首页 > 最新文献

Surface Science最新文献

英文 中文
Ni thin-films on Pd surfaces and effects of oxygen adsorption: Ab-initio study of structures, electronic properties, magnetic anisotropy 钯表面的镍薄膜及氧气吸附的影响:结构、电子特性和磁各向异性的 Ab-initio 研究
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-17 DOI: 10.1016/j.susc.2024.122570

We report first-principles electronic structure calculations of the structural, electronic, and magnetic properties of model epitaxial layers consisting of nickel (Ni) atomic layers deposited on palladium (Pd) substrate, i.e., Ni(001)m Pd(001)n where m=1,2,6 and n=3,10, are layer thicknesses. We also investigate the effect of oxygen adsorption on the calculated properties. We found variation in magnetization of between 0.6μB to 1.00 μB across the nickel layers. Also, finite magnetic moments albeit of small values of between 0.2 μB and 0.3 μB is found on the Pd at the interface. This magnetic moment on an otherwise non-magnetic Pd atoms has been adduced to interfacial strain due to lattice mismatch between the Ni and Pd layers at the Ni|Pd interface. The effect of adsorbed oxygen on the Nim Pdn is that it increases the magnetic moment on the nickel layers. Also, regarding the magnitude of magnetic anisotropy energy (MAE), we found a high perpendicular values of 1.63 meV and 1.37 meV per unit cell respectively for Nim Pd10 (m=2,6) which are relatively higher than those reported for other transition metal epitaxial layers. However, the presence of oxygen atom on the NiPd changes the direction and magnitude of MAE. Indeed, O adsorption favours or enhances in-plane magnetization direction depending on the thickness of the Ni layers for a fixed Pd thickness. Plots of local density of states (LDOS) which include the effect of spin–orbit coupling (SOC), show that in the case of NiPd having perpendicular MAE, there appears a new SOC-induced electronic states below and above the Fermi level. These states appears to stabilize this type of magnetic anisotropy. On the ot

我们报告了由沉积在钯(Pd)基底上的镍(Ni)原子层(即 Ni(001)m∣Pd(001)n 其中 m=1,2,6 和 n=3,10 为层厚度)组成的模型外延层的结构、电子和磁性能的第一原理电子结构计算结果。我们还研究了氧吸附对计算特性的影响。我们发现镍层之间的磁化率变化在 ≈0.6μB 到 1.00μB 之间。此外,在界面处的钯上也发现了有限的磁矩,尽管数值很小,介于 0.2 μB 和 0.3 μB 之间。镍钯界面上的镍层和钯层之间的晶格不匹配导致界面应变,从而在原本无磁性的钯原子上产生了这种磁矩。吸附氧对 Nim ∣Pdn 的影响是增加了镍层上的磁矩。此外,关于磁各向异性能(MAE)的大小,我们发现 Nim ∣Pd10 (m=2,6)每单位晶胞的垂直值分别为 1.63 meV 和 1.37 meV,相对高于其他过渡金属外延层的垂直值。然而,Ni∣Pd 上氧原子的存在改变了 MAE 的方向和大小。事实上,在钯层厚度固定的情况下,镍层的厚度不同,氧的吸附对面内磁化方向的影响也不同。包含自旋轨道耦合(SOC)效应的局部态密度(LDOS)图显示,在具有垂直 MAE 的 Ni∣Pd 情况下,费米水平以下和以上出现了新的 SOC 诱导的电子态。这些状态似乎能稳定这种类型的磁各向异性。另一方面,面内 MAE 的特点是费米水平(EF)以下的 SOC 诱导的局部态以及 EF 处 DOS 的降低。我们的工作探索了物理、磁性和电子特性,这些特性可能有助于设计用于磁性或自旋电子应用的镍∣钯基超晶格。
{"title":"Ni thin-films on Pd surfaces and effects of oxygen adsorption: Ab-initio study of structures, electronic properties, magnetic anisotropy","authors":"","doi":"10.1016/j.susc.2024.122570","DOIUrl":"10.1016/j.susc.2024.122570","url":null,"abstract":"<div><p>We report first-principles electronic structure calculations of the structural, electronic, and magnetic properties of model epitaxial layers consisting of nickel (Ni) atomic layers deposited on palladium (Pd) substrate, <em>i.e.</em>, Ni(001)<span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>∣</mo></math></span>Pd<span><math><msub><mrow><mrow><mo>(</mo><mn>001</mn><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> where <span><math><mrow><mi>m</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>6</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>10</mn><mo>,</mo></mrow></math></span> are layer thicknesses. We also investigate the effect of oxygen adsorption on the calculated properties. We found variation in magnetization of between <span><math><mrow><mo>≈</mo><mn>0</mn><mo>.</mo><mn>6</mn><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow></math></span> to 1.00 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> across the nickel layers. Also, finite magnetic moments albeit of small values of between 0.2 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> and 0.3 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> is found on the Pd at the interface. This magnetic moment on an otherwise non-magnetic Pd atoms has been adduced to interfacial strain due to lattice mismatch between the Ni and Pd layers at the Ni<span><math><mo>|</mo></math></span>Pd interface. The effect of adsorbed oxygen on the Ni<span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>∣</mo></math></span>Pd<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> is that it increases the magnetic moment on the nickel layers. Also, regarding the magnitude of magnetic anisotropy energy (MAE), we found a high perpendicular values of 1.63 meV and 1.37 meV per unit cell respectively for Ni<span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>∣</mo></math></span>Pd<sub>10</sub> (<span><math><mrow><mi>m</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>6</mn></mrow></math></span>) which are relatively higher than those reported for other transition metal epitaxial layers. However, the presence of oxygen atom on the Ni<span><math><mo>∣</mo></math></span>Pd changes the direction and magnitude of MAE. Indeed, O adsorption favours or enhances in-plane magnetization direction depending on the thickness of the Ni layers for a fixed Pd thickness. Plots of local density of states (LDOS) which include the effect of spin–orbit coupling (SOC), show that in the case of Ni<span><math><mo>∣</mo></math></span>Pd having perpendicular MAE, there appears a new SOC-induced electronic states below and above the Fermi level. These states appears to stabilize this type of magnetic anisotropy. On the ot","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A computational study of the role of cobalt in thiophene adsorption on small Mo and MoCo clusters as site models for the HDS process 关于钴在噻吩吸附小钼和钼钴簇上的作用的计算研究,作为加氢脱硫过程的位点模型
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-14 DOI: 10.1016/j.susc.2024.122571

