首页 > 最新文献

Surface Science最新文献

英文 中文
Formation and coarsening of epitaxially-supported metal nanoclusters 外延支撑金属纳米团簇的形成与粗化
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-28 DOI: 10.1016/j.susc.2024.122581
This mini-review describes developments over the last ∼30 years in characterizing the nucleation & growth of epitaxially-supported metal nanoclusters (NCs) or islands during vapor deposition, as well as their post-deposition coarsening. A beyond-mean-field treatment for homogeneous nucleation & growth corrects the deficiencies of traditional treatments in describing, e.g., the island size distribution, but also necessitates consideration of the spatial distribution of islands and their capture zones. We discuss advances in modeling capabilities, including those based upon on an ab-initio level treatment of periphery diffusion kinetics, for description of the non-equilibrium growth shapes of these NCs, focusing on 2D NCs. For post-deposition coarsening of arrays of NCs, there is generally a competition between Ostwald Ripening (OR) and Smoluchowski Ripening (SR). SR is also known as Particle Migration & Coalescence. For 2D NCs in homoepitaxial systems, conventional OR is observed on pristine fcc(111) surfaces, dramatically enhanced OR in the presence of even trace amounts of chalcogens for Cu(111) and Ag(111), and anomalous OR on anisotropic fcc(110) surfaces. The unexpected discovery of SR for fcc(100) homoepitaxial systems prompted extensive analysis of the underlying diffusivities of 2D NCs as a function of size, as well as of NC coalescence dynamics. A comprehensive understanding of these processes is now available. Self-assembly of 3D NCs during deposition, issues related to heterogeneous nucleation, directed assembly, NC growth structure selection, and coarsening are addressed. For SR of 3D epitaxial NCs, recent insights into the size-dependence of diffusivity are described.
这篇微型综述介绍了过去 30 多年来在表征气相沉积过程中外延支撑金属纳米团簇(NC)或纳米岛的成核与amp; 生长及其沉积后粗化方面的发展。均匀成核& 生长的超均值场处理方法纠正了传统处理方法在描述(例如)纳米岛尺寸分布方面的不足,但也需要考虑纳米岛及其捕获区的空间分布。我们讨论了建模能力方面的进展,包括基于外围扩散动力学的非原位级处理,用于描述这些数控系统的非平衡生长形状,重点是二维数控系统。对于 NC 阵列的沉积后粗化,通常存在奥斯特瓦尔德熟化(OR)和斯莫卢霍斯基熟化(SR)之间的竞争。SR 也称为粒子迁移和凝聚。对于同向外延系统中的二维数控系统,在原始的 fcc(111) 表面上可以观察到传统的奥斯特瓦尔德衰变,而在 Cu(111) 和 Ag(111) 表面上,即使存在微量的查耳酮,奥斯特瓦尔德衰变也会显著增强,而在各向异性的 fcc(110) 表面上则会出现异常的奥斯特瓦尔德衰变。在 fcc(100) 同向共轴系统中意外发现的 SR,促使我们对二维 NC 的基本扩散性(作为尺寸函数)以及 NC 凝聚动力学进行了广泛分析。现在,我们已经对这些过程有了全面的了解。研究探讨了三维 NC 在沉积过程中的自组装、与异质成核、定向组装、NC 生长结构选择和粗化有关的问题。对于三维外延 NC 的 SR,介绍了对扩散性尺寸依赖性的最新见解。
{"title":"Formation and coarsening of epitaxially-supported metal nanoclusters","authors":"","doi":"10.1016/j.susc.2024.122581","DOIUrl":"10.1016/j.susc.2024.122581","url":null,"abstract":"<div><div>This mini-review describes developments over the last ∼30 years in characterizing the nucleation &amp; growth of epitaxially-supported metal nanoclusters (NCs) or islands during vapor deposition, as well as their post-deposition coarsening. A beyond-mean-field treatment for homogeneous nucleation &amp; growth corrects the deficiencies of traditional treatments in describing, e.g., the island size distribution, but also necessitates consideration of the spatial distribution of islands and their capture zones. We discuss advances in modeling capabilities, including those based upon on an ab-initio level treatment of periphery diffusion kinetics, for description of the non-equilibrium growth shapes of these NCs, focusing on 2D NCs. For post-deposition coarsening of arrays of NCs, there is generally a competition between Ostwald Ripening (OR) and Smoluchowski Ripening (SR). SR is also known as Particle Migration &amp; Coalescence. For 2D NCs in homoepitaxial systems, conventional OR is observed on pristine fcc(111) surfaces, dramatically enhanced OR in the presence of even trace amounts of chalcogens for Cu(111) and Ag(111), and anomalous OR on anisotropic fcc(110) surfaces. The unexpected discovery of SR for fcc(100) homoepitaxial systems prompted extensive analysis of the underlying diffusivities of 2D NCs as a function of size, as well as of NC coalescence dynamics. A comprehensive understanding of these processes is now available. Self-assembly of 3D NCs during deposition, issues related to heterogeneous nucleation, directed assembly, NC growth structure selection, and coarsening are addressed. For SR of 3D epitaxial NCs, recent insights into the size-dependence of diffusivity are described.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensional conjugated metal–organic frameworks grown on a MoS2 surface 生长在 MoS2 表面的二维共轭金属有机框架
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-28 DOI: 10.1016/j.susc.2024.122594

