Pub Date : 2024-08-26DOI: 10.1016/j.susc.2024.122591
Mengting Ma , Guili Liu , Guoying Zhang
Based on the first principles, we have calculated the influence of the applied electric field and doped X (X = N, P, As, Sb) atoms on the optoelectronic properties and phonon dispersion of the monolayer 2D material SnSe2. The calculation results show that intrinsic SnSe2 is a semiconductor with a band gap value of 0.884 eV. The doping of X atoms improves the energy band tunability of the monolayer SnSe2 system and becomes more stable. The N-doped SnSe2 system has the most stable structure and the best doping performance. When the electric field strength of 0.3 V/Å is applied on the surface of the N-doped system, the band gap of the system increases. The energy gap gradually decreases when the electric field strength continues to increase from 0.3 V/Å to 0.9 V/Å. At an applied electric field strength of 0.9 V/Å, the system changes from semiconductor to metallic properties. As far as the optical properties are concerned, the applied electric field increases the static refractive index of the system, the imaginary part of the photoconductivity increases, the energy loss function decreases, and the light absorption performance improves. The applied electric field successfully enhanced the optical properties of the SnSe2 system. The applied electric field strength of 0.9 V/Å doped N system has the best optical properties. This provides a new way to explore the optoelectronic devices based on the SnSe2 doped system.
基于第一性原理,我们计算了外加电场和掺杂 X(X = N、P、As、Sb)原子对单层二维材料 SnSe2 的光电特性和声子色散的影响。计算结果表明,本征 SnSe2 是一种带隙值为 0.884 eV 的半导体。X原子的掺杂提高了单层SnSe2体系的能带可调性,并变得更加稳定。掺杂 N 的 SnSe2 系统结构最稳定,掺杂性能最好。当在 N 掺杂体系表面施加 0.3 V/Å 的电场强度时,该体系的能带间隙增大。当电场强度从 0.3 V/Å 继续增加到 0.9 V/Å 时,能隙逐渐减小。当施加的电场强度为 0.9 V/Å 时,该体系从半导体特性转变为金属特性。就光学特性而言,外加电场提高了系统的静态折射率,光电导的虚部增加,能量损失函数降低,光吸收性能改善。外加电场成功地提高了 SnSe2 系统的光学性能。外加电场强度为 0.9 V/Å 的掺杂 N 系统具有最佳的光学性能。这为探索基于掺杂 SnSe2 系统的光电器件提供了一条新途径。
{"title":"Modulation of monolayer SnSe2 optoelectronic properties by applied electric field and atomic doping","authors":"Mengting Ma , Guili Liu , Guoying Zhang","doi":"10.1016/j.susc.2024.122591","DOIUrl":"10.1016/j.susc.2024.122591","url":null,"abstract":"<div><p>Based on the first principles, we have calculated the influence of the applied electric field and doped X (X = N, P, As, Sb) atoms on the optoelectronic properties and phonon dispersion of the monolayer 2D material SnSe<sub>2</sub>. The calculation results show that intrinsic SnSe<sub>2</sub> is a semiconductor with a band gap value of 0.884 eV. The doping of X atoms improves the energy band tunability of the monolayer SnSe<sub>2</sub> system and becomes more stable. The N-doped SnSe<sub>2</sub> system has the most stable structure and the best doping performance. When the electric field strength of 0.3 V/Å is applied on the surface of the N-doped system, the band gap of the system increases. The energy gap gradually decreases when the electric field strength continues to increase from 0.3 V/Å to 0.9 V/Å. At an applied electric field strength of 0.9 V/Å, the system changes from semiconductor to metallic properties. As far as the optical properties are concerned, the applied electric field increases the static refractive index of the system, the imaginary part of the photoconductivity increases, the energy loss function decreases, and the light absorption performance improves. The applied electric field successfully enhanced the optical properties of the SnSe<sub>2</sub> system. The applied electric field strength of 0.9 V/Å doped N system has the best optical properties. This provides a new way to explore the optoelectronic devices based on the SnSe<sub>2</sub> doped system.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122591"},"PeriodicalIF":2.1,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-25DOI: 10.1016/j.susc.2024.122590
Yi Tian , Hojoon Lim , Jeongjin Kim , Adrian Hunt , Iradwikanari Waluyo , Sanjaya D. Senanayake , José A. Rodriguez
In this study, the growth of ZrOx on Au (111) was investigated using scanning tunneling microscopy (STM) and synchrotron-based ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Nanostructures of ZrOx (x = 1,2) at the sub-monolayer (≤ 0.3 ML) level were prepared by vapor depositing Zr metal onto Au (111) followed by oxidation with O2 or CO2. At low coverages of the admetal (< 0.05 ML), the formed ZrOx nanostructures were dispersed randomly on the terraces and steps of the Au(111) substrate. Strong oxide-metal interactions prevented the formation of islands of zirconia. The ZrOx nanostructures displayed a reactivity towards CO2 and H2 not seen for bulk zirconia. C 1 s AP-XPS results indicated that CO2 molecules adsorbed on Zr/ZrOx/Au(111) surfaces could undergo partial decomposition on Zr (CO2, gas → COgas + Oads), or react with oxygen sites from ZrOx to yield carbonates (Zr-CO3, ads). After exposing ZrO2/Au (111) surfaces to 1:3 mixtures of CO2:H2, the formation of HCOO, CO3, and CH3O was detected in AP-XP spectra. These chemical species decomposed at temperatures in the range of 400‒600 K, making them possible reaction intermediates for methanol synthesis.