Non periodic density functional theory calculations are used to investigate the role of cobalt atoms in the adsorption of thiophene on small Mo and MoCo clusters. Metallic aggregates play the role of those active sites found in the true catalysts. Two interaction modes between thiophene and metallic sites are considered, namely, the S-mode, in which the organosulfur molecule interacts through the S atom, and the R-mode, in which the interaction takes place through the thiophene ring. A large number of sites, in which thiophene effectively adsorbs, was found, both in the monometallic case and in the bimetallic one. Considerably larger adsorption energies were found when thiophene interacts via the R-mode than when adsorption occurs through the S-mode. The activation of C-S bonds is also more important for R-mode cases than for S-mode ones. Further analysis made on some selected systems and based on density of states and molecular orbital overlap population-projected density of states reveals that thiophene and metallic clusters interact in an energy range around −6.0 eV with respect to the Fermi energy. Bands observed at energies below −6.0 eV correspond to thiophene states that become shifted with respect to the values obtained for isolated thiophene depending on the strength of the interaction. Bands above -6.0 eV describe how C and S atoms interact with Co and Mo ones, providing both bonding and antibonding patterns that helps to understand the overall interaction. Most important is the finding that cobalt atoms seem to play no relevant role during the adsorption of thiophene on metallic sites. Thus, present results obtained using non periodic GGA density functional theory seem to point to cobalt taking part in another step of the overall HDS process, hydrogen adsorption or hydrogen attack to C-S bonds, for instance.

非周期性密度泛函理论计算用于研究钴原子在小钼和钼钴团簇吸附噻吩过程中的作用。金属团聚体扮演了真正催化剂中活性位点的角色。研究考虑了噻吩与金属位点之间的两种相互作用模式,即有机硫分子通过 S 原子相互作用的 S 模式和通过噻吩环相互作用的 R 模式。在单金属和双金属情况下,都发现了大量噻吩有效吸附的位点。当噻吩通过 R 模式相互作用时,吸附能明显大于通过 S 模式吸附时。C-S 键的活化在 R 模式情况下也比在 S 模式情况下更重要。根据状态密度和分子轨道重叠群体推算的状态密度对一些选定的系统进行的进一步分析表明,噻吩和金属团簇在费米能-6.0 eV 左右的能量范围内相互作用。在能量低于 -6.0 eV 时观察到的条带对应于噻吩态,这些噻吩态相对于孤立噻吩态的值会发生偏移,这取决于相互作用的强度。高于 -6.0 eV 的带描述了 C 原子和 S 原子如何与 Co 原子和 Mo 原子相互作用,提供了成键和反键模式,有助于理解整体相互作用。最重要的发现是,钴原子在金属位点吸附噻吩的过程中似乎没有发挥相关作用。因此,利用非周期性 GGA 密度泛函理论获得的当前结果似乎表明,钴参与了整个加氢脱硫过程的另一个步骤,例如氢吸附或氢对 C-S 键的攻击。
{"title":"A computational study of the role of cobalt in thiophene adsorption on small Mo and MoCo clusters as site models for the HDS process","authors":"","doi":"10.1016/j.susc.2024.122571","DOIUrl":"10.1016/j.susc.2024.122571","url":null,"abstract":"<div><p>Non periodic density functional theory calculations are used to investigate the role of cobalt atoms in the adsorption of thiophene on small Mo and MoCo clusters. Metallic aggregates play the role of those active sites found in the true catalysts. Two interaction modes between thiophene and metallic sites are considered, namely, the S-mode, in which the organosulfur molecule interacts through the S atom, and the R-mode, in which the interaction takes place through the thiophene ring. A large number of sites, in which thiophene effectively adsorbs, was found, both in the monometallic case and in the bimetallic one. Considerably larger adsorption energies were found when thiophene interacts via the R-mode than when adsorption occurs through the S-mode. The activation of C-S bonds is also more important for R-mode cases than for S-mode ones. Further analysis made on some selected systems and based on density of states and molecular orbital overlap population-projected density of states reveals that thiophene and metallic clusters interact in an energy range around −6.0 eV with respect to the Fermi energy. Bands observed at energies below −6.0 eV correspond to thiophene states that become shifted with respect to the values obtained for isolated thiophene depending on the strength of the interaction. Bands above -6.0 eV describe how C and S atoms interact with Co and Mo ones, providing both bonding and antibonding patterns that helps to understand the overall interaction. Most important is the finding that cobalt atoms seem to play no relevant role during the adsorption of thiophene on metallic sites. Thus, present results obtained using non periodic GGA density functional theory seem to point to cobalt taking part in another step of the overall HDS process, hydrogen adsorption or hydrogen attack to C-S bonds, for instance.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 adsorption on a K-promoted MgO surface: A DFT theoretical study 钾促进氧化镁表面的二氧化碳吸附:DFT 理论研究
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-14 DOI: 10.1016/j.susc.2024.122575

