt;, &lt;em&gt;H&lt;/em&gt;. &lt;em&gt;brevispinum&lt;/em&gt;, &lt;em&gt;H&lt;/em&gt;. &lt;em&gt;flabellatum&lt;/em&gt;, &lt;em&gt;H&lt;/em&gt;. &lt;em&gt;flavidocanum&lt;/em&gt;, &lt;em&gt;H&lt;/em&gt;. &lt;em&gt;longibasidium&lt;/em&gt;, &lt;em&gt;H&lt;/em&gt;. &lt;em&gt;pallidocroceum&lt;/em&gt;, &lt;em&gt;H&lt;/em&gt;. &lt;em&gt;pallidomarginatum&lt;/em&gt;, &lt;em&gt;H&lt;/em&gt;. &lt;em&gt;sphaericum&lt;/em&gt;, &lt;em&gt;H&lt;/em&gt;. &lt;em&gt;tangerinum&lt;/em&gt;, &lt;em&gt;H&lt;/em&gt;. &lt;em&gt;tenuistipitum&lt;/em&gt; and &lt;em&gt;H&lt;/em&gt;. &lt;em&gt;ventricosum&lt;/em&gt;); two synonyms (&lt;em&gt;Ca&lt;/em&gt;. &lt;em&gt;anzutake&lt;/em&gt; and &lt;em&gt;Ca&lt;/em&gt;. &lt;em&gt;tuberculosporus&lt;/em&gt; as &lt;em&gt;Ca&lt;/em&gt;. &lt;em&gt;yunnanensis&lt;/em&gt;), and two newly recorded species (&lt;em&gt;H&lt;/em&gt;. &lt;em&gt;albomagnum&lt;/em&gt; and &lt;em&gt;H&lt;/em&gt;. &lt;em&gt;minum&lt;/em&gt;). The distinguishing characters of the new species and subgenera as well as their allied taxa are discussed in the notes which follow them. The delimitation and diversity in morphology, ecology, and phylogeny of &lt;em&gt;Hydnaceae&lt;/em&gt; is discussed. Notes","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"99 ","pages":"Article 100121"},"PeriodicalIF":16.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/17/9d/main.PMC8717575.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39701943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
期刊
Studies in Mycology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1