Pub Date : 2019-01-01DOI: 10.1080/16000889.2019.1620079
Lingyan Wu, Junying Sun, Xiaoye Zhang, Yangmei Zhang, Yaqiang Wang, J. Zhong, Yun Yang
Abstract A heavy pollution episode (HPE) that lasted for seven days occurred over the North China Plain in December 2016. An in situ Ambient Ion Monitor was applied to analyze the chemical composition of PM2.5 (fine particulate matter with diameters less than 2.5 µm) and gaseous HONO concentration during that event. A representative explosive growth in the pollution cumulative stage was selected to investigate the pollution mechanism during the HPE in Beijing. PM2.5 cumulative explosive growth processes were observed to occur commonly under high relative humidity (RH) condition. Our results demonstrated that the aqueous-phase oxidation of SO2 by NO2 to sulfate could contribute to the cumulative explosive growth. Nitrate produced by secondary formation was another factor in the growth of PM2.5. Depending on the relative humidity, temperature, and chemical species, the deliquescence relative humidity was calculated to 82%, 81%, and 83% for (NH4)2SO4, NH4NO3, and NH4Cl, respectively. The preexisting PM2.5 surface changed from solid to liquid when RH > 81%. Coincidentally, both the sulfur oxidation ratio (SOR) and reaction product HONO displayed an evident exponential relationship with RH and increased more quickly when RH was larger than 80%. In addition, sufficiently excessive NO2 made the aqueous-phase oxidation of SO2 efficiently proceed even at relative low SO2 concentrations (below 15 µg m−3). Potential H+ in the reactions was neutralized by NH3, resulting in fully neutralized PM2.5 during HPE. The chemical evolution of these reactions was discussed in detail in this study.
{"title":"Aqueous-phase reactions occurred in the PM2.5 cumulative explosive growth during the heavy pollution episode (HPE) in 2016 Beijing wintertime","authors":"Lingyan Wu, Junying Sun, Xiaoye Zhang, Yangmei Zhang, Yaqiang Wang, J. Zhong, Yun Yang","doi":"10.1080/16000889.2019.1620079","DOIUrl":"https://doi.org/10.1080/16000889.2019.1620079","url":null,"abstract":"Abstract A heavy pollution episode (HPE) that lasted for seven days occurred over the North China Plain in December 2016. An in situ Ambient Ion Monitor was applied to analyze the chemical composition of PM2.5 (fine particulate matter with diameters less than 2.5 µm) and gaseous HONO concentration during that event. A representative explosive growth in the pollution cumulative stage was selected to investigate the pollution mechanism during the HPE in Beijing. PM2.5 cumulative explosive growth processes were observed to occur commonly under high relative humidity (RH) condition. Our results demonstrated that the aqueous-phase oxidation of SO2 by NO2 to sulfate could contribute to the cumulative explosive growth. Nitrate produced by secondary formation was another factor in the growth of PM2.5. Depending on the relative humidity, temperature, and chemical species, the deliquescence relative humidity was calculated to 82%, 81%, and 83% for (NH4)2SO4, NH4NO3, and NH4Cl, respectively. The preexisting PM2.5 surface changed from solid to liquid when RH > 81%. Coincidentally, both the sulfur oxidation ratio (SOR) and reaction product HONO displayed an evident exponential relationship with RH and increased more quickly when RH was larger than 80%. In addition, sufficiently excessive NO2 made the aqueous-phase oxidation of SO2 efficiently proceed even at relative low SO2 concentrations (below 15 µg m−3). Potential H+ in the reactions was neutralized by NH3, resulting in fully neutralized PM2.5 during HPE. The chemical evolution of these reactions was discussed in detail in this study.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74359189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1080/16000889.2018.1554415
Gregor Kotalczyk, I. Skenderović, F. Kruis
Abstract The application of the Monte Carlo (MC) simulation technique for the modelling of nucleation processes with an existing background particle concentration is presented in this paper. Next to the nucleation of novel particles, the coagulation of an existing particle population as well as the condensational growth and evaporation of unstable particles (whose diameter is smaller than the critical Kelvin diameter) are included into the simulation. The usage of statistically weighted MC particles allows the description of particle size distribution (PSD), whose concentrations differ in several orders of magnitude. It is shown, that this approach allows to model the complex interplay between freshly nucleated particles and an existing background particle population. In this work, the nucleation of novel particles is modelled by three different nucleation theories discussed by [Girshick, S. L. and C.-P. Chiu (1990), The Journal of Chemical Physics 93], which comprise of (1) the classical nucleation theory, (2) a mathematical correction to (1) and (3) a self-consistency correction of (2). For the chosen simulation conditions, the resulting PSDs are independent of the used nucleation theory for longer simulation times, in which the simulations are described by the coagulation mechanism only. The time-frame is identified for which relevant discrepancies of the PSDs have to be taken into account.