The primary cause of global warming is the emission of greenhouse gases such as CO2. So reducing CO2 emissions is vital. This paper investigates the impact of the atom K as a promoter of MgO on the CO2 adsorption properties using the DFT theoretical computational method. By analyzing the adsorption energy, bader charge as well as the density of states and COHP, it was found that K-promoting the MgO (100) surface resulted in a redistribution of charge on the MgO surface and enhanced CO2 adsorption compared to the pure MgO surface. The presence of K atoms causes orbital hybridization among O (CO2) and Mg atoms, O (CO2) atoms and K atoms, and the surface O atoms and K atoms. These interactions lead to the formation of (MgO)Mg-O(CO2) and (CO2)O−K−O(MgO) chemical bonds. The adsorption energy of CO2 on the K-promoted MgO surface increased from -0.32 eV to -1.01 eV compared to the pure surface, enhancing the adsorption of CO2.

全球变暖的主要原因是二氧化碳等温室气体的排放。因此,减少二氧化碳排放至关重要。本文利用 DFT 理论计算方法研究了作为氧化镁促进剂的原子 K 对 CO2 吸附特性的影响。通过分析吸附能、巴德电荷以及态密度和 COHP,发现与纯氧化镁表面相比,K 原子促进氧化镁 (100) 表面的电荷重新分布,增强了对 CO2 的吸附。K 原子的存在导致 O (CO2) 原子与镁原子、O (CO2) 原子与 K 原子以及表面 O 原子与 K 原子之间的轨道杂化。这些相互作用导致形成 (MgO)Mg-O(CO2) 和 (CO2)O-K-O(MgO) 化学键。与纯表面相比,二氧化碳在 K 促进的氧化镁表面上的吸附能从-0.32 eV 增加到-1.01 eV,从而增强了对二氧化碳的吸附。
{"title":"CO2 adsorption on a K-promoted MgO surface: A DFT theoretical study","authors":"","doi":"10.1016/j.susc.2024.122575","DOIUrl":"10.1016/j.susc.2024.122575","url":null,"abstract":"<div><p>The primary cause of global warming is the emission of greenhouse gases such as CO<sub>2</sub>. So reducing CO<sub>2</sub> emissions is vital. This paper investigates the impact of the atom K as a promoter of MgO on the CO<sub>2</sub> adsorption properties using the DFT theoretical computational method. By analyzing the adsorption energy, bader charge as well as the density of states and COHP, it was found that K-promoting the MgO (100) surface resulted in a redistribution of charge on the MgO surface and enhanced CO<sub>2</sub> adsorption compared to the pure MgO surface. The presence of K atoms causes orbital hybridization among O (CO<sub>2</sub>) and Mg atoms, O (CO<sub>2</sub>) atoms and K atoms, and the surface O atoms and K atoms. These interactions lead to the formation of (MgO)Mg-O(CO<sub>2</sub>) and (CO<sub>2</sub>)O−K−O(MgO) chemical bonds. The adsorption energy of CO<sub>2</sub> on the K-promoted MgO surface increased from -0.32 eV to -1.01 eV compared to the pure surface, enhancing the adsorption of CO<sub>2</sub>.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption and sensing potential of tungsten (W) doped beta tellurene (β-Te) monolayer towards nitrogen oxides: A first principle study 掺杂钨(W)的β-碲(β-Te)单层对氮氧化物的吸附和传感潜力:第一原理研究
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-14 DOI: 10.1016/j.susc.2024.122576

