首页 > 最新文献

Structure最新文献

英文 中文
Three-dimensional structures of Vibrio cholerae typing podophage VP1 in two states 霍乱弧菌分型荚膜 VP1 在两种状态下的三维结构
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1016/j.str.2024.10.005
Hao Pang, Fenxia Fan, Jing Zheng, Hao Xiao, Zhixue Tan, Jingdong Song, Biao Kan, Hongrong Liu
Lytic podophages (VP1–VP5) play crucial roles in subtyping Vibrio cholerae O1 biotype El Tor. However, until now no structures of these phages have been available, which hindered our understanding of the molecular mechanisms of infection and DNA release. Here, we determined the cryoelectron microscopy (cryo-EM) structures of mature and DNA-ejected VP1 structures at near-atomic and subnanometer resolutions, respectively. The VP1 head is composed of 415 copies of the major capsid protein gp7 and 11 turret-shaped spikes. The VP1 tail consists of an adapter, a nozzle, a slender ring, and a tail needle, and is flanked by three extended fibers I and six trimeric fibers II. Conformational changes of fiber II in DNA-ejected VP1 may cause the release of the tail needle and core proteins, forming an elongated tail channel. Our structures provide insights into the molecular mechanisms of infection and DNA release for podophages with a tail needle.
溶解性荚膜噬菌体(VP1-VP5)在霍乱弧菌 O1 生物型 El Tor 的亚型鉴定中起着至关重要的作用。然而,到目前为止,这些噬菌体还没有任何结构,这阻碍了我们对感染和 DNA 释放的分子机制的了解。在这里,我们用冷冻电子显微镜(cryo-EM)测定了成熟的 VP1 结构和 DNA 释放的 VP1 结构,其分辨率分别接近原子和亚纳米。VP1 头部由 415 个拷贝的主要帽状蛋白 gp7 和 11 个塔形尖峰组成。VP1 尾部由一个适配器、一个喷嘴、一个细长的环和一个尾针组成,两侧是三个延伸纤维 I 和六个三聚体纤维 II。在 DNA 射出的 VP1 中,纤维 II 的构象变化可能会导致尾针和核心蛋白的释放,从而形成一个拉长的尾部通道。我们的结构让我们了解了带有尾针的荚膜病毒感染和 DNA 释放的分子机制。
{"title":"Three-dimensional structures of Vibrio cholerae typing podophage VP1 in two states","authors":"Hao Pang, Fenxia Fan, Jing Zheng, Hao Xiao, Zhixue Tan, Jingdong Song, Biao Kan, Hongrong Liu","doi":"10.1016/j.str.2024.10.005","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.005","url":null,"abstract":"Lytic podophages (VP1–VP5) play crucial roles in subtyping <em>Vibrio cholerae</em> O1 biotype El Tor. However, until now no structures of these phages have been available, which hindered our understanding of the molecular mechanisms of infection and DNA release. Here, we determined the cryoelectron microscopy (cryo-EM) structures of mature and DNA-ejected VP1 structures at near-atomic and subnanometer resolutions, respectively. The VP1 head is composed of 415 copies of the major capsid protein gp7 and 11 turret-shaped spikes. The VP1 tail consists of an adapter, a nozzle, a slender ring, and a tail needle, and is flanked by three extended fibers I and six trimeric fibers II. Conformational changes of fiber II in DNA-ejected VP1 may cause the release of the tail needle and core proteins, forming an elongated tail channel. Our structures provide insights into the molecular mechanisms of infection and DNA release for podophages with a tail needle.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"101 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural requirements for the specific binding of CRABP2 to cyclin D3 CRABP2 与细胞周期蛋白 D3 特异性结合的结构要求
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-26 DOI: 10.1016/j.str.2024.10.027
Martyna W. Pastok, Charles W.E. Tomlinson, Shannon Turberville, Abbey M. Butler, Arnaud Baslé, Martin E.M. Noble, Jane A. Endicott, Ehmke Pohl, Natalie J. Tatum
(Structure 32, 1–15; December 5, 2024)
(结构 32,1-15;2024 年 12 月 5 日)
{"title":"Structural requirements for the specific binding of CRABP2 to cyclin D3","authors":"Martyna W. Pastok, Charles W.E. Tomlinson, Shannon Turberville, Abbey M. Butler, Arnaud Baslé, Martin E.M. Noble, Jane A. Endicott, Ehmke Pohl, Natalie J. Tatum","doi":"10.1016/j.str.2024.10.027","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.027","url":null,"abstract":"(Structure <em>32</em>, 1–15; December 5, 2024)","PeriodicalId":22168,"journal":{"name":"Structure","volume":"14 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ANTIPASTI: Interpretable prediction of antibody binding affinity exploiting normal modes and deep learning ANTIPASTI:利用正常模式和深度学习对抗体结合亲和力进行可解释的预测
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-25 DOI: 10.1016/j.str.2024.10.001
