首页 > 最新文献

Structure最新文献

英文 中文
PB-GPT: An innovative GPT-based model for protein backbone generation PB-GPT:基于 GPT 的创新型蛋白质骨架生成模型
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-21 DOI: 10.1016/j.str.2024.07.016
Xiaoping Min, Yiyang Liao, Xiao Chen, Qianli Yang, Junjie Ying, Jiajun Zou, Chongzhou Yang, Jun Zhang, Shengxiang Ge, Ningshao Xia

With advanced computational methods, it is now feasible to modify or design proteins for specific functions, a process with significant implications for disease treatment and other medical applications. Protein structures and functions are intrinsically linked to their backbones, making the design of these backbones a pivotal aspect of protein engineering. In this study, we focus on the task of unconditionally generating protein backbones. By means of codebook quantization and compression dictionaries, we convert protein backbone structures into a distinctive coded language and propose a GPT-based protein backbone generation model, PB-GPT. To validate the generalization performance of the model, we trained and evaluated the model on both public datasets and small protein datasets. The results demonstrate that our model has the capability to unconditionally generate elaborate, highly realistic protein backbones with structural patterns resembling those of natural proteins, thus showcasing the significant potential of large language models in protein structure design.

利用先进的计算方法,现在可以修改或设计蛋白质以实现特定功能,这一过程对疾病治疗和其他医学应用具有重要意义。蛋白质的结构和功能与其骨架有着内在联系,因此骨架的设计是蛋白质工程的关键环节。本研究的重点是无条件生成蛋白质骨架。通过编码本量化和压缩字典,我们将蛋白质骨架结构转换为一种独特的编码语言,并提出了基于 GPT 的蛋白质骨架生成模型 PB-GPT。为了验证模型的泛化性能,我们在公共数据集和小型蛋白质数据集上对模型进行了训练和评估。结果表明,我们的模型能够无条件生成精细、高度逼真的蛋白质骨架,其结构模式与天然蛋白质相似,从而展示了大语言模型在蛋白质结构设计中的巨大潜力。
{"title":"PB-GPT: An innovative GPT-based model for protein backbone generation","authors":"Xiaoping Min, Yiyang Liao, Xiao Chen, Qianli Yang, Junjie Ying, Jiajun Zou, Chongzhou Yang, Jun Zhang, Shengxiang Ge, Ningshao Xia","doi":"10.1016/j.str.2024.07.016","DOIUrl":"https://doi.org/10.1016/j.str.2024.07.016","url":null,"abstract":"<p>With advanced computational methods, it is now feasible to modify or design proteins for specific functions, a process with significant implications for disease treatment and other medical applications. Protein structures and functions are intrinsically linked to their backbones, making the design of these backbones a pivotal aspect of protein engineering. In this study, we focus on the task of unconditionally generating protein backbones. By means of codebook quantization and compression dictionaries, we convert protein backbone structures into a distinctive coded language and propose a GPT-based protein backbone generation model, PB-GPT. To validate the generalization performance of the model, we trained and evaluated the model on both public datasets and small protein datasets. The results demonstrate that our model has the capability to unconditionally generate elaborate, highly realistic protein backbones with structural patterns resembling those of natural proteins, thus showcasing the significant potential of large language models in protein structure design.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":"1 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural basis for FN3K-mediated protein deglycation FN3K 介导蛋白质降解的结构基础
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-21 DOI: 10.1016/j.str.2024.07.018
Jameela Lokhandwala, Jenet K. Matlack, Tracess B. Smalley, Robert E. Miner, Timothy H. Tran, Jennifer M. Binning

Protein glycation is a universal, non-enzymatic modification that occurs when a sugar covalently attaches to a primary amine. These spontaneous modifications may have deleterious or regulatory effects on protein function, and their removal is mediated by the conserved metabolic kinase fructosamine-3-kinase (FN3K). Despite its crucial role in protein repair, we currently have a poor understanding of how FN3K engages or phosphorylates its substrates. By integrating structural biology and biochemistry, we elucidated the catalytic mechanism for FN3K-mediated protein deglycation. Our work identifies key amino acids required for binding and phosphorylating glycated substrates and reveals the molecular basis of an evolutionarily conserved protein repair pathway. Additional structural-functional studies revealed unique structural features of human FN3K as well as differences in the dimerization behavior and regulation of FN3K family members. Our findings improve our understanding of the structure of FN3K and its catalytic mechanism, which opens new avenues for therapeutically targeting FN3K.