Nitrogen oxides play a significant role in various biomedical conditions, including respiratory disorders, asthma, and cardiovascular problems, underscoring the urgent need for sensitive and selective devices in biomedical applications. This study offers a comprehensive analysis of the sensitivity of β-tellurene doped with 2.22 % tungsten to nitrogen oxides (NO, NO2, and N2O). Site-specific doping of tellurene with tungsten reduces the band gap and introduces magnetization in β-tellurene. The strong adsorption energies observed for NO, NO2, and N2O at site A (-2.45 eV, -2.39 eV, and -2.80 eV, respectively) suggest that W-doped β-Te monolayers are promising candidates for gas storage for these compounds. Conversely, weaker adsorption energies for the same gases at site B (-0.74 eV, -1.74 eV, and -0.09 eV) highlights the importance of doping location. The adsorption energy values at site B indicate that W-doped β-Te monolayers have potential as sensing materials for NO and as adsorbents for NO2 gas. Conversely, the weak adsorption energy for N2O at the B site demonstrates its non-interacting behaviour with the W-doped β-Te monolayer. Additionally, the negligible change in electronic properties and minimal charge transfer suggest that this configuration is unsuitable for N2O storage and sensing. The spin-resolved current-voltage characteristics of doped tellurene reveal distinct behaviors influenced by gas molecule adsorption. Overall, these findings underscore the potential of W-doped tellurene as a site-specific material for the adsorption and sensing of targeted gases.

氮氧化物在呼吸系统疾病、哮喘和心血管问题等各种生物医学疾病中起着重要作用,因此迫切需要在生物医学应用中使用灵敏的选择性器件。本研究全面分析了掺杂 2.22% 钨的β-碲对氮氧化物(NO、NO2 和 N2O)的敏感性。钨在碲中的特定位点掺杂降低了β-碲的带隙并引入了磁化。在位点 A 上观察到的 NO、NO2 和 N2O 的强吸附能(分别为 -2.45 eV、-2.39 eV 和 -2.80 eV)表明,掺杂 W 的 β-Te 单层很有希望成为这些化合物的气体存储候选材料。相反,相同气体在 B 位点的吸附能较弱(-0.74 eV、-1.74 eV 和 -0.09 eV),这凸显了掺杂位置的重要性。B 位点的吸附能值表明,掺 W 的 β-Te 单层具有作为 NO 传感材料和 NO2 气体吸附剂的潜力。相反,N2O 在 B 位点的吸附能很弱,这表明它与掺 W 的 β-Te 单层没有相互作用。此外,电子特性的变化可以忽略不计,电荷转移也微乎其微,这表明这种结构不适合用于 N2O 的储存和传感。掺杂聚烯烃的自旋分辨电流-电压特性显示出受气体分子吸附影响的独特行为。总之,这些发现强调了掺 W 的碲烯作为一种特定位点材料在吸附和传感目标气体方面的潜力。
{"title":"Adsorption and sensing potential of tungsten (W) doped beta tellurene (β-Te) monolayer towards nitrogen oxides: A first principle study","authors":"","doi":"10.1016/j.susc.2024.122576","DOIUrl":"10.1016/j.susc.2024.122576","url":null,"abstract":"<div><p>Nitrogen oxides play a significant role in various biomedical conditions, including respiratory disorders, asthma, and cardiovascular problems, underscoring the urgent need for sensitive and selective devices in biomedical applications. This study offers a comprehensive analysis of the sensitivity of β-tellurene doped with 2.22 % tungsten to nitrogen oxides (NO, NO<sub>2</sub>, and N<sub>2</sub>O). Site-specific doping of tellurene with tungsten reduces the band gap and introduces magnetization in β-tellurene. The strong adsorption energies observed for NO, NO<sub>2</sub>, and N<sub>2</sub>O at site A (-2.45 eV, -2.39 eV, and -2.80 eV, respectively) suggest that W-doped β-Te monolayers are promising candidates for gas storage for these compounds. Conversely, weaker adsorption energies for the same gases at site B (-0.74 eV, -1.74 eV, and -0.09 eV) highlights the importance of doping location. The adsorption energy values at site B indicate that W-doped β-Te monolayers have potential as sensing materials for NO and as adsorbents for NO<sub>2</sub> gas. Conversely, the weak adsorption energy for N<sub>2</sub>O at the B site demonstrates its non-interacting behaviour with the W-doped β-Te monolayer. Additionally, the negligible change in electronic properties and minimal charge transfer suggest that this configuration is unsuitable for N<sub>2</sub>O storage and sensing. The spin-resolved current-voltage characteristics of doped tellurene reveal distinct behaviors influenced by gas molecule adsorption. Overall, these findings underscore the potential of W-doped tellurene as a site-specific material for the adsorption and sensing of targeted gases.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The rise of electrochemical surface science: From in situ interface structure to operando dynamics 电化学表面科学的兴起:从原位界面结构到操作动力学
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-14 DOI: 10.1016/j.susc.2024.122574