Kevin Michalewicz, Mauricio Barahona, Barbara Bravi
The high binding affinity of antibodies toward their cognate targets is key to eliciting effective immune responses, as well as to the use of antibodies as research and therapeutic tools. Here, we propose ANTIPASTI, a convolutional neural network model that achieves state-of-the-art performance in the prediction of antibody binding affinity using as input a representation of antibody-antigen structures in terms of normal mode correlation maps derived from elastic network models. This representation captures not only structural features but energetic patterns of local and global residue fluctuations. The learnt representations are interpretable: they reveal similarities of binding patterns among antibodies targeting the same antigen type, and can be used to quantify the importance of antibody regions contributing to binding affinity. Our results show the importance of the antigen imprint in the normal mode landscape, and the dominance of cooperative effects and long-range correlations between antibody regions to determine binding affinity.
抗体与其同源靶点的高结合亲和力是激发有效免疫反应以及将抗体用作研究和治疗工具的关键。在这里,我们提出了一种卷积神经网络模型 ANTIPASTI,该模型在预测抗体结合亲和力方面达到了最先进的水平,其输入数据是根据弹性网络模型得出的正态相关图表示的抗体-抗原结构。这种表征不仅能捕捉结构特征,还能捕捉局部和全局残基波动的能量模式。学习到的表征是可解释的:它们揭示了针对相同抗原类型的抗体之间结合模式的相似性,并可用于量化对结合亲和力有贡献的抗体区域的重要性。我们的研究结果表明了抗原印记在正常模式景观中的重要性,以及抗体区域之间的合作效应和长程相关性在决定结合亲和力方面的主导地位。
{"title":"ANTIPASTI: Interpretable prediction of antibody binding affinity exploiting normal modes and deep learning","authors":"Kevin Michalewicz, Mauricio Barahona, Barbara Bravi","doi":"10.1016/j.str.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.001","url":null,"abstract":"The high binding affinity of antibodies toward their cognate targets is key to eliciting effective immune responses, as well as to the use of antibodies as research and therapeutic tools. Here, we propose ANTIPASTI, a convolutional neural network model that achieves state-of-the-art performance in the prediction of antibody binding affinity using as input a representation of antibody-antigen structures in terms of normal mode correlation maps derived from elastic network models. This representation captures not only structural features but energetic patterns of local and global residue fluctuations. The learnt representations are interpretable: they reveal similarities of binding patterns among antibodies targeting the same antigen type, and can be used to quantify the importance of antibody regions contributing to binding affinity. Our results show the importance of the antigen imprint in the normal mode landscape, and the dominance of cooperative effects and long-range correlations between antibody regions to determine binding affinity.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"194 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting cryo-EM structures of actomyosin-5a to reveal the physical properties of its lever 利用肌动蛋白-5a 的低温电子显微镜结构揭示其杠杆的物理特性
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-24 DOI: 10.1016/j.str.2024.09.025
Molly S.C. Gravett, David P. Klebl, Oliver G. Harlen, Daniel J. Read, Stephen P. Muench, Sarah A. Harris, Michelle Peckham
Myosin 5a (Myo5a) is a dimeric processive motor protein that transports cellular cargos along filamentous actin (F-actin). Its long lever is responsible for its large power-stroke, step size, and load-bearing ability. Little is known about the levers’ structure and physical properties, and how they contribute to walking mechanics. Using cryoelectron microscopy (cryo-EM) and molecular dynamics (MD) simulations, we resolved the structure of monomeric Myo5a, comprising the motor domain and full-length lever, bound to F-actin. The range of its lever conformations revealed its physical properties, how stiffness varies along its length and predicts a large, 35 nm, working stroke. Thus, the newly released trail head in a dimeric Myo5a would only need to perform a small diffusive search for its new binding site on F-actin, and stress would only be generated across the dimer once phosphate is released from the lead head, revealing new insight into the walking behavior of Myo5a.