蛋白质糖化是一种普遍的非酶修饰,当糖与伯胺共价连接时就会发生糖化。这些自发修饰可能会对蛋白质功能产生有害影响或调节作用,其清除是由保守的代谢激酶果糖胺-3-激酶(FN3K)介导的。尽管果糖胺-3-激酶在蛋白质修复中起着至关重要的作用,但我们目前对 FN3K 如何参与或磷酸化其底物还知之甚少。通过整合结构生物学和生物化学,我们阐明了 FN3K 介导的蛋白质降解的催化机制。我们的工作确定了糖化底物结合和磷酸化所需的关键氨基酸,揭示了进化保守的蛋白质修复途径的分子基础。其他结构-功能研究揭示了人类 FN3K 的独特结构特征以及 FN3K 家族成员在二聚化行为和调控方面的差异。我们的研究结果增进了我们对 FN3K 结构及其催化机理的了解,为针对 FN3K 的治疗开辟了新途径。
{"title":"Structural basis for FN3K-mediated protein deglycation","authors":"Jameela Lokhandwala, Jenet K. Matlack, Tracess B. Smalley, Robert E. Miner, Timothy H. Tran, Jennifer M. Binning","doi":"10.1016/j.str.2024.07.018","DOIUrl":"https://doi.org/10.1016/j.str.2024.07.018","url":null,"abstract":"<p>Protein glycation is a universal, non-enzymatic modification that occurs when a sugar covalently attaches to a primary amine. These spontaneous modifications may have deleterious or regulatory effects on protein function, and their removal is mediated by the conserved metabolic kinase fructosamine-3-kinase (FN3K). Despite its crucial role in protein repair, we currently have a poor understanding of how FN3K engages or phosphorylates its substrates. By integrating structural biology and biochemistry, we elucidated the catalytic mechanism for FN3K-mediated protein deglycation. Our work identifies key amino acids required for binding and phosphorylating glycated substrates and reveals the molecular basis of an evolutionarily conserved protein repair pathway. Additional structural-functional studies revealed unique structural features of human FN3K as well as differences in the dimerization behavior and regulation of FN3K family members. Our findings improve our understanding of the structure of FN3K and its catalytic mechanism, which opens new avenues for therapeutically targeting FN3K.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":"15 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering of pH-dependent antigen binding properties for toxin-targeting IgG1 antibodies using light-chain shuffling 利用轻链洗牌技术为毒素靶向 IgG1 抗体设计 pH 依赖性抗原结合特性
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-14 DOI: 10.1016/j.str.2024.07.014

Immunoglobulin G (IgG) antibodies that bind their cognate antigen in a pH-dependent manner (acid-switched antibodies) can release their bound antigen for degradation in the acidic environment of endosomes, while the IgGs are rescued by the neonatal Fc receptor (FcRn). Thus, such IgGs can neutralize multiple antigens over time and therefore be used at lower doses than their non-pH-responsive counterparts. Here, we show that light-chain shuffling combined with phage display technology can be used to discover IgG1 antibodies with increased pH-dependent antigen binding properties, using the snake venom toxins, myotoxin II and α-cobratoxin, as examples. We reveal differences in how the selected IgG1s engage their antigens and human FcRn and show how these differences translate into distinct cellular handling properties related to their pH-dependent antigen binding phenotypes and Fc-engineering for improved FcRn binding. Our study showcases the complexity of engineering pH-dependent antigen binding IgG1s and demonstrates the effects on cellular antibody-antigen recycling.