Surface science studies of electrochemical interfaces and processes have gained increasing popularity in the last decades, owning to the increasing importance of electrochemistry for key technologies of the 21th century, especially in electric energy storage and conversion. In situ and operando surface-sensitive methods, such as scanning probe microscopy and surface X-ray diffraction, as well as complementary ab initio theory can provide atomic-scale information on solid electrode surface in contact with liquid electrolytes, including structural changes under reaction conditions. The level of detail obtainable by these approaches is illustrated in this short review for selected examples. These include the adsorption of sulfate and other oxyanions, where a crucial role of coadsorbed water is found, the restructuring of Cu electrode surfaces under hydrogen evolution and CO2 reduction conditions, and the mechanisms of electrochemical Pt oxidation and its correlation with Pt dissolution.

过去几十年来,由于电化学在 21 世纪关键技术(尤其是电能存储和转换技术)中的重要性与日俱增,有关电化学界面和过程的表面科学研究越来越受欢迎。扫描探针显微镜和表面 X 射线衍射等原位和操作表面敏感方法,以及互补的 ab initio 理论可以提供与液态电解质接触的固体电极表面的原子尺度信息,包括反应条件下的结构变化。本简短综述将举例说明这些方法所能获得的详细程度。这些例子包括硫酸根离子和其他氧阴离子的吸附(其中共吸附水起着关键作用)、氢气进化和二氧化碳还原条件下铜电极表面的结构重组,以及电化学铂氧化机制及其与铂溶解的相关性。
{"title":"The rise of electrochemical surface science: From in situ interface structure to operando dynamics","authors":"","doi":"10.1016/j.susc.2024.122574","DOIUrl":"10.1016/j.susc.2024.122574","url":null,"abstract":"<div><p>Surface science studies of electrochemical interfaces and processes have gained increasing popularity in the last decades, owning to the increasing importance of electrochemistry for key technologies of the 21th century, especially in electric energy storage and conversion. <em>In situ</em> and <em>operando</em> surface-sensitive methods, such as scanning probe microscopy and surface X-ray diffraction, as well as complementary <em>ab initio</em> theory can provide atomic-scale information on solid electrode surface in contact with liquid electrolytes, including structural changes under reaction conditions. The level of detail obtainable by these approaches is illustrated in this short review for selected examples. These include the adsorption of sulfate and other oxyanions, where a crucial role of coadsorbed water is found, the restructuring of Cu electrode surfaces under hydrogen evolution and CO<sub>2</sub> reduction conditions, and the mechanisms of electrochemical Pt oxidation and its correlation with Pt dissolution.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactivity of graphene-supported Co clusters 石墨烯支撑的 Co 簇的反应活性
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-11 DOI: 10.1016/j.susc.2024.122573

Graphene-supported Co clusters were investigated by high-resolution XPS, TPD and IRRAS using CO as a probe molecule. CO adsorption was observed at edge, on-top and bridge/hollow sites on the as-prepared clusters. Temperature-programmed XPS showed CO dissociation at T > 300 K. The CO desorption temperatures were determined by TPD measurements to be 260, 320 and 400 K for CObridge/hollow, COedge and COtop, respectively. The CO dissociation products were used to investigate the adsorption of CO on carbon and oxygen precovered Co clusters. Site blocking by these adatoms was found resulting in the absence of COedge (XPS and TPD) and a decrease of the CO adsorption capacity (XPS, TPD and IRRAS). Additionally, no CO dissociation was found on the precovered clusters concluding a blocking of the catalytically active sites which are the edge sites of the clusters.