本研究利用扫描隧道显微镜(STM)和同步辐射环境压力 X 射线光电子能谱(AP-XPS)研究了氧化锆在金(111)上的生长。通过在金(111)上气相沉积 Zr 金属,然后用 O2 或 CO2 氧化,制备了亚单层(≤ 0.3 ML)级别的 ZrOx(x = 1,2)纳米结构。在金属覆盖率较低(0.05 ML)的情况下,形成的氧化锆纳米结构随机分散在金(111)基底的台阶和阶梯上。强烈的氧化物-金属相互作用阻止了氧化锆岛的形成。氧化锆纳米结构对 CO2 和 H2 的反应活性是块状氧化锆所不具备的。C 1 s AP-XPS 结果表明,Zr/ZrOx/Au(111)表面吸附的二氧化碳分子可在 Zr 上发生部分分解(CO2,气体 → COgas + Oads),或与 ZrOx 的氧位点反应生成碳酸盐(Zr-CO3,吸附)。将 ZrO2/Au (111) 表面暴露于 1:3 的 CO2:H2 混合物后,在 AP-XP 光谱中检测到 HCOO、CO3 和 CH3O 的形成。这些化学物质在 400-600 K 的温度范围内分解,因此可能是合成甲醇的反应中间体。
{"title":"Understanding the morphology and chemical activity of model ZrOx/Au (111) catalysts for CO2 hydrogenation","authors":"Yi Tian , Hojoon Lim , Jeongjin Kim , Adrian Hunt , Iradwikanari Waluyo , Sanjaya D. Senanayake , José A. Rodriguez","doi":"10.1016/j.susc.2024.122590","DOIUrl":"10.1016/j.susc.2024.122590","url":null,"abstract":"<div><p>In this study, the growth of ZrO<sub>x</sub> on Au (111) was investigated using scanning tunneling microscopy (STM) and synchrotron-based ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Nanostructures of ZrO<sub>x</sub> (<em>x</em> = 1,2) at the sub-monolayer (≤ 0.3 ML) level were prepared by vapor depositing Zr metal onto Au (111) followed by oxidation with O<sub>2</sub> or CO<sub>2</sub>. At low coverages of the admetal (< 0.05 ML), the formed ZrO<sub>x</sub> nanostructures were dispersed randomly on the terraces and steps of the Au(111) substrate. Strong oxide-metal interactions prevented the formation of islands of zirconia. The ZrO<sub>x</sub> nanostructures displayed a reactivity towards CO<sub>2</sub> and H<sub>2</sub> not seen for bulk zirconia. C 1 s AP-XPS results indicated that CO<sub>2</sub> molecules adsorbed on Zr/ZrO<sub>x</sub>/Au(111) surfaces could undergo partial decomposition on Zr (CO<sub>2, gas</sub> → CO<sub>gas</sub> + O<sub>ads</sub>), or react with oxygen sites from ZrO<em><sub>x</sub></em> to yield carbonates (Zr-CO<sub>3, ads</sub>). After exposing ZrO<sub>2</sub>/Au (111) surfaces to 1:3 mixtures of CO<sub>2</sub>:H<sub>2</sub>, the formation of HCOO, CO<sub>3</sub>, and CH<sub>3</sub>O was detected in AP-XP spectra. These chemical species decomposed at temperatures in the range of 400‒600 K, making them possible reaction intermediates for methanol synthesis.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122590"},"PeriodicalIF":2.1,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1016/j.susc.2024.122589
Lutz Hammer, Alexandra Schewski, Alexander Wegerich, Tilman Kißlinger, M. Alexander Schneider
The determination of the configuration of atomic adsorbates on clean metal surfaces has been a key issue in surface science 60 years ago and still is today. We demonstrate that despite the prevalence of combined scanning tunneling microscopy and density functional theory studies of adsorbate systems the pitfalls are plentiful calling for accurate, reliable structure analyses that can be delivered by diffraction methods. We analyze and compare the ordered phases of Te on Ir(111), Ir(100), and Au(100) demonstrating the accuracy, the in-depth information and physical insight that can nowadays be obtained by quantitative low-energy electron diffraction structural analyses.