肌球蛋白 5a(Myo5a)是一种二聚体过程运动蛋白,可沿着丝状肌动蛋白(F-actin)运输细胞货物。肌球蛋白 5a 的长杠杆使其具有较大的动力冲程、步长和承载能力。人们对杠杆的结构和物理性质以及它们如何对行走机械做出贡献知之甚少。利用冷冻电镜(cryo-EM)和分子动力学(MD)模拟,我们解析了与F-肌动蛋白结合的Myo5a单体结构,包括马达结构域和全长杠杆。其杠杆构象的范围揭示了它的物理特性、刚度如何沿其长度变化,并预测了一个大的、35 nm 的工作冲程。因此,二聚体Myo5a中新释放的踪迹头只需在F-肌动蛋白上对其新的结合位点进行少量的扩散搜索,只有当磷酸从踪迹头释放后,二聚体中才会产生应力,这揭示了Myo5a行走行为的新见解。
{"title":"Exploiting cryo-EM structures of actomyosin-5a to reveal the physical properties of its lever","authors":"Molly S.C. Gravett, David P. Klebl, Oliver G. Harlen, Daniel J. Read, Stephen P. Muench, Sarah A. Harris, Michelle Peckham","doi":"10.1016/j.str.2024.09.025","DOIUrl":"https://doi.org/10.1016/j.str.2024.09.025","url":null,"abstract":"Myosin 5a (Myo5a) is a dimeric processive motor protein that transports cellular cargos along filamentous actin (F-actin). Its long lever is responsible for its large power-stroke, step size, and load-bearing ability. Little is known about the levers’ structure and physical properties, and how they contribute to walking mechanics. Using cryoelectron microscopy (cryo-EM) and molecular dynamics (MD) simulations, we resolved the structure of monomeric Myo5a, comprising the motor domain and full-length lever, bound to F-actin. The range of its lever conformations revealed its physical properties, how stiffness varies along its length and predicts a large, 35 nm, working stroke. Thus, the newly released trail head in a dimeric Myo5a would only need to perform a small diffusive search for its new binding site on F-actin, and stress would only be generated across the dimer once phosphate is released from the lead head, revealing new insight into the walking behavior of Myo5a.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"40 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mechanism of allosteric activation of SYK kinase derived from multiple phospho-ITAM-bound structures 从多个磷酸-ITAM 结合结构得出的 SYK 激酶异位激活机制
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-22 DOI: 10.1016/j.str.2024.09.024
William J. Bradshaw, Gemma Harris, Opher Gileadi, Vittorio L. Katis
Spleen tyrosine kinase (SYK) is central to adaptive and innate immune signaling. It features a regulatory region containing tandem SH2 (tSH2) domains separated by a helical “hinge” segment keeping SYK inactive by associating with the kinase domain. SYK activation is triggered when the tSH2 domains bind to a phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) found on receptor tails. Past mutational studies have indicated that ITAM binding disrupts the hinge-kinase interaction, leading to SYK phosphorylation and activation. However, the mechanism of this process is unclear, as the ITAM interaction occurs far from the hinge region. We have determined crystal structures of three phospho-ITAMs in complex with the tSH2 domains, revealing a highly conserved binding mechanism. These structures, together with mutational studies and biophysical analyses, reveal that phospho-ITAM binding restricts SH2 domain movement and causes allosteric changes in the hinge region. These changes are not compatible with the association of the kinase domain, leading to kinase activation.