以 pH 依赖性方式结合其同源抗原的免疫球蛋白 G(IgG)抗体(酸开关抗体)可释放其结合的抗原,以便在内质体的酸性环境中降解,而这种 IgG 可被新生 Fc 受体(FcRn)所拯救。因此,这种 IgG 可以长期中和多种抗原,因此使用剂量比非 H 反应性抗体低。在这里,我们以蛇毒毒素肌毒素 II 和α-桔梗毒素为例,展示了轻链洗牌与噬菌体展示技术相结合可用于发现具有更强 pH 依赖性抗原结合特性的 IgG1 抗体。我们揭示了所选 IgG1 与其抗原和人类 FcRn 结合方式的差异,并展示了这些差异如何转化为与其 pH 依赖性抗原结合表型相关的不同细胞处理特性,以及如何通过 Fc 工程改善 FcRn 结合。我们的研究展示了依赖 pH 值的抗原结合 IgG1s 工程的复杂性,并证明了其对细胞抗体-抗原循环的影响。
{"title":"Engineering of pH-dependent antigen binding properties for toxin-targeting IgG1 antibodies using light-chain shuffling","authors":"","doi":"10.1016/j.str.2024.07.014","DOIUrl":"https://doi.org/10.1016/j.str.2024.07.014","url":null,"abstract":"<p>Immunoglobulin G (IgG) antibodies that bind their cognate antigen in a pH-dependent manner (acid-switched antibodies) can release their bound antigen for degradation in the acidic environment of endosomes, while the IgGs are rescued by the neonatal Fc receptor (FcRn). Thus, such IgGs can neutralize multiple antigens over time and therefore be used at lower doses than their non-pH-responsive counterparts. Here, we show that light-chain shuffling combined with phage display technology can be used to discover IgG1 antibodies with increased pH-dependent antigen binding properties, using the snake venom toxins, myotoxin II and α-cobratoxin, as examples. We reveal differences in how the selected IgG1s engage their antigens and human FcRn and show how these differences translate into distinct cellular handling properties related to their pH-dependent antigen binding phenotypes and Fc-engineering for improved FcRn binding. Our study showcases the complexity of engineering pH-dependent antigen binding IgG1s and demonstrates the effects on cellular antibody-antigen recycling.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":"51 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and functional characterization of archaeal DIMT1 unveils distinct protein dynamics essential for efficient catalysis 古菌 DIMT1 的结构和功能特征揭示了高效催化所必需的独特蛋白质动力学特性
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-14 DOI: 10.1016/j.str.2024.07.013

Dimethyladenosine transferase 1 (DIMT1), an ortholog of bacterial KsgA is a conserved protein that assists in ribosome biogenesis by modifying two successive adenosine bases near the 3′ end of small subunit (SSU) rRNA. Although KsgA/DIMT1 proteins have been characterized in bacteria and eukaryotes, they are yet unexplored in archaea. Also, their dynamics are not well understood. Here, we structurally and functionally characterized the apo and holo forms of archaeal DIMT1 from Pyrococcus horikoshii. Wild-type protein and mutants were analyzed to capture different transition states, including open, closed, and intermediate states. This study reports a unique inter-domain movement that is needed for substrate (RNA) positioning in the catalytic pocket, and is only observed in the presence of the cognate cofactors S-adenosyl-L-methionine (SAM) or S-adenosyl-L-homocysteine (SAH). The binding of the inhibitor sinefungine, an analog of SAM or SAH, to archaeal DIMT1 blocks the catalytic pocket and renders the enzyme inactive.