摘要本文介绍了蒙特卡罗(MC)模拟技术在给定背景粒子浓度条件下的成核过程模拟中的应用。除了新粒子的成核外,现有粒子群的凝聚以及不稳定粒子(其直径小于临界开尔文直径)的凝聚生长和蒸发也包括在模拟中。统计加权MC颗粒的使用允许描述粒径分布(PSD),其浓度在几个数量级上不同。结果表明,这种方法可以模拟新成核粒子和现有背景粒子群之间复杂的相互作用。在这项工作中,由[Girshick, s.l.和c.p]讨论的三种不同的成核理论模拟了新粒子的成核。Chiu (1990), The Journal of Chemical Physics[93],其中包括(1)经典成核理论,(2)对(1)的数学修正和(3)对(2)的自洽性修正。对于所选的模拟条件,所得到的psd在较长的模拟时间内独立于所使用的成核理论,其中模拟仅由混凝机制描述。确定了一个时间范围,在这个时间范围内,必须考虑到发展规划文件的有关差异。
{"title":"Monte Carlo simulations of homogeneous nucleation and particle growth in the presence of background particles","authors":"Gregor Kotalczyk, I. Skenderović, F. Kruis","doi":"10.1080/16000889.2018.1554415","DOIUrl":"https://doi.org/10.1080/16000889.2018.1554415","url":null,"abstract":"Abstract The application of the Monte Carlo (MC) simulation technique for the modelling of nucleation processes with an existing background particle concentration is presented in this paper. Next to the nucleation of novel particles, the coagulation of an existing particle population as well as the condensational growth and evaporation of unstable particles (whose diameter is smaller than the critical Kelvin diameter) are included into the simulation. The usage of statistically weighted MC particles allows the description of particle size distribution (PSD), whose concentrations differ in several orders of magnitude. It is shown, that this approach allows to model the complex interplay between freshly nucleated particles and an existing background particle population. In this work, the nucleation of novel particles is modelled by three different nucleation theories discussed by [Girshick, S. L. and C.-P. Chiu (1990), The Journal of Chemical Physics 93], which comprise of (1) the classical nucleation theory, (2) a mathematical correction to (1) and (3) a self-consistency correction of (2). For the chosen simulation conditions, the resulting PSDs are independent of the used nucleation theory for longer simulation times, in which the simulations are described by the coagulation mechanism only. The time-frame is identified for which relevant discrepancies of the PSDs have to be taken into account.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76536774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1080/16000889.2019.1613143
M. Karl, C. Leck, F. Mashayekhy Rad, Are Bäcklund, S. Lopez-Aparicio, J. Heintzenberg
Abstract In order to evaluate the potential impact of the Arctic anthropogenic emission sources it is essential to understand better the natural aerosol sources of the inner Arctic and the atmospheric processing of the aerosols during their transport in the Arctic atmosphere. A 1-year time series of chemically specific measurements of the sub-micrometre aerosol during 2015 has been taken at the Mt. Zeppelin observatory in the European Arctic. A source apportionment study combined measured molecular tracers as source markers, positive matrix factorization, analysis of the potential source distribution and auxiliary information from satellite data and ground-based observations. The annual average sub-micrometre mass was apportioned to regional background secondary sulphate (56%), sea spray (17%), biomass burning (15%), secondary nitrate (5.8%), secondary marine biogenic (4.5%), mixed combustion (1.6%), and two types of marine gel sources (together 0.7%). Secondary nitrate aerosol mainly contributed towards the end of summer and during autumn. During spring and summer, the secondary marine biogenic factor reached a contribution of up to 50% in some samples. The most likely origin of the mixed combustion source is due to oil and gas extraction activities in Eastern Siberia. The two marine polymer gel sources predominantly occurred in autumn and winter. The small contribution of the marine gel sources at Mt. Zeppelin observatory in summer as opposed to regions closer to the North Pole is attributed to differences in ocean biology, vertical distribution of phytoplankton, and the earlier start of the summer season.