脾酪氨酸激酶(SYK)是适应性免疫和先天性免疫信号传导的核心。它的调节区包含串联 SH2(tSH2)结构域,由螺旋 "铰链 "区段分隔,通过与激酶结构域结合保持 SYK 的非活性。当 tSH2 结构域与受体尾部的磷酸化免疫受体酪氨酸激活基团(ITAM)结合时,就会触发 SYK 激活。过去的突变研究表明,ITAM 结合会破坏铰链与激酶的相互作用,导致 SYK 磷酸化和激活。然而,这一过程的机制尚不清楚,因为 ITAM 的相互作用发生在远离铰链区的地方。我们测定了三种磷酸化 ITAM 与 tSH2 结构域复合物的晶体结构,揭示了一种高度保守的结合机制。这些结构以及突变研究和生物物理分析表明,磷酸化 ITAM 结合会限制 SH2 结构域的移动,并导致铰链区的异构变化。这些变化与激酶结构域的结合不相容,从而导致激酶活化。
{"title":"The mechanism of allosteric activation of SYK kinase derived from multiple phospho-ITAM-bound structures","authors":"William J. Bradshaw, Gemma Harris, Opher Gileadi, Vittorio L. Katis","doi":"10.1016/j.str.2024.09.024","DOIUrl":"https://doi.org/10.1016/j.str.2024.09.024","url":null,"abstract":"Spleen tyrosine kinase (SYK) is central to adaptive and innate immune signaling. It features a regulatory region containing tandem SH2 (tSH2) domains separated by a helical “hinge” segment keeping SYK inactive by associating with the kinase domain. SYK activation is triggered when the tSH2 domains bind to a phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) found on receptor tails. Past mutational studies have indicated that ITAM binding disrupts the hinge-kinase interaction, leading to SYK phosphorylation and activation. However, the mechanism of this process is unclear, as the ITAM interaction occurs far from the hinge region. We have determined crystal structures of three phospho-ITAMs in complex with the tSH2 domains, revealing a highly conserved binding mechanism. These structures, together with mutational studies and biophysical analyses, reveal that phospho-ITAM binding restricts SH2 domain movement and causes allosteric changes in the hinge region. These changes are not compatible with the association of the kinase domain, leading to kinase activation.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"67 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the distinct membrane targeting mechanisms of WDR91 family proteins 深入了解 WDR91 家族蛋白的不同膜靶向机制
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-18 DOI: 10.1016/j.str.2024.09.023
Xinli Ma, Jian Li, Nan Liu, Surajit Banerjee, Xiaotong Hu, Xiaoyu Wang, Jianshu Dong, Kangdong Liu, Chonglin Yang, Zigang Dong
WDR91 and SORF1, members of the WD repeat-containing protein 91 family, control phosphoinositide conversion by inhibiting phosphatidylinositol 3-kinase activity on endosomes, which promotes endosome maturation. Here, we report the crystal structure of the human WDR91 WD40 domain complexed with Rab7 that has an unusual interface at the C-terminus of the Rab7 switch II region. WDR91 is highly selective for Rab7 among the tested GTPases. A LIS1 homology (LisH) motif within the WDR91 N-terminal domain (NTD) mediates self-association and may contribute partly to the augmented interaction between full-length WDR91 and Rab7. Both the Rab7 binding site and the LisH motif are indispensable for WDR91 function in endocytic trafficking. For the WDR91 orthologue SORF1 lacking the C-terminal WD40 domain, a C-terminal amphipathic helix (AH) mediates strong interactions with liposomes containing acidic lipids. During evolution the human WDR91 ancestor gene might have acquired a WD40 domain to replace the AH for endosomal membrane targeting.