二甲基腺苷转移酶 1(DIMT1)是细菌 KsgA 的同源物,它是一种保守蛋白,通过修饰小亚基(SSU)rRNA 3′末端附近的两个连续腺苷碱基来协助核糖体的生物发生。虽然 KsgA/DIMT1 蛋白在细菌和真核生物中已被定性,但在古细菌中尚未被研究。此外,它们的动态变化也不甚了解。在这里,我们从结构和功能上鉴定了来自角越火球菌的古生 DIMT1 的 apo 和 holo 形式。我们分析了野生型蛋白质和突变体,以捕捉不同的过渡状态,包括开放、封闭和中间状态。本研究报告了底物(RNA)在催化袋中定位所需的一种独特的结构域间运动,这种运动只有在存在同源辅助因子 S-腺苷-L-蛋氨酸(SAM)或 S-腺苷-L-高半胱氨酸(SAH)时才能观察到。SAM 或 SAH 的类似物抑制剂正鱼藤碱(sinefungine)与古蘑菇 DIMT1 结合后会阻塞催化袋,使酶失去活性。
{"title":"Structural and functional characterization of archaeal DIMT1 unveils distinct protein dynamics essential for efficient catalysis","authors":"","doi":"10.1016/j.str.2024.07.013","DOIUrl":"https://doi.org/10.1016/j.str.2024.07.013","url":null,"abstract":"<p>Dimethyladenosine transferase 1 (DIMT1), an ortholog of bacterial KsgA is a conserved protein that assists in ribosome biogenesis by modifying two successive adenosine bases near the 3′ end of small subunit (SSU) rRNA. Although KsgA/DIMT1 proteins have been characterized in bacteria and eukaryotes, they are yet unexplored in archaea. Also, their dynamics are not well understood. Here, we structurally and functionally characterized the apo and holo forms of archaeal DIMT1 from <em>Pyrococcus horikoshii</em>. Wild-type protein and mutants were analyzed to capture different transition states, including open, closed, and intermediate states. This study reports a unique inter-domain movement that is needed for substrate (RNA) positioning in the catalytic pocket, and is only observed in the presence of the cognate cofactors S-adenosyl-L-methionine (SAM) or S-adenosyl-L-homocysteine (SAH). The binding of the inhibitor sinefungine, an analog of SAM or SAH, to archaeal DIMT1 blocks the catalytic pocket and renders the enzyme inactive.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":"77 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gating mechanism of the human α1β GlyR by glycine 甘氨酸对人类 α1β GlyR 的门控机制
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-14 DOI: 10.1016/j.str.2024.07.012

Glycine receptors (GlyRs) are members of the Cys-loop receptors that constitute a major portion of mammalian neurotransmitter receptors. Recent resolution of heteromeric GlyR structures in multiple functional states raised fundamental questions regarding the gating mechanism of GlyR, and generally the Cys-loop family receptors. Here, we characterized in detail equilibrium properties as well as the transition kinetics between functional states. We show that, while all allosteric sites bind cooperatively to glycine, occupation of 2 sites at the α-α interfaces is sufficient for activation and necessary for high-efficacy gating. Differential glycine concentration dependence of desensitization rate, extent, and its recovery suggests separate but concerted roles of ligand-binding and ionophore reorganization. Based on these observations and available structural information, we developed a quantitative gating model that accurately predicts both equilibrium and kinetical properties throughout the glycine gating cycle. This model likely applies generally to the Cys-loop receptors and informs on pharmaceutical endeavors.

甘氨酸受体(GlyRs)是 Cys 环状受体的成员,构成哺乳动物神经递质受体的主要部分。最近对多种功能状态下异构 GlyR 结构的解析提出了有关 GlyR 以及 Cys 环状家族受体门控机制的基本问题。在这里,我们详细描述了平衡特性以及功能状态之间的转换动力学。我们的研究表明,虽然所有的别构位点都与甘氨酸合作结合,但在α-α界面上占据两个位点就足以激活,并且是高效门控的必要条件。脱敏率、脱敏程度及其恢复对甘氨酸浓度的不同依赖性表明,配体结合和离子团重组起着独立但协同的作用。根据这些观察结果和现有的结构信息,我们建立了一个定量门控模型,该模型能准确预测整个甘氨酸门控周期的平衡和动力学特性。该模型可能普遍适用于 Cys 环受体,并对制药工作有所启发。
{"title":"Gating mechanism of the human α1β GlyR by glycine","authors":"","doi":"10.1016/j.str.2024.07.012","DOIUrl":"https://doi.org/10.1016/j.str.2024.07.012","url":null,"abstract":"<p>Glycine receptors (GlyRs) are members of the Cys-loop receptors that constitute a major portion of mammalian neurotransmitter receptors. Recent resolution of heteromeric GlyR structures in multiple functional states raised fundamental questions regarding the gating mechanism of GlyR, and generally the Cys-loop family receptors. Here, we characterized in detail equilibrium properties as well as the transition kinetics between functional states. We show that, while all allosteric sites bind cooperatively to glycine, occupation of 2 sites at the α-α interfaces is sufficient for activation and necessary for high-efficacy gating. Differential glycine concentration dependence of desensitization rate, extent, and its recovery suggests separate but concerted roles of ligand-binding and ionophore reorganization. Based on these observations and available structural information, we developed a quantitative gating model that accurately predicts both equilibrium and kinetical properties throughout the glycine gating cycle. This model likely applies generally to the Cys-loop receptors and informs on pharmaceutical endeavors.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":"19 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the structure of RNPs from segmented negative-sense RNA viruses 分段负义 RNA 病毒的 RNP 结构透视
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-08 DOI: 10.1016/j.str.2024.07.008