确定清洁金属表面原子吸附物的构型是表面科学的一个关键问题,60 年前如此,今天依然如此。我们的研究表明,尽管对吸附剂体系的扫描隧道显微镜和密度泛函理论联合研究非常普遍,但仍存在很多缺陷,需要通过衍射方法进行准确可靠的结构分析。我们分析并比较了 Te 在 Ir(111)、Ir(100) 和 Au(100)上的有序相,展示了如今通过定量低能电子衍射结构分析所能获得的准确、深入的信息和物理洞察力。
{"title":"LEED-IV analyses of tellurium adsorbate structures on iridium and gold surfaces","authors":"Lutz Hammer, Alexandra Schewski, Alexander Wegerich, Tilman Kißlinger, M. Alexander Schneider","doi":"10.1016/j.susc.2024.122589","DOIUrl":"10.1016/j.susc.2024.122589","url":null,"abstract":"<div><p>The determination of the configuration of atomic adsorbates on clean metal surfaces has been a key issue in surface science 60 years ago and still is today. We demonstrate that despite the prevalence of combined scanning tunneling microscopy and density functional theory studies of adsorbate systems the pitfalls are plentiful calling for accurate, reliable structure analyses that can be delivered by diffraction methods. We analyze and compare the ordered phases of Te on Ir(111), Ir(100), and Au(100) demonstrating the accuracy, the in-depth information and physical insight that can nowadays be obtained by quantitative low-energy electron diffraction structural analyses.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122589"},"PeriodicalIF":2.1,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001407/pdfft?md5=5d2e604f0131a149fd704b2f9ee5a739&pid=1-s2.0-S0039602824001407-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.susc.2024.122582
Asa Kiuchi , Yaoto Eda , Yousoo Kim , Tomoko K. Shimizu
Understanding the structure of catalyst surfaces with adsorbed molecules is key to improving catalyst design. Scanning tunneling microscopy (STM) allows the observation of adsorption states and sites and provides insights into diffusion and desorption processes; however, the presence of multiple types of molecules on the surface presents challenges such as the identification of species and verification of reaction progress, particularly at room temperature or higher. In this study, we develop a protocol for the height classification analysis of STM images using the Watershed algorithm. This method is applied to a system involving the co-adsorption of H2O and CO on the Fe3O4(111) surface, which represents the beginning of the water-gas shift reaction. Water molecules and dissociated OH species were identified in STM images of the Fe3O4(111) surface following the adsorption of water. Furthermore, gradual changes in the types of surface species were observed upon exposure of the surface to CO, indicating reaction progression. Our observations suggest that CO may react with molecular water rather than with dissociated OH on Fe sites. Despite its simplicity, the height classification analysis effectively identifies changes in the adsorbates on the catalyst surface. This method can be extended to other catalyst surfaces with adsorbed gasses.
了解带有吸附分子的催化剂表面结构是改进催化剂设计的关键。扫描隧道显微镜(STM)可以观察吸附状态和吸附位点,并深入了解扩散和解吸过程;然而,表面存在多种类型的分子会带来一些挑战,如物种识别和反应进展验证,尤其是在室温或更高温度下。在本研究中,我们利用分水岭算法制定了 STM 图像高度分类分析协议。该方法适用于涉及 Fe3O4(111)表面上 H2O 和 CO 共吸附的系统,该系统代表了水-气转移反应的开始。水被吸附后,Fe3O4(111) 表面的 STM 图像中出现了水分子和离解的 OH 物种。此外,在将表面暴露于 CO 时,还观察到表面物种类型的逐渐变化,这表明反应正在进行。我们的观察结果表明,CO 可能与分子水而不是与铁位点上离解的 OH 发生反应。尽管高度分类分析很简单,但它能有效识别催化剂表面吸附剂的变化。这种方法可以推广到其他有吸附气体的催化剂表面。
{"title":"Classification of adsorbates in scanning tunneling microscopy images of Fe3O4(111) surfaces exposed to water and carbon monoxide","authors":"Asa Kiuchi , Yaoto Eda , Yousoo Kim , Tomoko K. Shimizu","doi":"10.1016/j.susc.2024.122582","DOIUrl":"10.1016/j.susc.2024.122582","url":null,"abstract":"<div><p>Understanding the structure of catalyst surfaces with adsorbed molecules is key to improving catalyst design. Scanning tunneling microscopy (STM) allows the observation of adsorption states and sites and provides insights into diffusion and desorption processes; however, the presence of multiple types of molecules on the surface presents challenges such as the identification of species and verification of reaction progress, particularly at room temperature or higher. In this study, we develop a protocol for the height classification analysis of STM images using the Watershed algorithm. This method is applied to a system involving the co-adsorption of H<sub>2</sub>O and CO on the Fe<sub>3</sub>O<sub>4</sub>(111) surface, which represents the beginning of the water-gas shift reaction. Water molecules and dissociated OH species were identified in STM images of the Fe<sub>3</sub>O<sub>4</sub>(111) surface following the adsorption of water. Furthermore, gradual changes in the types of surface species were observed upon exposure of the surface to CO, indicating reaction progression. Our observations suggest that CO may react with molecular water rather than with dissociated OH on Fe sites. Despite its simplicity, the height classification analysis effectively identifies changes in the adsorbates on the catalyst surface. This method can be extended to other catalyst surfaces with adsorbed gasses.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122582"},"PeriodicalIF":2.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003960282400133X/pdfft?md5=a521c86ee1346871851784985be86359&pid=1-s2.0-S003960282400133X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.susc.2024.122579
Svetlozar Surnev , Jacek Goniakowski , Malihe Mohammadi , Claudine Noguera , Falko P. Netzer
The atomic structure of MoOx films formed upon a gradual thermal reduction of an ordered MoO3 monolayer on the Pd(100) substrate was explored via surface science characterization techniques and density functional theory (DFT) calculations. Two main reduction stages were identified. First, the initial oxygen excess was gradually eliminated by altering the domain boundary length, orientation, and atomic structure. The films nevertheless remained O-rich, with numerous terminal oxygen atoms (formation of MoO groups), and an elevated work function. Second, multiple ordered O-lean phases were formed, characterized by either very few or no terminal oxygen atoms, and a much smaller surface work function. According to calculations, the positive charging of the Pd substrate stabilizes the oxygen excess during the first stage, but during the second reduction stage, the substrate becomes negatively charged, stabilizing enhanced cation oxidation states. On their basis, the mechanisms underlying the oxygen release from the initial c(2 × 2) domains were disclosed. The experiments showed that the film reduction is perfectly reversible, which highlights the very promising properties of the MoO3/Pd system for heterogeneous catalysis.