Molybdenum disulfide (MoS2) features an atomically flat surface without dangling bonds. Molecular self-assembly on this surface provides an effective route to constructing heterostructure devices. In this work, we show the successful synthesis of M3(1,4,5,8,9,12-hexaazatriphenylene, HAT)2 (M = Ni, Co) conjugated metal–organic frameworks (c-MOFs) on a MoS2 surface. In the frameworks, HAT molecules constitute a honeycomb lattice while the metal atoms constitute a Kagome lattice. The random orientations of the frameworks with respect to the substrate and irregular domain shapes indicate that the frameworks interact weakly with the MoS2. The successful synthesis of 2D c-MOFs on inert substrates opens a door for the construction of advanced 2D van der Waals heterojunctions.

二硫化钼(MoS2)具有原子般平坦的表面,没有悬挂键。在这种表面上的分子自组装为构建异质结构器件提供了一条有效途径。在这项研究中,我们成功地在 MoS2 表面合成了 M3(1,4,5,8,9,12-六氮杂三亚苯,HAT)2(M = Ni,Co)共轭金属有机框架(c-MOFs)。在这些框架中,HAT 分子构成蜂巢晶格,而金属原子则构成鹿角晶格。框架相对于基底的随机取向和不规则的畴形状表明,框架与 MoS2 的相互作用很弱。在惰性基底上成功合成二维 c-MOFs 为构建先进的二维范德华异质结打开了一扇大门。
{"title":"Two-dimensional conjugated metal–organic frameworks grown on a MoS2 surface","authors":"","doi":"10.1016/j.susc.2024.122594","DOIUrl":"10.1016/j.susc.2024.122594","url":null,"abstract":"<div><p>Molybdenum disulfide (MoS<sub>2</sub>) features an atomically flat surface without dangling bonds. Molecular self-assembly on this surface provides an effective route to constructing heterostructure devices. In this work, we show the successful synthesis of M<sub>3</sub>(1,4,5,8,9,12-hexaazatriphenylene, HAT)<sub>2</sub> (<em>M</em> = Ni, Co) conjugated metal–organic frameworks (<em>c</em>-MOFs) on a MoS<sub>2</sub> surface. In the frameworks, HAT molecules constitute a honeycomb lattice while the metal atoms constitute a Kagome lattice. The random orientations of the frameworks with respect to the substrate and irregular domain shapes indicate that the frameworks interact weakly with the MoS<sub>2</sub>. The successful synthesis of 2D <em>c</em>-MOFs on inert substrates opens a door for the construction of advanced 2D van der Waals heterojunctions.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of monolayer SnSe2 optoelectronic properties by applied electric field and atomic doping 外加电场和原子掺杂对单层 SnSe2 光电特性的调制
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-26 DOI: 10.1016/j.susc.2024.122591

Based on the first principles, we have calculated the influence of the applied electric field and doped X (X = N, P, As, Sb) atoms on the optoelectronic properties and phonon dispersion of the monolayer 2D material SnSe2. The calculation results show that intrinsic SnSe2 is a semiconductor with a band gap value of 0.884 eV. The doping of X atoms improves the energy band tunability of the monolayer SnSe2 system and becomes more stable. The N-doped SnSe2 system has the most stable structure and the best doping performance. When the electric field strength of 0.3 V/Å is applied on the surface of the N-doped system, the band gap of the system increases. The energy gap gradually decreases when the electric field strength continues to increase from 0.3 V/Å to 0.9 V/Å. At an applied electric field strength of 0.9 V/Å, the system changes from semiconductor to metallic properties. As far as the optical properties are concerned, the applied electric field increases the static refractive index of the system, the imaginary part of the photoconductivity increases, the energy loss function decreases, and the light absorption performance improves. The applied electric field successfully enhanced the optical properties of the SnSe2 system. The applied electric field strength of 0.9 V/Å doped N system has the best optical properties. This provides a new way to explore the optoelectronic devices based on the SnSe2 doped system.