WDR91 和 SORF1 是含 WD 重复蛋白 91 家族的成员,它们通过抑制内体上磷脂酰肌醇 3- 激酶的活性来控制磷脂酰肌醇的转化,从而促进内体的成熟。在这里,我们报告了人类 WDR91 WD40 结构域与 Rab7 复合物的晶体结构,该结构域在 Rab7 开关 II 区域的 C 端有一个不寻常的界面。在测试的 GTPases 中,WDR91 对 Rab7 具有高度选择性。WDR91 N-末端结构域(NTD)中的一个 LIS1 同源(LisH)基团介导了自结合,并可能部分导致了全长 WDR91 与 Rab7 之间的相互作用增强。Rab7结合位点和LisH基序对于WDR91在内吞转中的功能都是不可或缺的。对于缺乏 C 端 WD40 结构域的 WDR91 同源物 SORF1 而言,C 端两性螺旋(AH)介导了与含有酸性脂质的脂质体的强烈相互作用。在进化过程中,人类 WDR91 祖先基因可能获得了一个 WD40 结构域,以取代 AH 进行内体膜靶向。
{"title":"Insights into the distinct membrane targeting mechanisms of WDR91 family proteins","authors":"Xinli Ma, Jian Li, Nan Liu, Surajit Banerjee, Xiaotong Hu, Xiaoyu Wang, Jianshu Dong, Kangdong Liu, Chonglin Yang, Zigang Dong","doi":"10.1016/j.str.2024.09.023","DOIUrl":"https://doi.org/10.1016/j.str.2024.09.023","url":null,"abstract":"WDR91 and SORF1, members of the WD repeat-containing protein 91 family, control phosphoinositide conversion by inhibiting phosphatidylinositol 3-kinase activity on endosomes, which promotes endosome maturation. Here, we report the crystal structure of the human WDR91 WD40 domain complexed with Rab7 that has an unusual interface at the C-terminus of the Rab7 switch II region. WDR91 is highly selective for Rab7 among the tested GTPases. A LIS1 homology (LisH) motif within the WDR91 N-terminal domain (NTD) mediates self-association and may contribute partly to the augmented interaction between full-length WDR91 and Rab7. Both the Rab7 binding site and the LisH motif are indispensable for WDR91 function in endocytic trafficking. For the WDR91 orthologue SORF1 lacking the C-terminal WD40 domain, a C-terminal amphipathic helix (AH) mediates strong interactions with liposomes containing acidic lipids. During evolution the human WDR91 ancestor gene might have acquired a WD40 domain to replace the AH for endosomal membrane targeting.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"11 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural insights into the DNA-binding mechanism of BCL11A: The integral role of ZnF6 对 BCL11A DNA 结合机制的结构性认识:ZnF6 的重要作用
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-17 DOI: 10.1016/j.str.2024.09.022
Thibault Viennet, Maolu Yin, Abhilash Jayaraj, Woojin Kim, Zhen-Yu J. Sun, Yuko Fujiwara, Kevin Zhang, Davide Seruggia, Hyuk-Soo Seo, Sirano Dhe-Paganon, Stuart H. Orkin, Haribabu Arthanari
The transcription factor BCL11A is a critical regulator of the switch from fetal hemoglobin (HbF: α2γ2) to adult hemoglobin (HbA: α2β2) during development. BCL11A binds at a cognate recognition site (TGACCA) in the γ-globin gene promoter and represses its expression. DNA-binding is mediated by a triple zinc finger domain, designated ZnF456. Here, we report comprehensive investigation of ZnF456, leveraging X-ray crystallography and NMR to determine the structures in both the presence and absence of DNA. We delve into the dynamics and mode of interaction with DNA. Moreover, we discovered that the last zinc finger of BCL11A (ZnF6) plays a different role compared to ZnF4 and 5, providing a positive entropic contribution to DNA binding and γ-globin gene repression. Comprehending the DNA binding mechanism of BCL11A opens avenues for the strategic, structure-based design of novel therapeutics targeting sickle cell disease and β-thalassemia.
转录因子 BCL11A 是发育过程中胎儿血红蛋白(HbF:α2γ2)向成人血红蛋白(HbA:α2β2)转换的关键调节因子。BCL11A 与γ-球蛋白基因启动子中的一个同源识别位点(TGACCA)结合,并抑制其表达。DNA 结合由一个三重锌指结构域(命名为 ZnF456)介导。在此,我们报告了对 ZnF456 的全面研究,利用 X 射线晶体学和核磁共振确定了其在 DNA 存在和不存在的情况下的结构。我们深入研究了 ZnF456 与 DNA 的相互作用动力学和模式。此外,我们发现 BCL11A 的最后一个锌指(ZnF6)与 ZnF4 和 5 的作用不同,它对 DNA 结合和γ-球蛋白基因抑制有正熵贡献。了解了 BCL11A 的 DNA 结合机制,就为针对镰状细胞病和β-地中海贫血症设计基于结构的新型疗法开辟了道路。