以 CO 为探针分子,通过高分辨率 XPS、TPD 和 IRRAS 对石墨烯支持的 Co 簇进行了研究。在所制备的团簇的边缘、顶部和桥/空心位点上观察到了 CO 吸附现象。温度编程 XPS 显示 CO 在 T > 300 K 时解离。一氧化碳解离产物被用来研究一氧化碳在碳和氧预覆盖的 Co 簇上的吸附情况。结果发现,由于这些原子的位点阻塞,没有 COedge(XPS 和 TPD),CO 吸附能力下降(XPS、TPD 和 IRRAS)。此外,在预包覆簇上也没有发现一氧化碳解离现象,这说明催化活性位点(即簇的边缘位点)被阻断了。
{"title":"Reactivity of graphene-supported Co clusters","authors":"","doi":"10.1016/j.susc.2024.122573","DOIUrl":"10.1016/j.susc.2024.122573","url":null,"abstract":"<div><p>Graphene-supported Co clusters were investigated by high-resolution XPS, TPD and IRRAS using CO as a probe molecule. CO adsorption was observed at edge, on-top and bridge/hollow sites on the as-prepared clusters. Temperature-programmed XPS showed CO dissociation at <em>T</em> &gt; 300 K. The CO desorption temperatures were determined by TPD measurements to be 260, 320 and 400 K for CO<sup>bridge/hollow</sup>, CO<sup>edge</sup> and CO<sup>top</sup>, respectively. The CO dissociation products were used to investigate the adsorption of CO on carbon and oxygen precovered Co clusters. Site blocking by these adatoms was found resulting in the absence of CO<sup>edge</sup> (XPS and TPD) and a decrease of the CO adsorption capacity (XPS, TPD and IRRAS). Additionally, no CO dissociation was found on the precovered clusters concluding a blocking of the catalytically active sites which are the edge sites of the clusters.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001249/pdfft?md5=f0efb24aabd34a82bbfdb2d83ad2742c&pid=1-s2.0-S0039602824001249-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The surface chemistry of the atomic layer deposition of ruthenium on aluminum and tantalum oxide surfaces 铝和钽氧化物表面原子层沉积钌的表面化学反应
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-10 DOI: 10.1016/j.susc.2024.122572

The surface chemistry of Ru atomic layer deposition (ALD) processes based on the use of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)ruthenium(III) (Ru(tmhd)3) and either molecular oxygen or atomic hydrogen on aluminum oxide films was characterized by a combination of surface-sensitive techniques. The thermal decomposition of the Ru metalorganic precursor was determined, by using a combination of reflection-absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS), to start below 400 K and to take place in a stepwise fashion over a wide range of temperatures. Gas-phase products from this chemistry include 2,2,6,6-tetramethyl-3,5-heptanedione (the protonated ligand, Htmhd; in a TPD peak at 520 K), isobutene (540 K; indicating the fragmentation of the organic ligands), and other products from isomerization and/or aldol condensation (650 and 730 K). This chemistry is accompanied by the reduction of the Ru3+ ions in two stages, involving the loss of some of their ligands and their direct bonding to the substrate first (between 500 and 600 K) and a full reduction to a metallic state later on (600–700 K). ALD cycles using either molecular oxygen or atomic hydrogen resulted in the slow build-up of Ru on the surface, but the co-deposition of carbon could not be avoided, at least in the initial cycles, while the alumina surface was still exposed. With O2, the Ru atoms alternate between partially-oxidized (after the O2 exposures) and zero-valent (after the Ru(tmhd)3 doses) states, and some Ru loss in the form of the volatile RuO4 oxide was seen after the second half of the ALD cycles; neither the Ru oxidation state alternation nor the elimination of some Ru from the surface were observed when using H·. The deposited Ru was determined, by combining results from angle-resolved XPS (ARXPS) and low-energy ion scattering (LEIS) experiments, to grow as 3D nanoparticles rather than as a layer-by-layer 2D film, presumably because the Ru precursor preferentially adsorbs (and decomposes more cleanly) on the metal surface. A discussion is provided of the implications of these results for the design of ALD processes.