基于第一性原理,我们计算了外加电场和掺杂 X(X = N、P、As、Sb)原子对单层二维材料 SnSe2 的光电特性和声子色散的影响。计算结果表明,本征 SnSe2 是一种带隙值为 0.884 eV 的半导体。X原子的掺杂提高了单层SnSe2体系的能带可调性,并变得更加稳定。掺杂 N 的 SnSe2 系统结构最稳定,掺杂性能最好。当在 N 掺杂体系表面施加 0.3 V/Å 的电场强度时,该体系的能带间隙增大。当电场强度从 0.3 V/Å 继续增加到 0.9 V/Å 时,能隙逐渐减小。当施加的电场强度为 0.9 V/Å 时,该体系从半导体特性转变为金属特性。就光学特性而言,外加电场提高了系统的静态折射率,光电导的虚部增加,能量损失函数降低,光吸收性能改善。外加电场成功地提高了 SnSe2 系统的光学性能。外加电场强度为 0.9 V/Å 的掺杂 N 系统具有最佳的光学性能。这为探索基于掺杂 SnSe2 系统的光电器件提供了一条新途径。
{"title":"Modulation of monolayer SnSe2 optoelectronic properties by applied electric field and atomic doping","authors":"","doi":"10.1016/j.susc.2024.122591","DOIUrl":"10.1016/j.susc.2024.122591","url":null,"abstract":"<div><p>Based on the first principles, we have calculated the influence of the applied electric field and doped X (X = N, P, As, Sb) atoms on the optoelectronic properties and phonon dispersion of the monolayer 2D material SnSe<sub>2</sub>. The calculation results show that intrinsic SnSe<sub>2</sub> is a semiconductor with a band gap value of 0.884 eV. The doping of X atoms improves the energy band tunability of the monolayer SnSe<sub>2</sub> system and becomes more stable. The N-doped SnSe<sub>2</sub> system has the most stable structure and the best doping performance. When the electric field strength of 0.3 V/Å is applied on the surface of the N-doped system, the band gap of the system increases. The energy gap gradually decreases when the electric field strength continues to increase from 0.3 V/Å to 0.9 V/Å. At an applied electric field strength of 0.9 V/Å, the system changes from semiconductor to metallic properties. As far as the optical properties are concerned, the applied electric field increases the static refractive index of the system, the imaginary part of the photoconductivity increases, the energy loss function decreases, and the light absorption performance improves. The applied electric field successfully enhanced the optical properties of the SnSe<sub>2</sub> system. The applied electric field strength of 0.9 V/Å doped N system has the best optical properties. This provides a new way to explore the optoelectronic devices based on the SnSe<sub>2</sub> doped system.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the morphology and chemical activity of model ZrOx/Au (111) catalysts for CO2 hydrogenation 了解二氧化碳加氢模型 ZrOx/Au (111) 催化剂的形态和化学活性
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-25 DOI: 10.1016/j.susc.2024.122590

In this study, the growth of ZrOx on Au (111) was investigated using scanning tunneling microscopy (STM) and synchrotron-based ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Nanostructures of ZrOx (x = 1,2) at the sub-monolayer (≤ 0.3 ML) level were prepared by vapor depositing Zr metal onto Au (111) followed by oxidation with O2 or CO2. At low coverages of the admetal (< 0.05 ML), the formed ZrOx nanostructures were dispersed randomly on the terraces and steps of the Au(111) substrate. Strong oxide-metal interactions prevented the formation of islands of zirconia. The ZrOx nanostructures displayed a reactivity towards CO2 and H2 not seen for bulk zirconia. C 1 s AP-XPS results indicated that CO2 molecules adsorbed on Zr/ZrOx/Au(111) surfaces could undergo partial decomposition on Zr (CO2, gas → COgas + Oads), or react with oxygen sites from ZrOx to yield carbonates (Zr-CO3, ads). After exposing ZrO2/Au (111) surfaces to 1:3 mixtures of CO2:H2, the formation of HCOO, CO3, and CH3O was detected in AP-XP spectra. These chemical species decomposed at temperatures in the range of 400‒600 K, making them possible reaction intermediates for methanol synthesis.