{"title":"Structural insights into the DNA-binding mechanism of BCL11A: The integral role of ZnF6","authors":"Thibault Viennet, Maolu Yin, Abhilash Jayaraj, Woojin Kim, Zhen-Yu J. Sun, Yuko Fujiwara, Kevin Zhang, Davide Seruggia, Hyuk-Soo Seo, Sirano Dhe-Paganon, Stuart H. Orkin, Haribabu Arthanari","doi":"10.1016/j.str.2024.09.022","DOIUrl":"https://doi.org/10.1016/j.str.2024.09.022","url":null,"abstract":"The transcription factor BCL11A is a critical regulator of the switch from fetal hemoglobin (HbF: α<sub>2</sub>γ<sub>2</sub>) to adult hemoglobin (HbA: α<sub>2</sub>β<sub>2</sub>) during development. BCL11A binds at a cognate recognition site (TGACCA) in the γ-globin gene promoter and represses its expression. DNA-binding is mediated by a triple zinc finger domain, designated ZnF456. Here, we report comprehensive investigation of ZnF456, leveraging X-ray crystallography and NMR to determine the structures in both the presence and absence of DNA. We delve into the dynamics and mode of interaction with DNA. Moreover, we discovered that the last zinc finger of BCL11A (ZnF6) plays a different role compared to ZnF4 and 5, providing a positive entropic contribution to DNA binding and γ-globin gene repression. Comprehending the DNA binding mechanism of BCL11A opens avenues for the strategic, structure-based design of novel therapeutics targeting sickle cell disease and β-thalassemia.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"21 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATTRv-V30M amyloid fibrils from heart and nerves exhibit structural homogeneity 来自心脏和神经的 ATTRv-V30M 淀粉样蛋白纤维在结构上具有同质性
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-17 DOI: 10.1016/j.str.2024.09.021
Binh An Nguyen, Shumaila Afrin, Anna Yakubovska, Virender Singh, Rose Pedretti, Parker Bassett, Maja Pekala, Jaime Vaquer Alicea, Peter Kunach, Lanie Wang, Andrew Lemoff, Barbara Kluve-Beckerman, Lorena Saelices
Amyloidogenic transthyretin (ATTR) amyloidosis is a systemic disease characterized by the deposition of amyloid fibrils made of transthyretin. Transthyretin is primarily produced in tetrameric form by the liver, but also by retinal epithelium and choroid plexus. The deposition of these fibrils in the myocardium and peripheral nerves causes cardiomyopathies and neuropathies, respectively. Using cryoelectron microscopy (cryo-EM), we investigated fibrils extracted from cardiac and nerve tissues of an ATTRv-V30M patient. We found consistent fibril structures from both tissues, similar to cardiac fibrils previously described, but different from vitreous humor fibrils of the same genotype. Our findings, along with previous ATTR fibrils structural studies, suggest a uniform fibrillar architecture across different tissues when transthyretin originates from the liver. This study advances our understanding of how deposition and production sites influence fibril structure in ATTRv-V30M amyloidosis.
淀粉样变性转甲状腺素(ATTR)淀粉样变性病是一种以转甲状腺素淀粉样纤维沉积为特征的全身性疾病。转甲状腺素主要由肝脏以四聚体形式产生,视网膜上皮和脉络丛也会产生。这些纤维沉积在心肌和周围神经中,分别导致心肌病和神经病。我们使用冷冻电子显微镜(cryo-EM)研究了从一名 ATTRv-V30M 患者的心脏和神经组织中提取的纤维。我们从这两种组织中发现了一致的纤维结构,与之前描述的心脏纤维相似,但与同一基因型的玻璃体纤维不同。我们的发现以及之前的 ATTR 纤维结构研究表明,当转甲状腺素来源于肝脏时,不同组织的纤维结构是一致的。这项研究加深了我们对 ATTRv-V30M 淀粉样变性中沉积和生成部位如何影响纤维结构的理解。
{"title":"ATTRv-V30M amyloid fibrils from heart and nerves exhibit structural homogeneity","authors":"Binh An Nguyen, Shumaila Afrin, Anna Yakubovska, Virender Singh, Rose Pedretti, Parker Bassett, Maja Pekala, Jaime Vaquer Alicea, Peter Kunach, Lanie Wang, Andrew Lemoff, Barbara Kluve-Beckerman, Lorena Saelices","doi":"10.1016/j.str.2024.09.021","DOIUrl":"https://doi.org/10.1016/j.str.2024.09.021","url":null,"abstract":"Amyloidogenic transthyretin (ATTR) amyloidosis is a systemic disease characterized by the deposition of amyloid fibrils made of transthyretin. Transthyretin is primarily produced in tetrameric form by the liver, but also by retinal epithelium and