通过结合使用表面敏感技术,对基于三(2,2,6,6-四甲基-3,5-庚二酮酸)钌(III) (Ru(tmhd)3)和分子氧或原子氢在氧化铝薄膜上的 Ru 原子层沉积 (ALD) 过程的表面化学性质进行了表征。通过结合使用反射吸收红外光谱(RAIRS)、温度编程解吸(TPD)和 X 射线光电子能谱(XPS),确定 Ru 金属有机前体的热分解始于 400 K 以下,并在广泛的温度范围内逐步进行。这种化学反应产生的气相产物包括 2,2,6,6-四甲基-3,5-庚二酮(质子化配体 Htmhd;在 520 K 时出现 TPD 峰)、异丁烯(540 K;表明有机配体发生了破碎)以及异构化和/或醛醇缩合(650 和 730 K)产生的其他产物。伴随着这种化学反应,Ru3+ 离子的还原过程分为两个阶段,首先是失去部分配位体并与基底直接结合(500 至 600 K 之间),然后完全还原为金属态(600 至 700 K)。使用分子氧或原子氢的 ALD 循环可使 Ru 在表面上缓慢沉积,但碳的共沉积无法避免,至少在最初的循环中,氧化铝表面仍然暴露在外。使用 O2 时,Ru 原子在部分氧化(O2 暴露后)和零价(Ru(tmhd)3 剂量后)状态之间交替,在 ALD 循环的后半段后,可以看到一些 Ru 以挥发性 RuO4 氧化物的形式流失;使用 H- 时,既没有观察到 Ru 氧化状态的交替,也没有观察到一些 Ru 从表面消失。结合角度分辨 XPS(ARXPS)和低能离子散射(LEIS)实验的结果,可以确定沉积的 Ru 是以三维纳米颗粒的形式生长,而不是以逐层二维薄膜的形式生长,这可能是因为 Ru 前驱体优先吸附在金属表面(并且分解得更干净)。本文讨论了这些结果对 ALD 工艺设计的影响。
{"title":"The surface chemistry of the atomic layer deposition of ruthenium on aluminum and tantalum oxide surfaces","authors":"","doi":"10.1016/j.susc.2024.122572","DOIUrl":"10.1016/j.susc.2024.122572","url":null,"abstract":"<div><p>The surface chemistry of Ru atomic layer deposition (ALD) processes based on the use of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)ruthenium(III) (Ru(tmhd)<sub>3</sub>) and either molecular oxygen or atomic hydrogen on aluminum oxide films was characterized by a combination of surface-sensitive techniques. The thermal decomposition of the Ru metalorganic precursor was determined, by using a combination of reflection-absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS), to start below 400 K and to take place in a stepwise fashion over a wide range of temperatures. Gas-phase products from this chemistry include 2,2,6,6-tetramethyl-3,5-heptanedione (the protonated ligand, Htmhd; in a TPD peak at 520 K), isobutene (540 K; indicating the fragmentation of the organic ligands), and other products from isomerization and/or aldol condensation (650 and 730 K). This chemistry is accompanied by the reduction of the Ru<sup>3+</sup> ions in two stages, involving the loss of some of their ligands and their direct bonding to the substrate first (between 500 and 600 K) and a full reduction to a metallic state later on (600–700 K). ALD cycles using either molecular oxygen or atomic hydrogen resulted in the slow build-up of Ru on the surface, but the co-deposition of carbon could not be avoided, at least in the initial cycles, while the alumina surface was still exposed. With O<sub>2</sub>, the Ru atoms alternate between partially-oxidized (after the O<sub>2</sub> exposures) and zero-valent (after the Ru(tmhd)<sub>3</sub> doses) states, and some Ru loss in the form of the volatile RuO<sub>4</sub> oxide was seen after the second half of the ALD cycles; neither the Ru oxidation state alternation nor the elimination of some Ru from the surface were observed when using H·. The deposited Ru was determined, by combining results from angle-resolved XPS (ARXPS) and low-energy ion scattering (LEIS) experiments, to grow as 3D nanoparticles rather than as a layer-by-layer 2D film, presumably because the Ru precursor preferentially adsorbs (and decomposes more cleanly) on the metal surface. A discussion is provided of the implications of these results for the design of ALD processes.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The stereochemistry of 1,4-dicarboxylic acids on Cu(110): Sergeants & soldiers, surface explosions and chiral reconstructions 1,4-二羧酸在 Cu(110) 上的立体化学:军士与士兵、表面爆炸和手性重构
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-02 DOI: 10.1016/j.susc.2024.122569

Dicarboxylic acids, including tartaric acid, have played a crucial role alongside amino acids in the study of chiral recognition on metal surfaces. Over the past two decades, significant insights into surface stereochemistry have emerged, particularly on Cu(110). This review examines various phenomena observed during the interaction of 1,4-dicarboxylic acids with the Cu(110) surface. We explore diverse aspects such as chiral surface reconstructions, intermolecular chiral recognition, stereoselective autocatalytic decomposition, and chiral symmetry breaking through doping.

在金属表面手性识别的研究中,包括酒石酸在内的二羧酸与氨基酸一起发挥了至关重要的作用。在过去的二十年里,人们对表面立体化学有了更深入的了解,尤其是在铜(110)表面。本综述探讨了在 1,4-二羧酸与 Cu(110) 表面相互作用过程中观察到的各种现象。我们探讨了手性表面重构、分子间手性识别、立体选择性自催化分解以及通过掺杂打破手性对称等多个方面。
{"title":"The stereochemistry of 1,4-dicarboxylic acids on Cu(110): Sergeants & soldiers, surface explosions and chiral reconstructions","authors":"","doi":"10.1016/j.susc.2024.122569","DOIUrl":"10.1016/j.susc.2024.122569","url":null,"abstract":"<div><p>Dicarboxylic acids, including tartaric acid, have played a crucial role alongside amino acids in the study of chiral recognition on metal surfaces. Over the past two decades, significant insights into surface stereochemistry have emerged, particularly on Cu(110). This review examines various phenomena observed during the interaction of 1,4-dicarboxylic acids with the Cu(110) surface. We explore diverse aspects such as chiral surface reconstructions, intermolecular chiral recognition, stereoselective autocatalytic decomposition, and chiral symmetry breaking through doping.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001201/pdfft?md5=3afd3c5e7aafb532a72111869d65f114&pid=1-s2.0-S0039602824001201-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Substrate-modulation effect in on-surface synthesis 表面合成中的基底调制效应
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-07-30 DOI: 10.1016/j.susc.2024.122568

The substrate-modulation effect permeates throughout the realm of surface chemistry, particularly in the field of on-surface reactions. A comprehensive understanding of the interactions between molecules and substrates is crucial for the selective synthesis of designed graphene-based materials. In this review, we examine the substrate-modulation effect of surface-assisted reactions, focusing on the reaction mechanisms. We begin by elucidating how the substrates influence various process of the surface-assisted reaction, including adsorption, migration, and reaction of molecules. Additionally, substrates act as charge donors and acceptors to facilitate charge transfer between substrates and molecules, thereby tuning the electronic structure of the molecules.