The genome of segmented negative-sense single-stranded RNA viruses, such as influenza virus and bunyaviruses, is coated by viral nucleoproteins (NPs), forming a ribonucleoprotein (RNP). In this issue of Structure, Dick et al.1 expand our knowledge on the RNPs of these viruses by solving the structures of Thogoto virus NP and RNP.

分段负义单链 RNA 病毒(如流感病毒和布尼亚病毒)的基因组被病毒核蛋白(NP)包覆,形成核糖核蛋白(RNP)。在本期的《结构》杂志上,Dick 等人1 通过解析 Thogoto 病毒 NP 和 RNP 的结构,拓展了我们对这些病毒的 RNP 的认识。
{"title":"Insights into the structure of RNPs from segmented negative-sense RNA viruses","authors":"","doi":"10.1016/j.str.2024.07.008","DOIUrl":"https://doi.org/10.1016/j.str.2024.07.008","url":null,"abstract":"<p>The genome of segmented negative-sense single-stranded RNA viruses, such as influenza virus and bunyaviruses, is coated by viral nucleoproteins (NPs), forming a ribonucleoprotein (RNP). In this issue of <em>Structure</em>, Dick et al.<span><span><sup>1</sup></span></span> expand our knowledge on the RNPs of these viruses by solving the structures of Thogoto virus NP and RNP.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":"52 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling Rubisco packaging within β-carboxysomes 揭开 Rubisco 在 β-羧基体中的包装奥秘
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-08 DOI: 10.1016/j.str.2024.07.006

In this issue of Structure, Kong et al. utilized cryoelectron tomography to closely examine Rubisco packaging within β-carboxysomes. They observed unique Rubisco packaging arrangements that may have important implications for carboxysome structural integrity.

在本期《结构》杂志中,Kong 等人利用冷冻电子断层扫描技术仔细研究了 Rubisco 在 β 羧聚体中的包装。他们观察到了独特的 Rubisco 包裹排列,这可能对羧酶体结构的完整性有重要影响。
{"title":"Unraveling Rubisco packaging within β-carboxysomes","authors":"","doi":"10.1016/j.str.2024.07.006","DOIUrl":"https://doi.org/10.1016/j.str.2024.07.006","url":null,"abstract":"<p>In this issue of <em>Structure</em>, Kong et al. utilized cryoelectron tomography to closely examine Rubisco packaging within β-carboxysomes. They observed unique Rubisco packaging arrangements that may have important implications for carboxysome structural integrity.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":"45 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Descending to inhibit: Antagonist-induced downward shift of VSD II in TPC2 下移抑制:TPC2 中拮抗剂诱导的 VSD II 下移
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-08 DOI: 10.1016/j.str.2024.07.005

In this issue of Structure, Chi et al.1 report structural and functional studies that reveal the inhibition mechanism of the lysosomal two-pore channel TPC2 by the antagonist SG-094, which is of interest for drug development. Antagonist binding induces the downward displacement of the voltage-sensor domain II (VSD II), which is accompanied by asymmetric conformational rearrangements of the entire channel.