{"title":"Reduction of a two-dimensional crystalline MoO3 monolayer","authors":"Svetlozar Surnev , Jacek Goniakowski , Malihe Mohammadi , Claudine Noguera , Falko P. Netzer","doi":"10.1016/j.susc.2024.122579","DOIUrl":"10.1016/j.susc.2024.122579","url":null,"abstract":"<div><p>The atomic structure of MoO<sub>x</sub> films formed upon a gradual thermal reduction of an ordered MoO<sub>3</sub> monolayer on the Pd(100) substrate was explored via surface science characterization techniques and density functional theory (DFT) calculations. Two main reduction stages were identified. First, the initial oxygen excess was gradually eliminated by altering the domain boundary length, orientation, and atomic structure. The films nevertheless remained O-rich, with numerous terminal oxygen atoms (formation of Mo<img>O groups), and an elevated work function. Second, multiple ordered O-lean phases were formed, characterized by either very few or no terminal oxygen atoms, and a much smaller surface work function. According to calculations, the positive charging of the Pd substrate stabilizes the oxygen excess during the first stage, but during the second reduction stage, the substrate becomes negatively charged, stabilizing enhanced cation oxidation states. On their basis, the mechanisms underlying the oxygen release from the initial c(2 × 2) domains were disclosed. The experiments showed that the film reduction is perfectly reversible, which highlights the very promising properties of the MoO<sub>3</sub>/Pd system for heterogeneous catalysis.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122579"},"PeriodicalIF":2.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001304/pdfft?md5=1525d168946b789b4b9dc648b293aa1e&pid=1-s2.0-S0039602824001304-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.susc.2024.122580
Yingying Wang , Jiayi Guo , Chenqi Bai , Lina Xu , Hongping Xiao , Qian Shi , Yihong Ding , Aidong Li , Guoyong Fang
As a nanofabrication technology, atomic layer deposition (ALD) has been widely used in the fields of displays, microelectronics, nanotechnology, catalysis, energy and coatings. It demonstrates excellent conformality, large-area uniformity and precise control of the sub-monolayer film. Al2O3 ALD using trimethylaluminum (TMA) and water (H2O) as precursors is the most ideal ALD model system. In this work, the reactions of TMA and H2O with the surface have been investigated using density functional theory (DFT) calculations in order to obtain more information on the reaction mechanism of the complicated H2O-based ALD of Al2O3. In the TMA reaction, the methyl ligands can be eliminated and new Al-O bonds can be formed via ligand exchange reactions. In the H2O reaction, the methyl ligand on the surface can be further eliminated and new AlO bonds can be formed. Meanwhile, the coupling reactions between the surface methyl and hydroxyl groups can further form new AlO bonds and release CH4 or H2O to densify the Al2O3 film. These complicated reaction mechanisms of Al2O3 H2O-based ALD can provide theoretical guidance for the precursor design and ALD growth of other oxides and aluminum-based compounds.