本研究利用扫描隧道显微镜(STM)和同步辐射环境压力 X 射线光电子能谱(AP-XPS)研究了氧化锆在金(111)上的生长。通过在金(111)上气相沉积 Zr 金属,然后用 O2 或 CO2 氧化,制备了亚单层(≤ 0.3 ML)级别的 ZrOx(x = 1,2)纳米结构。在金属覆盖率较低(0.05 ML)的情况下,形成的氧化锆纳米结构随机分散在金(111)基底的台阶和阶梯上。强烈的氧化物-金属相互作用阻止了氧化锆岛的形成。氧化锆纳米结构对 CO2 和 H2 的反应活性是块状氧化锆所不具备的。C 1 s AP-XPS 结果表明,Zr/ZrOx/Au(111)表面吸附的二氧化碳分子可在 Zr 上发生部分分解(CO2,气体 → COgas + Oads),或与 ZrOx 的氧位点反应生成碳酸盐(Zr-CO3,吸附)。将 ZrO2/Au (111) 表面暴露于 1:3 的 CO2:H2 混合物后,在 AP-XP 光谱中检测到 HCOO、CO3 和 CH3O 的形成。这些化学物质在 400-600 K 的温度范围内分解,因此可能是合成甲醇的反应中间体。
{"title":"Understanding the morphology and chemical activity of model ZrOx/Au (111) catalysts for CO2 hydrogenation","authors":"","doi":"10.1016/j.susc.2024.122590","DOIUrl":"10.1016/j.susc.2024.122590","url":null,"abstract":"<div><p>In this study, the growth of ZrO<sub>x</sub> on Au (111) was investigated using scanning tunneling microscopy (STM) and synchrotron-based ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Nanostructures of ZrO<sub>x</sub> (<em>x</em> = 1,2) at the sub-monolayer (≤ 0.3 ML) level were prepared by vapor depositing Zr metal onto Au (111) followed by oxidation with O<sub>2</sub> or CO<sub>2</sub>. At low coverages of the admetal (&lt; 0.05 ML), the formed ZrO<sub>x</sub> nanostructures were dispersed randomly on the terraces and steps of the Au(111) substrate. Strong oxide-metal interactions prevented the formation of islands of zirconia. The ZrO<sub>x</sub> nanostructures displayed a reactivity towards CO<sub>2</sub> and H<sub>2</sub> not seen for bulk zirconia. C 1 s AP-XPS results indicated that CO<sub>2</sub> molecules adsorbed on Zr/ZrO<sub>x</sub>/Au(111) surfaces could undergo partial decomposition on Zr (CO<sub>2, gas</sub> → CO<sub>gas</sub> + O<sub>ads</sub>), or react with oxygen sites from ZrO<em><sub>x</sub></em> to yield carbonates (Zr-CO<sub>3, ads</sub>). After exposing ZrO<sub>2</sub>/Au (111) surfaces to 1:3 mixtures of CO<sub>2</sub>:H<sub>2</sub>, the formation of HCOO, CO<sub>3</sub>, and CH<sub>3</sub>O was detected in AP-XP spectra. These chemical species decomposed at temperatures in the range of 400‒600 K, making them possible reaction intermediates for methanol synthesis.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LEED-IV analyses of tellurium adsorbate structures on iridium and gold surfaces 铱和金表面碲吸附结构的 LEED-IV 分析
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-24 DOI: 10.1016/j.susc.2024.122589

The determination of the configuration of atomic adsorbates on clean metal surfaces has been a key issue in surface science 60 years ago and still is today. We demonstrate that despite the prevalence of combined scanning tunneling microscopy and density functional theory studies of adsorbate systems the pitfalls are plentiful calling for accurate, reliable structure analyses that can be delivered by diffraction methods. We analyze and compare the ordered phases of Te on Ir(111), Ir(100), and Au(100) demonstrating the accuracy, the in-depth information and physical insight that can nowadays be obtained by quantitative low-energy electron diffraction structural analyses.

确定清洁金属表面原子吸附物的构型是表面科学的一个关键问题,60 年前如此,今天依然如此。我们的研究表明,尽管对吸附剂体系的扫描隧道显微镜和密度泛函理论联合研究非常普遍,但仍存在很多缺陷,需要通过衍射方法进行准确可靠的结构分析。我们分析并比较了 Te 在 Ir(111)、Ir(100) 和 Au(100)上的有序相,展示了如今通过定量低能电子衍射结构分析所能获得的准确、深入的信息和物理洞察力。
{"title":"LEED-IV analyses of tellurium adsorbate structures on iridium and gold surfaces","authors":"","doi":"10.1016/j.susc.2024.122589","DOIUrl":"10.1016/j.susc.2024.122589","url":null,"abstract":"<div><p>The determination of the configuration of atomic adsorbates on clean metal surfaces has been a key issue in surface science 60 years ago and still is today. We demonstrate that despite the prevalence of combined scanning tunneling microscopy and density functional theory studies of adsorbate systems the pitfalls are plentiful calling for accurate, reliable structure analyses that can be delivered by diffraction methods. We analyze and compare the ordered phases of Te on Ir(111), Ir(100), and Au(100) demonstrating the accuracy, the in-depth information and physical insight that can nowadays be obtained by quantitative low-energy electron diffraction structural analyses.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001407/pdfft?md5=5d2e604f0131a149fd704b2f9ee5a739&pid=1-s2.0-S0039602824001407-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of adsorbates in scanning tunneling microscopy images of Fe3O4(111) surfaces exposed to water and carbon monoxide 暴露于水和一氧化碳的 Fe3O4(111) 表面扫描隧道显微镜图像中的吸附剂分类
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-23 DOI: 10.1016/j.susc.2024.122582

Understanding the structure of catalyst surfaces with adsorbed molecules is key to improving catalyst design. Scanning tunneling microscopy (STM) allows the observation of adsorption states and sites and provides insights into diffusion and desorption processes; however, the presence of multiple types of molecules on the surface presents challenges such as the identification of species and verification of reaction progress, particularly at room temperature or higher. In this study, we develop a protocol for the height classification analysis of STM images using the Watershed algorithm. This method is applied to a system involving the co-adsorption of H2O and CO on the Fe3O4(111) surface, which represents the beginning of the water-gas shift reaction. Water molecules and dissociated OH species were identified in STM images of the Fe3O4(111) surface following the adsorption of water. Furthermore, gradual changes in the types of surface species were observed upon exposure of the surface to CO, indicating reaction progression. Our observations suggest that CO may react with molecular water rather than with dissociated OH on Fe sites. Despite its simplicity, the height classification analysis effectively identifies changes in the adsorbates on the catalyst surface. This method can be extended to other catalyst surfaces with adsorbed gasses.