在本期《结构》杂志上,Chi 等人1 报告了结构和功能研究,揭示了拮抗剂 SG-094 对溶酶体双孔通道 TPC2 的抑制机制,这对药物开发很有意义。拮抗剂的结合会诱导电压传感器结构域 II(VSD II)向下位移,并伴随着整个通道的不对称构象重排。
{"title":"Descending to inhibit: Antagonist-induced downward shift of VSD II in TPC2","authors":"","doi":"10.1016/j.str.2024.07.005","DOIUrl":"https://doi.org/10.1016/j.str.2024.07.005","url":null,"abstract":"<p>In this issue of <em>Structure</em>, Chi et al.<span><span><sup>1</sup></span></span> report structural and functional studies that reveal the inhibition mechanism of the lysosomal two-pore channel TPC2 by the antagonist SG-094, which is of interest for drug development. Antagonist binding induces the downward displacement of the voltage-sensor domain II (VSD II), which is accompanied by asymmetric conformational rearrangements of the entire channel.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":"2 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bilayer lipids modulate ligand binding to atypical chemokine receptor 3. 双层脂质调节配体与非典型趋化因子受体 3 的结合。
IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-08 Epub Date: 2024-05-21 DOI: 10.1016/j.str.2024.04.018
Stefanie Alexandra Eberle, Martin Gustavsson

Chemokine receptors belong to the large class of G protein-coupled receptors (GPCRs) and are involved in a number of (patho)physiological processes. Previous studies highlighted the importance of membrane lipids for modulating GPCR structure and function. However, the underlying mechanisms of how lipids regulate GPCRs are often poorly understood. Here, we report that anionic lipid bilayers increase the binding affinity of the chemokine CXCL12 for the atypical chemokine receptor 3 (ACKR3) by modulating the CXCL12 binding kinetics. Notably, the anionic bilayer favors CXCL12 over the more positively charged chemokine CXCL11, which we explained by bilayer interactions orienting CXCL12 but not CXCL11 for productive ACKR3 binding. Furthermore, our data suggest a stabilization of active ACKR3 conformations in anionic bilayers. Taken together, the described regulation of chemokine selectivity of ACKR3 by the lipid bilayer proposes an extended version of the classical model of chemokine binding including the lipid environment of the receptor.

趋化因子受体属于一大类 G 蛋白偶联受体(GPCR),参与了许多(病理)生理过程。以往的研究强调了膜脂在调节 GPCR 结构和功能方面的重要性。然而,人们对脂质如何调节 GPCR 的内在机制往往知之甚少。在这里,我们报告了阴离子脂质双层膜通过调节 CXCL12 的结合动力学,增加了趋化因子 CXCL12 与非典型趋化因子受体 3(ACKR3)的结合亲和力。值得注意的是,阴离子双分子层偏向于 CXCL12,而不是带正电荷的趋化因子 CXCL11,我们对此的解释是,双分子层相互作用使 CXCL12 而不是 CXCL11 定向,以促进 ACKR3 的结合。此外,我们的数据还表明 ACKR3 在阴离子双分子层中的活性构象趋于稳定。综上所述,所描述的脂质双分子层对 ACKR3 的趋化因子选择性的调节,提出了包括受体脂质环境在内的趋化因子结合经典模型的扩展版本。
{"title":"Bilayer lipids modulate ligand binding to atypical chemokine receptor 3.","authors":"Stefanie Alexandra Eberle, Martin Gustavsson","doi":"10.1016/j.str.2024.04.018","DOIUrl":"10.1016/j.str.2024.04.018","url":null,"abstract":"<p><p>Chemokine receptors belong to the large class of G protein-coupled receptors (GPCRs) and are involved in a number of (patho)physiological processes. Previous studies highlighted the importance of membrane lipids for modulating GPCR structure and function. However, the underlying mechanisms of how lipids regulate GPCRs are often poorly understood. Here, we report that anionic lipid bilayers increase the binding affinity of the chemokine CXCL12 for the atypical chemokine receptor 3 (ACKR3) by modulating the CXCL12 binding kinetics. Notably, the anionic bilayer favors CXCL12 over the more positively charged chemokine CXCL11, which we explained by bilayer interactions orienting CXCL12 but not CXCL11 for productive ACKR3 binding. Furthermore, our data suggest a stabilization of active ACKR3 conformations in anionic bilayers. Taken together, the described regulation of chemokine selectivity of ACKR3 by the lipid bilayer proposes an extended version of the classical model of chemokine binding including the lipid environment of the receptor.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":" ","pages":"1174-1183.e5"},"PeriodicalIF":4.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural requirements for activity of Mind bomb1 in Notch signaling 心灵炸弹1在Notch信号转导中的活性结构要求
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-08 DOI: 10.1016/j.str.2024.07.011