choroid plexus. The deposition of these fibrils in the myocardium and peripheral nerves causes cardiomyopathies and neuropathies, respectively. Using cryoelectron microscopy (cryo-EM), we investigated fibrils extracted from cardiac and nerve tissues of an ATTRv-V30M patient. We found consistent fibril structures from both tissues, similar to cardiac fibrils previously described, but different from vitreous humor fibrils of the same genotype. Our findings, along with previous ATTR fibrils structural studies, suggest a uniform fibrillar architecture across different tissues when transthyretin originates from the liver. This study advances our understanding of how deposition and production sites influence fibril structure in ATTRv-V30M amyloidosis.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"32 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ribosome-inactivation by a class of widely distributed C-tail anchored membrane proteins 一类广泛分布的 C 尾锚定膜蛋白的核糖体失活作用
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-16 DOI: 10.1016/j.str.2024.09.019
Robert Karari Njenga, Julian Boele, Friedel Drepper, Kasturica Sinha, Eirini Marouda, Pitter F. Huesgen, Crysten Blaby-Haas, Hans-Georg Koch
Ribosome hibernation is a commonly used strategy that protects ribosomes under unfavorable conditions and regulates developmental processes. Multiple ribosome-hibernation factors have been identified in all domains of life, but due to their structural diversity and the lack of a common inactivation mechanism, it is currently unknown how many different hibernation factors exist. Here, we show that the YqjD/ElaB/YgaM paralogs, initially discovered as membrane-bound ribosome binding proteins in E. coli, constitute an abundant class of ribosome-hibernating proteins, which are conserved across all proteobacteria and some other bacterial phyla. Our data demonstrate that they inhibit in vitro protein synthesis by interacting with the 50S ribosomal subunit. In vivo cross-linking combined with mass spectrometry revealed their specific interactions with proteins surrounding the ribosomal tunnel exit and even their penetration into the ribosomal tunnel. Thus, YqjD/ElaB/YgaM inhibit translation by blocking the ribosomal tunnel and thus mimic the activity of antimicrobial peptides and macrolide antibiotics.
核糖体冬眠是一种常用策略,可在不利条件下保护核糖体并调节发育过程。在生命的所有领域中都发现了多种核糖体冬眠因子,但由于其结构的多样性和缺乏共同的失活机制,目前还不知道存在多少种不同的冬眠因子。在这里,我们发现 YqjD/ElaB/YgaM 旁系亲属最初是作为膜结合核糖体结合蛋白在大肠杆菌中被发现的,它们构成了一类丰富的核糖体冬眠蛋白,在所有蛋白细菌和其他一些细菌门中都是保守的。我们的数据表明,它们通过与 50S 核糖体亚基相互作用来抑制体外蛋白质合成。体内交联结合质谱分析表明,它们与核糖体隧道出口周围的蛋白质发生了特异性相互作用,甚至渗透到核糖体隧道中。因此,YqjD/ElaB/YgaM 通过阻断核糖体隧道抑制翻译,从而模拟抗菌肽和大环内酯类抗生素的活性。
{"title":"Ribosome-inactivation by a class of widely distributed C-tail anchored membrane proteins","authors":"Robert Karari Njenga, Julian Boele, Friedel Drepper, Kasturica Sinha, Eirini Marouda, Pitter F. Huesgen, Crysten Blaby-Haas, Hans-Georg Koch","doi":"10.1016/j.str.2024.09.019","DOIUrl":"https://doi.org/10.1016/j.str.2024.09.019","url":null,"abstract":"Ribosome hibernation is a commonly used strategy that protects ribosomes under unfavorable conditions and regulates developmental processes. Multiple ribosome-hibernation factors have been identified in all domains of life, but due to their structural diversity and the lack of a common inactivation mechanism, it is currently unknown how many different hibernation factors exist. Here, we show that the YqjD/ElaB/YgaM paralogs, initially discovered as membrane-bound ribosome binding proteins in <em>E. coli</em>, constitute an abundant class of ribosome-hibernating proteins, which are conserved across all proteobacteria and some other bacterial phyla. Our data demonstrate that they inhibit <em>in vitro</em> protein synthesis by interacting with the 50S ribosomal subunit. <em>In vivo</em> cross-linking combined with mass spectrometry revealed their specific interactions with proteins surrounding the ribosomal tunnel exit and even their penetration into the ribosomal tunnel. Thus, YqjD/ElaB/YgaM inhibit translation by blocking the ribosomal tunnel and thus mimic the activity of antimicrobial peptides and macrolide antibiotics.