基底调节效应贯穿整个表面化学领域,尤其是表面反应领域。全面了解分子与基底之间的相互作用对于选择性合成设计的石墨烯基材料至关重要。在本综述中,我们将研究表面辅助反应的基质调节效应,重点关注反应机制。我们首先阐明基底如何影响表面辅助反应的各种过程,包括分子的吸附、迁移和反应。此外,基质还充当电荷供体和受体,促进基质和分子之间的电荷转移,从而调整分子的电子结构。
{"title":"Substrate-modulation effect in on-surface synthesis","authors":"","doi":"10.1016/j.susc.2024.122568","DOIUrl":"10.1016/j.susc.2024.122568","url":null,"abstract":"<div><p>The substrate-modulation effect permeates throughout the realm of surface chemistry, particularly in the field of on-surface reactions. A comprehensive understanding of the interactions between molecules and substrates is crucial for the selective synthesis of designed graphene-based materials. In this review, we examine the substrate-modulation effect of surface-assisted reactions, focusing on the reaction mechanisms. We begin by elucidating how the substrates influence various process of the surface-assisted reaction, including adsorption, migration, and reaction of molecules. Additionally, substrates act as charge donors and acceptors to facilitate charge transfer between substrates and molecules, thereby tuning the electronic structure of the molecules.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bi layers on the Mo(112) surface: A DFT study Mo(112) 表面的铋层:DFT 研究
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-07-28 DOI: 10.1016/j.susc.2024.122567

Relativistic DFT calculations performed for Bi layers adsorbed on the Mo(112) surface have shown that Bi atoms tend to occupy adsorption sites in furrows and, at a half-monolayer coverage, form a rectangular p(2 × 1) structure. For a complete Bi monolayer, the most preferred structure is the centered c(2 × 1) structure, with one half of Bi adatoms in on-row sites. No Bi-induced surface states have been indicated along Γ – X, corresponding to the direction along furrows, which can explain only minor changes in the band structure and density of states in vicinity of EF with increasing Bi coverage. On the contrary, changes in the band structure along Γ – Y turn out to be very significant. Specifically, the SOC-splitting band, associated with surface states generated by the Bi adlayer, moves upward and twice crosses EF thus becoming a valence band. This feature may be important in the search for new layered structures for nano and spin-electronics.

对吸附在 Mo(112) 表面的铋层进行的相对论 DFT 计算表明,铋原子倾向于占据沟槽中的吸附位点,并在半单层覆盖时形成矩形 p(2 × 1) 结构。对于完整的铋单层来说,最理想的结构是居中的 c(2 × 1) 结构,其中一半的铋原子位于行间位置。沿 Γ - X(相当于沿沟槽方向)没有发现铋诱导的表面态,这只能解释随着铋覆盖率的增加,EF 附近的能带结构和态密度发生了微小变化。相反,沿 Γ - Y 方向的能带结构变化却非常显著。具体来说,与铋吸附层产生的表面态有关的 SOC 分裂带向上移动并两次穿过 EF,从而成为价带。这一特征对于寻找纳米和自旋电子学的新型层状结构可能非常重要。
{"title":"Bi layers on the Mo(112) surface: A DFT study","authors":"","doi":"10.1016/j.susc.2024.122567","DOIUrl":"10.1016/j.susc.2024.122567","url":null,"abstract":"<div><p>Relativistic DFT calculations performed for Bi layers adsorbed on the Mo(112) surface have shown that Bi atoms tend to occupy adsorption sites in furrows and, at a half-monolayer coverage, form a rectangular p(2 × 1) structure. For a complete Bi monolayer, the most preferred structure is the centered c(2 × 1) structure, with one half of Bi adatoms in on-row sites. No Bi-induced surface states have been indicated along Γ – X, corresponding to the direction along furrows, which can explain only minor changes in the band structure and density of states in vicinity of E<sub>F</sub> with increasing Bi coverage. On the contrary, changes in the band structure along Γ – Y turn out to be very significant. Specifically, the SOC-splitting band, associated with surface states generated by the Bi adlayer, moves upward and twice crosses E<sub>F</sub> thus becoming a valence band. This feature may be important in the search for new layered structures for nano and spin-electronics.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Surface Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1