了解带有吸附分子的催化剂表面结构是改进催化剂设计的关键。扫描隧道显微镜(STM)可以观察吸附状态和吸附位点,并深入了解扩散和解吸过程;然而,表面存在多种类型的分子会带来一些挑战,如物种识别和反应进展验证,尤其是在室温或更高温度下。在本研究中,我们利用分水岭算法制定了 STM 图像高度分类分析协议。该方法适用于涉及 Fe3O4(111)表面上 H2O 和 CO 共吸附的系统,该系统代表了水-气转移反应的开始。水被吸附后,Fe3O4(111) 表面的 STM 图像中出现了水分子和离解的 OH 物种。此外,在将表面暴露于 CO 时,还观察到表面物种类型的逐渐变化,这表明反应正在进行。我们的观察结果表明,CO 可能与分子水而不是与铁位点上离解的 OH 发生反应。尽管高度分类分析很简单,但它能有效识别催化剂表面吸附剂的变化。这种方法可以推广到其他有吸附气体的催化剂表面。
{"title":"Classification of adsorbates in scanning tunneling microscopy images of Fe3O4(111) surfaces exposed to water and carbon monoxide","authors":"","doi":"10.1016/j.susc.2024.122582","DOIUrl":"10.1016/j.susc.2024.122582","url":null,"abstract":"<div><p>Understanding the structure of catalyst surfaces with adsorbed molecules is key to improving catalyst design. Scanning tunneling microscopy (STM) allows the observation of adsorption states and sites and provides insights into diffusion and desorption processes; however, the presence of multiple types of molecules on the surface presents challenges such as the identification of species and verification of reaction progress, particularly at room temperature or higher. In this study, we develop a protocol for the height classification analysis of STM images using the Watershed algorithm. This method is applied to a system involving the co-adsorption of H<sub>2</sub>O and CO on the Fe<sub>3</sub>O<sub>4</sub>(111) surface, which represents the beginning of the water-gas shift reaction. Water molecules and dissociated OH species were identified in STM images of the Fe<sub>3</sub>O<sub>4</sub>(111) surface following the adsorption of water. Furthermore, gradual changes in the types of surface species were observed upon exposure of the surface to CO, indicating reaction progression. Our observations suggest that CO may react with molecular water rather than with dissociated OH on Fe sites. Despite its simplicity, the height classification analysis effectively identifies changes in the adsorbates on the catalyst surface. This method can be extended to other catalyst surfaces with adsorbed gasses.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003960282400133X/pdfft?md5=a521c86ee1346871851784985be86359&pid=1-s2.0-S003960282400133X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H2O-based atomic layer deposition mechanism of aluminum oxide using trimethylaluminum 使用三甲基铝的基于 H2O 的氧化铝原子层沉积机制
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-22 DOI: 10.1016/j.susc.2024.122580

As a nanofabrication technology, atomic layer deposition (ALD) has been widely used in the fields of displays, microelectronics, nanotechnology, catalysis, energy and coatings. It demonstrates excellent conformality, large-area uniformity and precise control of the sub-monolayer film. Al2O3 ALD using trimethylaluminum (TMA) and water (H2O) as precursors is the most ideal ALD model system. In this work, the reactions of TMA and H2O with the surface have been investigated using density functional theory (DFT) calculations in order to obtain more information on the reaction mechanism of the complicated H2O-based ALD of Al2O3. In the TMA reaction, the methyl ligands can be eliminated and new Al-O bonds can be formed via ligand exchange reactions. In the H2O reaction, the methyl ligand on the surface can be further eliminated and new AlO bonds can be formed. Meanwhile, the coupling reactions between the surface methyl and hydroxyl groups can further form new AlO bonds and release CH4 or H2O to densify the Al2O3 film. These complicated reaction mechanisms of Al2O3 H2O-based ALD can provide theoretical guidance for the precursor design and ALD growth of other oxides and aluminum-based compounds.