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"13 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural requirements for the specific binding of CRABP2 to cyclin D3 CRABP2 与细胞周期蛋白 D3 特异性结合的结构要求
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-16 DOI: 10.1016/j.str.2024.09.020
Martyna W. Pastok, Charles W.E. Tomlinson, Shannon Turberville, Abbey M. Butler, Arnaud Baslé, Martin E.M. Noble, Jane A. Endicott, Ehmke Pohl, Natalie J. Tatum
Cellular retinoic acid binding protein 2 (CRABP2) transports retinoic acid from the cytoplasm to the nucleus where it then transfers its cargo to retinoic acid receptor-containing complexes leading to activation of gene transcription. We demonstrate using purified proteins that CRABP2 is also a cyclin D3-specific binding protein and that the CRABP2 cyclin D3 binding site and the proposed CRABP2 nuclear localization sequence overlap. Both sequences are within the helix-loop-helix motif that forms a lid to the retinoic acid binding pocket. Mutations within this sequence that block both cyclin D3 and retinoic acid binding promote formation of a CRABP2 structure in which the retinoic acid binding pocket is occupied by an alternative lid conformation. Structural and functional analysis of CRABP2 and cyclin D3 mutants combined with AlphaFold models of the ternary CDK4/6-cyclin D3-CRABP2 complex supports the identification of an α-helical protein binding site on the cyclin D3 C-terminal cyclin box fold.
细胞视黄酸结合蛋白 2(CRABP2)将视黄酸从细胞质转运至细胞核,然后将其货物转运至含有视黄酸受体的复合物,从而激活基因转录。我们利用纯化的蛋白质证明,CRABP2 也是一种细胞周期蛋白 D3 特异性结合蛋白,而且 CRABP2 的细胞周期蛋白 D3 结合位点与提出的 CRABP2 核定位序列重叠。这两个序列都位于螺旋-环-螺旋基团内,该基团形成了维甲酸结合口袋的盖子。该序列中的突变会阻止细胞周期蛋白 D3 和视黄酸的结合,从而促进 CRABP2 结构的形成,在这种结构中,视黄酸结合袋被另一种盖构象所占据。对 CRABP2 和细胞周期蛋白 D3 突变体的结构和功能分析,结合 CDK4/6- 细胞周期蛋白 D3-CRABP2 三元复合物的 AlphaFold 模型,支持在细胞周期蛋白 D3 C 端细胞周期蛋白盒折叠上确定一个 α 螺旋蛋白结合位点。
{"title":"Structural requirements for the specific binding of CRABP2 to cyclin D3","authors":"Martyna W. Pastok, Charles W.E. Tomlinson, Shannon Turberville, Abbey M. Butler, Arnaud Baslé, Martin E.M. Noble, Jane A. Endicott, Ehmke Pohl, Natalie J. Tatum","doi":"10.1016/j.str.2024.09.020","DOIUrl":"https://doi.org/10.1016/j.str.2024.09.020","url":null,"abstract":"Cellular retinoic acid binding protein 2 (CRABP2) transports retinoic acid from the cytoplasm to the nucleus where it then transfers its cargo to retinoic acid receptor-containing complexes leading to activation of gene transcription. We demonstrate using purified proteins that CRABP2 is also a cyclin D3-specific binding protein and that the CRABP2 cyclin D3 binding site and the proposed CRABP2 nuclear localization sequence overlap. Both sequences are within the helix-loop-helix motif that forms a lid to the retinoic acid binding pocket. Mutations within this sequence that block both cyclin D3 and retinoic acid binding promote formation of a CRABP2 structure in which the retinoic acid binding pocket is occupied by an alternative lid conformation. Structural and functional analysis of CRABP2 and cyclin D3 mutants combined with AlphaFold models of the ternary CDK4/6-cyclin D3-CRABP2 complex supports the identification of an α-helical protein binding site on the cyclin D3 C-terminal cyclin box fold.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"59 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Structure
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1