{"title":"H2O-based atomic layer deposition mechanism of aluminum oxide using trimethylaluminum","authors":"Yingying Wang , Jiayi Guo , Chenqi Bai , Lina Xu , Hongping Xiao , Qian Shi , Yihong Ding , Aidong Li , Guoyong Fang","doi":"10.1016/j.susc.2024.122580","DOIUrl":"10.1016/j.susc.2024.122580","url":null,"abstract":"<div><p>As a nanofabrication technology, atomic layer deposition (ALD) has been widely used in the fields of displays, microelectronics, nanotechnology, catalysis, energy and coatings. It demonstrates excellent conformality, large-area uniformity and precise control of the sub-monolayer film. Al<sub>2</sub>O<sub>3</sub> ALD using trimethylaluminum (TMA) and water (H<sub>2</sub>O) as precursors is the most ideal ALD model system. In this work, the reactions of TMA and H<sub>2</sub>O with the surface have been investigated using density functional theory (DFT) calculations in order to obtain more information on the reaction mechanism of the complicated H<sub>2</sub>O-based ALD of Al<sub>2</sub>O<sub>3</sub>. In the TMA reaction, the methyl ligands can be eliminated and new Al-O bonds can be formed via ligand exchange reactions. In the H<sub>2</sub>O reaction, the methyl ligand on the surface can be further eliminated and new Al<img>O bonds can be formed. Meanwhile, the coupling reactions between the surface methyl and hydroxyl groups can further form new Al<img>O bonds and release CH<sub>4</sub> or H<sub>2</sub>O to densify the Al<sub>2</sub>O<sub>3</sub> film. These complicated reaction mechanisms of Al<sub>2</sub>O<sub>3</sub> H<sub>2</sub>O-based ALD can provide theoretical guidance for the precursor design and ALD growth of other oxides and aluminum-based compounds.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122580"},"PeriodicalIF":2.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1016/j.susc.2024.122577
Dongsheng Wang , Yanqing Hou , Endong Ye , Jianxin Wang
Based on the first-principles ab initio calculation method of density functional theory (DFT), the adsorption models of Cl2 molecules on both the TiC0.89O0.11(001) intact surface and the carbon vacancy surface were established, followed by calculations and analysis of the adsorption structures, adsorption energy, differential charge density, and density of states (DOS). The results demonstrate that the adsorption process of Cl2 molecules on the TiC0.89O0.11(001) surface involves chemical adsorption, with a higher likelihood of dissociation into Cl atoms during adsorption. These dissociated Cl atoms can potentially interact with surface Ti and/or C atoms to form Ti-Cl bonds, C-Cl bonds, Ti-Cl-C bonds, and Ti-Cl-Ti bonds. Simultaneously, the stability of the adsorbed structure is influenced by both the bonding conditions between Cl atoms and surface atoms and the position of Cl atom adsorption (e.g., whether it is located above the vacancy C). Following adsorption, there is a weakening in the bonding strength of Ti-C or Ti-O bonds on the TiC0.89O0.11(001) surface. During the adsorption process, Cl atoms can either act as electron donors or acceptors. When the Ti-Cl bond structure is formed, Cl atoms function as electron acceptors; however, when the C-Cl bond structure is established, Cl atoms predominantly act as electron donors. Surface Ti atoms act as electron donors while surface C and O atoms function as electron acceptors. Additionally, the presence of surface carbon vacancy enhances the interaction between Cl and Ti atoms, weakens the interaction between Cl and C atoms, and attenuates the interaction between C, O, and Ti atoms in the structure. And it can augment the electron acquisition by Cl2 molecules upon adsorption, reduce the adsorption energy, and promote greater stability in the adsorption structure. All the effects contribute to facilitating TiCl4 formation.
基于密度泛函理论(DFT)的第一性原理ab initio计算方法,建立了Cl2分子在TiC0.89O0.11(001)完整表面和碳空位表面的吸附模型,并对吸附结构、吸附能、电荷差密度和状态密度(DOS)进行了计算和分析。结果表明,Cl2 分子在 TiC0.89O0.11(001)表面的吸附过程涉及化学吸附,在吸附过程中解离成 Cl 原子的可能性较大。这些解离的 Cl 原子有可能与表面的 Ti 原子和/或 C 原子相互作用,形成 Ti-Cl 键、C-Cl 键、Ti-Cl-C 键和 Ti-Cl-Ti 键。同时,吸附结构的稳定性受到 Cl 原子和表面原子之间的成键条件以及 Cl 原子吸附位置(如是否位于空缺 C 的上方)的影响。吸附后,TiC0.89O0.11(001) 表面上 Ti-C 或 Ti-O 键的结合强度会减弱。在吸附过程中,Cl 原子既可以充当电子供体,也可以充当电子受体。当形成 Ti-Cl 键结构时,Cl 原子充当电子受体;然而,当形成 C-Cl 键结构时,Cl 原子主要充当电子供体。表面 Ti 原子充当电子给体,而表面 C 原子和 O 原子则充当电子受体。此外,表面碳空位的存在增强了结构中 Cl 原子和 Ti 原子间的相互作用,减弱了 Cl 原子和 C 原子间的相互作用,削弱了 C、O 和 Ti 原子间的相互作用。此外,它还能增强 Cl2 分子在吸附时获得电子的能力,降低吸附能,提高吸附结构的稳定性。所有这些作用都有助于促进 TiCl4 的形成。