作为一种纳米制造技术,原子层沉积(ALD)已广泛应用于显示器、微电子、纳米技术、催化、能源和涂层等领域。原子层沉积(ALD)技术具有良好的保形性、大面积均匀性和亚单层薄膜的精确控制。以三甲基铝(TMA)和水(H2O)为前驱体的 Al2O3 ALD 是最理想的 ALD 模型体系。本研究利用密度泛函理论(DFT)计算研究了 TMA 和 H2O 与表面的反应,以获得更多有关 Al2O3 基于 H2O 的复杂 ALD 反应机理的信息。在 TMA 反应中,甲基配体可以被消除,并通过配体交换反应形成新的 Al-O 键。在 H2O 反应中,表面的甲基配体可进一步消除,形成新的 AlO 键。同时,表面甲基和羟基之间的偶联反应可进一步形成新的 AlO 键,并释放出 CH4 或 H2O,使 Al2O3 薄膜致密化。这些基于 Al2O3 H2O 的 ALD 复杂反应机理可为其他氧化物和铝基化合物的前驱体设计和 ALD 生长提供理论指导。
{"title":"H2O-based atomic layer deposition mechanism of aluminum oxide using trimethylaluminum","authors":"","doi":"10.1016/j.susc.2024.122580","DOIUrl":"10.1016/j.susc.2024.122580","url":null,"abstract":"<div><p>As a nanofabrication technology, atomic layer deposition (ALD) has been widely used in the fields of displays, microelectronics, nanotechnology, catalysis, energy and coatings. It demonstrates excellent conformality, large-area uniformity and precise control of the sub-monolayer film. Al<sub>2</sub>O<sub>3</sub> ALD using trimethylaluminum (TMA) and water (H<sub>2</sub>O) as precursors is the most ideal ALD model system. In this work, the reactions of TMA and H<sub>2</sub>O with the surface have been investigated using density functional theory (DFT) calculations in order to obtain more information on the reaction mechanism of the complicated H<sub>2</sub>O-based ALD of Al<sub>2</sub>O<sub>3</sub>. In the TMA reaction, the methyl ligands can be eliminated and new Al-O bonds can be formed via ligand exchange reactions. In the H<sub>2</sub>O reaction, the methyl ligand on the surface can be further eliminated and new Al<img>O bonds can be formed. Meanwhile, the coupling reactions between the surface methyl and hydroxyl groups can further form new Al<img>O bonds and release CH<sub>4</sub> or H<sub>2</sub>O to densify the Al<sub>2</sub>O<sub>3</sub> film. These complicated reaction mechanisms of Al<sub>2</sub>O<sub>3</sub> H<sub>2</sub>O-based ALD can provide theoretical guidance for the precursor design and ALD growth of other oxides and aluminum-based compounds.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction of a two-dimensional crystalline MoO3 monolayer 还原二维晶体 MoO3 单层
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-22 DOI: 10.1016/j.susc.2024.122579

The atomic structure of MoOx films formed upon a gradual thermal reduction of an ordered MoO3 monolayer on the Pd(100) substrate was explored via surface science characterization techniques and density functional theory (DFT) calculations. Two main reduction stages were identified. First, the initial oxygen excess was gradually eliminated by altering the domain boundary length, orientation, and atomic structure. The films nevertheless remained O-rich, with numerous terminal oxygen atoms (formation of MoO groups), and an elevated work function. Second, multiple ordered O-lean phases were formed, characterized by either very few or no terminal oxygen atoms, and a much smaller surface work function. According to calculations, the positive charging of the Pd substrate stabilizes the oxygen excess during the first stage, but during the second reduction stage, the substrate becomes negatively charged, stabilizing enhanced cation oxidation states. On their basis, the mechanisms underlying the oxygen release from the initial c(2 × 2) domains were disclosed. The experiments showed that the film reduction is perfectly reversible, which highlights the very promising properties of the MoO3/Pd system for heterogeneous catalysis.

通过表面科学表征技术和密度泛函理论(DFT)计算,探索了有序氧化钼(MoO3)单层在钯(100)基底上逐渐热还原形成的氧化钼薄膜的原子结构。研究发现了两个主要的还原阶段。首先,通过改变畴界长度、取向和原子结构,逐渐消除了最初的氧过量。然而,薄膜仍然富含 O 原子,具有大量末端氧原子(形成 MoO 基团),功函数升高。其次,形成了多个有序的 O-lean 相,其特征是极少或没有末端氧原子,表面功函数小得多。根据计算,在第一阶段,钯基底的正电荷稳定了过剩的氧,但在第二还原阶段,基底变成了负电荷,稳定了增强的阳离子氧化态。在此基础上,揭示了氧从初始 c(2 × 2) 域释放的机制。实验表明,薄膜还原是完全可逆的,这凸显了 MoO3/Pd 系统在异相催化方面极具潜力的特性。
{"title":"Reduction of a two-dimensional crystalline MoO3 monolayer","authors":"","doi":"10.1016/j.susc.2024.122579","DOIUrl":"10.1016/j.susc.2024.122579","url":null,"abstract":"<div><p>The atomic structure of MoO<sub>x</sub> films formed upon a gradual thermal reduction of an ordered MoO<sub>3</sub> monolayer on the Pd(100) substrate was explored via surface science characterization techniques and density functional theory (DFT) calculations. Two main reduction stages were identified. First, the initial oxygen excess was gradually eliminated by altering the domain boundary length, orientation, and atomic structure. The films nevertheless remained O-rich, with numerous terminal oxygen atoms (formation of Mo<img>O groups), and an elevated work function. Second, multiple ordered O-lean phases were formed, characterized by either very few or no terminal oxygen atoms, and a much smaller surface work function. According to calculations, the positive charging of the Pd substrate stabilizes the oxygen excess during the first stage, but during the second reduction stage, the substrate becomes negatively charged, stabilizing enhanced cation oxidation states. On their basis, the mechanisms underlying the oxygen release from the initial c(2 × 2) domains were disclosed. The experiments showed that the film reduction is perfectly reversible, which highlights the very promising properties of the MoO<sub>3</sub>/Pd system for heterogeneous catalysis.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001304/pdfft?md5=1525d168946b789b4b9dc648b293aa1e&pid=1-s2.0-S0039602824001304-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption behavior of Cl2 on TiC0.89O0.11(001) surface based on the first principle calculation 基于第一原理计算的 Cl2 在 TiC0.89O0.11(001)表面的吸附行为
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-20 DOI: 10.1016/j.susc.2024.122577