Mind bomb 1 (MIB1) is a RING E3 ligase that ubiquitinates Notch ligands, a necessary step for induction of Notch signaling. The structural basis for binding of the JAG1 ligand by the N-terminal region of MIB1 is known, yet how the ankyrin (ANK) and RING domains of MIB1 cooperate to catalyze ubiquitin transfer from E2∼Ub to Notch ligands remains unclear. Here, we show that the third RING domain and adjacent coiled coil region (ccRING3) drive MIB1 dimerization and that MIB1 ubiquitin transfer activity relies solely on ccRING3. We report X-ray crystal structures of a UbcH5B-ccRING3 complex and the ANK domain. Directly tethering the MIB1 N-terminal region to ccRING3 forms a minimal MIB1 protein sufficient to induce a Notch response in receiver cells and rescue mib knockout phenotypes in flies. Together, these studies define the functional elements of an E3 ligase needed for ligands to induce a Notch signaling response.

Mind bomb 1(MIB1)是一种 RING E3 连接酶,可泛素化 Notch 配体,这是诱导 Notch 信号转导的必要步骤。MIB1的N端区域与JAG1配体结合的结构基础是已知的,但MIB1的ankyrin(ANK)和RING结构域如何合作催化泛素从E2∼Ub转移到Notch配体上仍不清楚。在这里,我们发现第三个 RING 结构域和相邻的线圈区(ccRING3)驱动 MIB1 的二聚化,并且 MIB1 的泛素转移活性完全依赖于 ccRING3。我们报告了 UbcH5B-ccRING3 复合物和 ANK 结构域的 X 射线晶体结构。直接将 MIB1 N 端区域与 ccRING3 连接形成的最小 MIB1 蛋白足以诱导接收细胞中的 Notch 反应,并能挽救苍蝇的 mib 基因敲除表型。这些研究共同确定了配体诱导 Notch 信号反应所需的 E3 连接酶的功能要素。
{"title":"Structural requirements for activity of Mind bomb1 in Notch signaling","authors":"","doi":"10.1016/j.str.2024.07.011","DOIUrl":"https://doi.org/10.1016/j.str.2024.07.011","url":null,"abstract":"<p>Mind bomb 1 (MIB1) is a RING E3 ligase that ubiquitinates Notch ligands, a necessary step for induction of Notch signaling. The structural basis for binding of the JAG1 ligand by the N-terminal region of MIB1 is known, yet how the ankyrin (ANK) and RING domains of MIB1 cooperate to catalyze ubiquitin transfer from E2∼Ub to Notch ligands remains unclear. Here, we show that the third RING domain and adjacent coiled coil region (ccRING3) drive MIB1 dimerization and that MIB1 ubiquitin transfer activity relies solely on ccRING3. We report X-ray crystal structures of a UbcH5B-ccRING3 complex and the ANK domain. Directly tethering the MIB1 N-terminal region to ccRING3 forms a minimal MIB1 protein sufficient to induce a Notch response in receiver cells and rescue <em>mib</em> knockout phenotypes in flies. Together, these studies define the functional elements of an E3 ligase needed for ligands to induce a Notch signaling response.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":"76 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Structure
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1