{"title":"Adsorption behavior of Cl2 on TiC0.89O0.11(001) surface based on the first principle calculation","authors":"Dongsheng Wang , Yanqing Hou , Endong Ye , Jianxin Wang","doi":"10.1016/j.susc.2024.122577","DOIUrl":"10.1016/j.susc.2024.122577","url":null,"abstract":"<div><p>Based on the first-principles ab initio calculation method of density functional theory (DFT), the adsorption models of Cl<sub>2</sub> molecules on both the TiC<sub>0.89</sub>O<sub>0.11</sub>(001) intact surface and the carbon vacancy surface were established, followed by calculations and analysis of the adsorption structures, adsorption energy, differential charge density, and density of states (DOS). The results demonstrate that the adsorption process of Cl<sub>2</sub> molecules on the TiC<sub>0.89</sub>O<sub>0.11</sub>(001) surface involves chemical adsorption, with a higher likelihood of dissociation into Cl atoms during adsorption. These dissociated Cl atoms can potentially interact with surface Ti and/or C atoms to form Ti-Cl bonds, C-Cl bonds, Ti-Cl-C bonds, and Ti-Cl-Ti bonds. Simultaneously, the stability of the adsorbed structure is influenced by both the bonding conditions between Cl atoms and surface atoms and the position of Cl atom adsorption (e.g., whether it is located above the vacancy C). Following adsorption, there is a weakening in the bonding strength of Ti-C or Ti-O bonds on the TiC<sub>0.89</sub>O<sub>0.11</sub>(001) surface. During the adsorption process, Cl atoms can either act as electron donors or acceptors. When the Ti-Cl bond structure is formed, Cl atoms function as electron acceptors; however, when the C-Cl bond structure is established, Cl atoms predominantly act as electron donors. Surface Ti atoms act as electron donors while surface C and O atoms function as electron acceptors. Additionally, the presence of surface carbon vacancy enhances the interaction between Cl and Ti atoms, weakens the interaction between Cl and C atoms, and attenuates the interaction between C, O, and Ti atoms in the structure. And it can augment the electron acquisition by Cl<sub>2</sub> molecules upon adsorption, reduce the adsorption energy, and promote greater stability in the adsorption structure. All the effects contribute to facilitating TiCl<sub>4</sub> formation.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122577"},"PeriodicalIF":2.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001286/pdfft?md5=52d5402f1dbddadac167e3e94a29a84d&pid=1-s2.0-S0039602824001286-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-17DOI: 10.1016/j.susc.2024.122578
Amelia K. Sweet , Sara E. Mason
This study explores the potential of nitrobenzene as an anolyte material for nonaqueous redox flow batteries (RFBs) by theoretically examining its low-coverage adsorption behavior on neutral and charged Ag(111) model electrode surfaces. At the low coverage limit, DFT calculations show a preference for nitrobenzene to adsorb parallel to the surface, with the benzene ring and nitro group centered over HCP sites. Interactions between nitrobenzene and the surface were analyzed using induced charge density analysis, Bader charge analysis, and projected density of states (PDOS). It was found that nitrobenzene adsorbs primarily through van der Waals interactions with the surface. As nitrobenzene accumulates negative charge, the strength of adsorption diminishes. Understanding the electrode-electrolyte interface is crucial for enhancing RFB electrochemical performance, and this study sheds light on nitrobenzene's interaction with a model Ag electrode.
{"title":"Insights into the interaction of nitrobenzene and the Ag(111) surface: A DFT study","authors":"Amelia K. Sweet , Sara E. Mason","doi":"10.1016/j.susc.2024.122578","DOIUrl":"10.1016/j.susc.2024.122578","url":null,"abstract":"<div><p>This study explores the potential of nitrobenzene as an anolyte material for nonaqueous redox flow batteries (RFBs) by theoretically examining its low-coverage adsorption behavior on neutral and charged Ag(111) model electrode surfaces. At the low coverage limit, DFT calculations show a preference for nitrobenzene to adsorb parallel to the surface, with the benzene ring and nitro group centered over HCP sites. Interactions between nitrobenzene and the surface were analyzed using induced charge density analysis, Bader charge analysis, and projected density of states (PDOS). It was found that nitrobenzene adsorbs primarily through van der Waals interactions with the surface. As nitrobenzene accumulates negative charge, the strength of adsorption diminishes. Understanding the electrode-electrolyte interface is crucial for enhancing RFB electrochemical performance, and this study sheds light on nitrobenzene's interaction with a model Ag electrode.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122578"},"PeriodicalIF":2.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-17DOI: 10.1016/j.susc.2024.122570
F.B. Mahoungou-Nguimbi , L. Mouketo , B.R. Malonda-Boungou , A.T. Raji , B. M’Passi-Mabiala
<div><p>We report first-principles electronic structure calculations of the structural, electronic, and magnetic properties of model epitaxial layers consisting of nickel (Ni) atomic layers deposited on palladium (Pd) substrate, <em>i.e.</em>, Ni(001)<span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>∣</mo></math></span>Pd<span><math><msub><mrow><mrow><mo>(</mo><mn>001</mn><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> where <span><math><mrow><mi>m</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>6</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>10</mn><mo>,</mo></mrow></math></span> are layer thicknesses. We also investigate the effect of oxygen adsorption on the calculated properties. We found variation in magnetization of between <span><math><mrow><mo>≈</mo><mn>0</mn><mo>.