Based on the first-principles ab initio calculation method of density functional theory (DFT), the adsorption models of Cl2 molecules on both the TiC0.89O0.11(001) intact surface and the carbon vacancy surface were established, followed by calculations and analysis of the adsorption structures, adsorption energy, differential charge density, and density of states (DOS). The results demonstrate that the adsorption process of Cl2 molecules on the TiC0.89O0.11(001) surface involves chemical adsorption, with a higher likelihood of dissociation into Cl atoms during adsorption. These dissociated Cl atoms can potentially interact with surface Ti and/or C atoms to form Ti-Cl bonds, C-Cl bonds, Ti-Cl-C bonds, and Ti-Cl-Ti bonds. Simultaneously, the stability of the adsorbed structure is influenced by both the bonding conditions between Cl atoms and surface atoms and the position of Cl atom adsorption (e.g., whether it is located above the vacancy C). Following adsorption, there is a weakening in the bonding strength of Ti-C or Ti-O bonds on the TiC0.89O0.11(001) surface. During the adsorption process, Cl atoms can either act as electron donors or acceptors. When the Ti-Cl bond structure is formed, Cl atoms function as electron acceptors; however, when the C-Cl bond structure is established, Cl atoms predominantly act as electron donors. Surface Ti atoms act as electron donors while surface C and O atoms function as electron acceptors. Additionally, the presence of surface carbon vacancy enhances the interaction between Cl and Ti atoms, weakens the interaction between Cl and C atoms, and attenuates the interaction between C, O, and Ti atoms in the structure. And it can augment the electron acquisition by Cl2 molecules upon adsorption, reduce the adsorption energy, and promote greater stability in the adsorption structure. All the effects contribute to facilitating TiCl4 formation.