</mo><mn>6</mn><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow></math></span> to 1.00 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> across the nickel layers. Also, finite magnetic moments albeit of small values of between 0.2 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> and 0.3 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> is found on the Pd at the interface. This magnetic moment on an otherwise non-magnetic Pd atoms has been adduced to interfacial strain due to lattice mismatch between the Ni and Pd layers at the Ni<span><math><mo>|</mo></math></span>Pd interface. The effect of adsorbed oxygen on the Ni<span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>∣</mo></math></span>Pd<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> is that it increases the magnetic moment on the nickel layers. Also, regarding the magnitude of magnetic anisotropy energy (MAE), we found a high perpendicular values of 1.63 meV and 1.37 meV per unit cell respectively for Ni<span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>∣</mo></math></span>Pd<sub>10</sub> (<span><math><mrow><mi>m</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>6</mn></mrow></math></span>) which are relatively higher than those reported for other transition metal epitaxial layers. However, the presence of oxygen atom on the Ni<span><math><mo>∣</mo></math></span>Pd changes the direction and magnitude of MAE. Indeed, O adsorption favours or enhances in-plane magnetization direction depending on the thickness of the Ni layers for a fixed Pd thickness. Plots of local density of states (LDOS) which include the effect of spin–orbit coupling (SOC), show that in the case of Ni<span><math><mo>∣</mo></math></span>Pd having perpendicular MAE, there appears a new SOC-induced electronic states below and above the Fermi level. These states appears to stabilize this type of magnetic anisotropy. On the ot
我们报告了由沉积在钯(Pd)基底上的镍(Ni)原子层(即 Ni(001)m∣Pd(001)n 其中 m=1,2,6 和 n=3,10 为层厚度)组成的模型外延层的结构、电子和磁性能的第一原理电子结构计算结果。我们还研究了氧吸附对计算特性的影响。我们发现镍层之间的磁化率变化在 ≈0.6μB 到 1.00μB 之间。此外,在界面处的钯上也发现了有限的磁矩,尽管数值很小,介于 0.2 μB 和 0.3 μB 之间。镍钯界面上的镍层和钯层之间的晶格不匹配导致界面应变,从而在原本无磁性的钯原子上产生了这种磁矩。吸附氧对 Nim ∣Pdn 的影响是增加了镍层上的磁矩。此外,关于磁各向异性能(MAE)的大小,我们发现 Nim ∣Pd10 (m=2,6)每单位晶胞的垂直值分别为 1.63 meV 和 1.37 meV,相对高于其他过渡金属外延层的垂直值。然而,Ni∣Pd 上氧原子的存在改变了 MAE 的方向和大小。事实上,在钯层厚度固定的情况下,镍层的厚度不同,氧的吸附对面内磁化方向的影响也不同。包含自旋轨道耦合(SOC)效应的局部态密度(LDOS)图显示,在具有垂直 MAE 的 Ni∣Pd 情况下,费米水平以下和以上出现了新的 SOC 诱导的电子态。这些状态似乎能稳定这种类型的磁各向异性。另一方面,面内 MAE 的特点是费米水平(EF)以下的 SOC 诱导的局部态以及 EF 处 DOS 的降低。我们的工作探索了物理、磁性和电子特性,这些特性可能有助于设计用于磁性或自旋电子应用的镍∣钯基超晶格。
{"title":"Ni thin-films on Pd surfaces and effects of oxygen adsorption: Ab-initio study of structures, electronic properties, magnetic anisotropy","authors":"F.B. Mahoungou-Nguimbi , L. Mouketo , B.R. Malonda-Boungou , A.T. Raji , B. M’Passi-Mabiala","doi":"10.1016/j.susc.2024.122570","DOIUrl":"10.1016/j.susc.2024.122570","url":null,"abstract":"<div><p>We report first-principles electronic structure calculations of the structural, electronic, and magnetic properties of model epitaxial layers consisting of nickel (Ni) atomic layers deposited on palladium (Pd) substrate, <em>i.e.</em>, Ni(001)<span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>∣</mo></math></span>Pd<span><math><msub><mrow><mrow><mo>(</mo><mn>001</mn><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> where <span><math><mrow><mi>m</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>6</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>10</mn><mo>,</mo></mrow></math></span> are layer thicknesses. We also investigate the effect of oxygen adsorption on the calculated properties. We found variation in magnetization of between <span><math><mrow><mo>≈</mo><mn>0</mn><mo>.</mo><mn>6</mn><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow></math></span> to 1.00 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> across the nickel layers. Also, finite magnetic moments albeit of small values of between 0.2 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> and 0.3 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> is found on the Pd at the interface. This magnetic moment on an otherwise non-magnetic Pd atoms has been adduced to interfacial strain due to lattice mismatch between the Ni and Pd layers at the Ni<span><math><mo>|</mo></math></span>Pd interface. The effect of adsorbed oxygen on the Ni<span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>∣</mo></math></span>Pd<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> is that it increases the magnetic moment on the nickel layers. Also, regarding the magnitude of magnetic anisotropy energy (MAE), we found a high perpendicular values of 1.63 meV and 1.37 meV per unit cell respectively for Ni<span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>∣</mo></math></span>Pd<sub>10</sub> (<span><math><mrow><mi>m</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>6</mn></mrow></math></span>) which are relatively higher than those reported for other transition metal epitaxial layers. However, the presence of oxygen atom on the Ni<span><math><mo>∣</mo></math></span>Pd changes the direction and magnitude of MAE. Indeed, O adsorption favours or enhances in-plane magnetization direction depending on the thickness of the Ni layers for a fixed Pd thickness. Plots of local density of states (LDOS) which include the effect of spin–orbit coupling (SOC), show that in the case of Ni<span><math><mo>∣</mo></math></span>Pd having perpendicular MAE, there appears a new SOC-induced electronic states below and above the Fermi level. These states appears to stabilize this type of magnetic anisotropy. On the ot","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122570"},"PeriodicalIF":2.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.susc.2024.122571
Julián Del Plá, Reinaldo Pis Diez
Non periodic density functional theory calculations are used to investigate the role of cobalt atoms in the adsorption of thiophene on small Mo and MoCo clusters. Metallic aggregates play the role of those active sites found in the true catalysts. Two interaction modes between thiophene and metallic sites are considered, namely, the S-mode, in which the organosulfur molecule interacts through the S atom, and the R-mode, in which the interaction takes place through the thiophene ring. A large number of sites, in which thiophene effectively adsorbs, was found, both in the monometallic case and in the bimetallic one. Considerably larger adsorption energies were found when thiophene interacts via the R-mode than when adsorption occurs through the S-mode. The activation of C-S bonds is also more important for R-mode cases than for S-mode ones. Further analysis made on some selected systems and based on density of states and molecular orbital overlap population-projected density of states reveals that thiophene and metallic clusters interact in an energy range around −6.0 eV with respect to the Fermi energy. Bands observed at energies below −6.0 eV correspond to thiophene states that become shifted with respect to the values obtained for isolated thiophene depending on the strength of the interaction. Bands above -6.0 eV describe how C and S atoms interact with Co and Mo ones, providing both bonding and antibonding patterns that helps to understand the overall interaction. Most important is the finding that cobalt atoms seem to play no relevant role during the adsorption of thiophene on metallic sites. Thus, present results obtained using non periodic GGA density functional theory seem to point to cobalt taking part in another step of the overall HDS process, hydrogen adsorption or hydrogen attack to C-S bonds, for instance.
非周期性密度泛函理论计算用于研究钴原子在小钼和钼钴团簇吸附噻吩过程中的作用。金属团聚体扮演了真正催化剂中活性位点的角色。研究考虑了噻吩与金属位点之间的两种相互作用模式,即有机硫分子通过 S 原子相互作用的 S 模式和通过噻吩环相互作用的 R 模式。在单金属和双金属情况下,都发现了大量噻吩有效吸附的位点。当噻吩通过 R 模式相互作用时,吸附能明显大于通过 S 模式吸附时。C-S 键的活化在 R 模式情况下也比在 S 模式情况下更重要。根据状态密度和分子轨道重叠群体推算的状态密度对一些选定的系统进行的进一步分析表明,噻吩和金属团簇在费米能-6.0 eV 左右的能量范围内相互作用。在能量低于 -6.0 eV 时观察到的条带对应于噻吩态,这些噻吩态相对于孤立噻吩态的值会发生偏移,这取决于相互作用的强度。高于 -6.0 eV 的带描述了 C 原子和 S 原子如何与 Co 原子和 Mo 原子相互作用,提供了成键和反键模式,有助于理解整体相互作用。最重要的发现是,钴原子在金属位点吸附噻吩的过程中似乎没有发挥相关作用。因此,利用非周期性 GGA 密度泛函理论获得的当前结果似乎表明,钴参与了整个加氢脱硫过程的另一个步骤,例如氢吸附或氢对 C-S 键的攻击。
{"title":"A computational study of the role of cobalt in thiophene adsorption on small Mo and MoCo clusters as site models for the HDS process","authors":"Julián Del Plá, Reinaldo Pis Diez","doi":"10.1016/j.susc.2024.122571","DOIUrl":"10.1016/j.susc.2024.122571","url":null,"abstract":"<div><p>Non periodic density functional theory calculations are used to investigate the role of cobalt atoms in the adsorption of thiophene on small Mo and MoCo clusters. Metallic aggregates play the role of those active sites found in the true catalysts. Two interaction modes between thiophene and metallic sites are considered, namely, the S-mode, in which the organosulfur molecule interacts through the S atom, and the R-mode, in which the interaction takes place through the thiophene ring. A large number of sites, in which thiophene effectively adsorbs, was found, both in the monometallic case and in the bimetallic one. Considerably larger adsorption energies were found when thiophene interacts via the R-mode than when adsorption occurs through the S-mode. The activation of C-S bonds is also more important for R-mode cases than for S-mode ones. Further analysis made on some selected systems and based on density of states and molecular orbital overlap population-projected density of states reveals that thiophene and metallic clusters interact in an energy range around −6.0 eV with respect to the Fermi energy. Bands observed at energies below −6.0 eV correspond to thiophene states that become shifted with respect to the values obtained for isolated thiophene depending on the strength of the interaction. Bands above -6.0 eV describe how C and S atoms interact with Co and Mo ones, providing both bonding and antibonding patterns that helps to understand the overall interaction. Most important is the finding that cobalt atoms seem to play no relevant role during the adsorption of thiophene on metallic sites. Thus, present results obtained using non periodic GGA density functional theory seem to point to cobalt taking part in another step of the overall HDS process, hydrogen adsorption or hydrogen attack to C-S bonds, for instance.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"749 ","pages":"Article 122571"},"PeriodicalIF":2.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}