基于密度泛函理论(DFT)的第一性原理ab initio计算方法,建立了Cl2分子在TiC0.89O0.11(001)完整表面和碳空位表面的吸附模型,并对吸附结构、吸附能、电荷差密度和状态密度(DOS)进行了计算和分析。结果表明,Cl2 分子在 TiC0.89O0.11(001)表面的吸附过程涉及化学吸附,在吸附过程中解离成 Cl 原子的可能性较大。这些解离的 Cl 原子有可能与表面的 Ti 原子和/或 C 原子相互作用,形成 Ti-Cl 键、C-Cl 键、Ti-Cl-C 键和 Ti-Cl-Ti 键。同时,吸附结构的稳定性受到 Cl 原子和表面原子之间的成键条件以及 Cl 原子吸附位置(如是否位于空缺 C 的上方)的影响。吸附后,TiC0.89O0.11(001) 表面上 Ti-C 或 Ti-O 键的结合强度会减弱。在吸附过程中,Cl 原子既可以充当电子供体,也可以充当电子受体。当形成 Ti-Cl 键结构时,Cl 原子充当电子受体;然而,当形成 C-Cl 键结构时,Cl 原子主要充当电子供体。表面 Ti 原子充当电子给体,而表面 C 原子和 O 原子则充当电子受体。此外,表面碳空位的存在增强了结构中 Cl 原子和 Ti 原子间的相互作用,减弱了 Cl 原子和 C 原子间的相互作用,削弱了 C、O 和 Ti 原子间的相互作用。此外,它还能增强 Cl2 分子在吸附时获得电子的能力,降低吸附能,提高吸附结构的稳定性。所有这些作用都有助于促进 TiCl4 的形成。
{"title":"Adsorption behavior of Cl2 on TiC0.89O0.11(001) surface based on the first principle calculation","authors":"","doi":"10.1016/j.susc.2024.122577","DOIUrl":"10.1016/j.susc.2024.122577","url":null,"abstract":"<div><p>Based on the first-principles ab initio calculation method of density functional theory (DFT), the adsorption models of Cl<sub>2</sub> molecules on both the TiC<sub>0.89</sub>O<sub>0.11</sub>(001) intact surface and the carbon vacancy surface were established, followed by calculations and analysis of the adsorption structures, adsorption energy, differential charge density, and density of states (DOS). The results demonstrate that the adsorption process of Cl<sub>2</sub> molecules on the TiC<sub>0.89</sub>O<sub>0.11</sub>(001) surface involves chemical adsorption, with a higher likelihood of dissociation into Cl atoms during adsorption. These dissociated Cl atoms can potentially interact with surface Ti and/or C atoms to form Ti-Cl bonds, C-Cl bonds, Ti-Cl-C bonds, and Ti-Cl-Ti bonds. Simultaneously, the stability of the adsorbed structure is influenced by both the bonding conditions between Cl atoms and surface atoms and the position of Cl atom adsorption (e.g., whether it is located above the vacancy C). Following adsorption, there is a weakening in the bonding strength of Ti-C or Ti-O bonds on the TiC<sub>0.89</sub>O<sub>0.11</sub>(001) surface. During the adsorption process, Cl atoms can either act as electron donors or acceptors. When the Ti-Cl bond structure is formed, Cl atoms function as electron acceptors; however, when the C-Cl bond structure is established, Cl atoms predominantly act as electron donors. Surface Ti atoms act as electron donors while surface C and O atoms function as electron acceptors. Additionally, the presence of surface carbon vacancy enhances the interaction between Cl and Ti atoms, weakens the interaction between Cl and C atoms, and attenuates the interaction between C, O, and Ti atoms in the structure. And it can augment the electron acquisition by Cl<sub>2</sub> molecules upon adsorption, reduce the adsorption energy, and promote greater stability in the adsorption structure. All the effects contribute to facilitating TiCl<sub>4</sub> formation.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001286/pdfft?md5=52d5402f1dbddadac167e3e94a29a84d&pid=1-s2.0-S0039602824001286-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the interaction of nitrobenzene and the Ag(111) surface: A DFT study 深入了解硝基苯与 Ag(111) 表面的相互作用:DFT 研究
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-17 DOI: 10.1016/j.susc.2024.122578

This study explores the potential of nitrobenzene as an anolyte material for nonaqueous redox flow batteries (RFBs) by theoretically examining its low-coverage adsorption behavior on neutral and charged Ag(111) model electrode surfaces. At the low coverage limit, DFT calculations show a preference for nitrobenzene to adsorb parallel to the surface, with the benzene ring and nitro group centered over HCP sites. Interactions between nitrobenzene and the surface were analyzed using induced charge density analysis, Bader charge analysis, and projected density of states (PDOS). It was found that nitrobenzene adsorbs primarily through van der Waals interactions with the surface. As nitrobenzene accumulates negative charge, the strength of adsorption diminishes. Understanding the electrode-electrolyte interface is crucial for enhancing RFB electrochemical performance, and this study sheds light on nitrobenzene's interaction with a model Ag electrode.

本研究通过理论研究硝基苯在中性和带电 Ag(111) 模型电极表面上的低覆盖吸附行为,探讨了硝基苯作为非水氧化还原液流电池 (RFB) 的电解质材料的潜力。在低覆盖极限时,DFT 计算显示硝基苯倾向于平行于表面吸附,苯环和硝基位于 HCP 位点的中心。利用诱导电荷密度分析、Bader 电荷分析和预测状态密度 (PDOS) 分析了硝基苯与表面之间的相互作用。研究发现,硝基苯主要通过与表面的范德华相互作用来吸附。随着硝基苯负电荷的积累,吸附强度逐渐减弱。了解电极-电解质界面对于提高 RFB 电化学性能至关重要,本研究揭示了硝基苯与模型银电极的相互作用。
{"title":"Insights into the interaction of nitrobenzene and the Ag(111) surface: A DFT study","authors":"","doi":"10.1016/j.susc.2024.122578","DOIUrl":"10.1016/j.susc.2024.122578","url":null,"abstract":"<div><p>This study explores the potential of nitrobenzene as an anolyte material for nonaqueous redox flow batteries (RFBs) by theoretically examining its low-coverage adsorption behavior on neutral and charged Ag(111) model electrode surfaces. At the low coverage limit, DFT calculations show a preference for nitrobenzene to adsorb parallel to the surface, with the benzene ring and nitro group centered over HCP sites. Interactions between nitrobenzene and the surface were analyzed using induced charge density analysis, Bader charge analysis, and projected density of states (PDOS). It was found that nitrobenzene adsorbs primarily through van der Waals interactions with the surface. As nitrobenzene accumulates negative charge, the strength of adsorption diminishes. Understanding the electrode-electrolyte interface is crucial for enhancing RFB electrochemical performance, and this study sheds light on nitrobenzene's interaction with a model Ag electrode.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Surface Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1