{"title":"New insights in sources of the sub-micrometre aerosol at Mt. Zeppelin observatory (Spitsbergen) in the year 2015","authors":"M. Karl, C. Leck, F. Mashayekhy Rad, Are Bäcklund, S. Lopez-Aparicio, J. Heintzenberg","doi":"10.1080/16000889.2019.1613143","DOIUrl":"https://doi.org/10.1080/16000889.2019.1613143","url":null,"abstract":"Abstract In order to evaluate the potential impact of the Arctic anthropogenic emission sources it is essential to understand better the natural aerosol sources of the inner Arctic and the atmospheric processing of the aerosols during their transport in the Arctic atmosphere. A 1-year time series of chemically specific measurements of the sub-micrometre aerosol during 2015 has been taken at the Mt. Zeppelin observatory in the European Arctic. A source apportionment study combined measured molecular tracers as source markers, positive matrix factorization, analysis of the potential source distribution and auxiliary information from satellite data and ground-based observations. The annual average sub-micrometre mass was apportioned to regional background secondary sulphate (56%), sea spray (17%), biomass burning (15%), secondary nitrate (5.8%), secondary marine biogenic (4.5%), mixed combustion (1.6%), and two types of marine gel sources (together 0.7%). Secondary nitrate aerosol mainly contributed towards the end of summer and during autumn. During spring and summer, the secondary marine biogenic factor reached a contribution of up to 50% in some samples. The most likely origin of the mixed combustion source is due to oil and gas extraction activities in Eastern Siberia. The two marine polymer gel sources predominantly occurred in autumn and winter. The small contribution of the marine gel sources at Mt. Zeppelin observatory in summer as opposed to regions closer to the North Pole is attributed to differences in ocean biology, vertical distribution of phytoplankton, and the earlier start of the summer season.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83968055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1080/16000889.2019.1577070
Qianshan He, Xiangdong Zheng, Jian Li, Wei Gao, Yanyu Wang, T. Cheng, J. Pu, Jie Liu, LI Chengcai
Abstract Cirrus clouds play a significant role in the Earth’s energy balance and in the hydrological cycle of the atmosphere. Here, a high-performance Micro Pulse Lidar was continuously used to investigate cirrus cloud formation and characteristics at Ali (32.50°N, 80.08°E; 4279 m), in the western Tibetan Plateau from 25 July to 23 September 2016, a time frame that spanned the prevalence and degeneration period of the Asian summer monsoon (ASM). The cirrus clouds frequently occurred with sharp fluctuations in the vertical distribution from 8 to 14 km above ground level (AGL) during the ASM period. In contrast, cirrus clouds were remarkably reduced and consistently existed near 10 km in September, when the ASM began subsiding due to the lack of a driving force that triggers ice formation. Approximately half of the cirrus clouds were caused by deep convective activity during the ASM period, which held one-third of total cirrus clouds during the whole measurement period. These anvil cirrus clouds have a liquid origin and are characterised by optically thicker clouds with Cloud Optical Depth values greater than 0.2, high depolarisation ratios and high lidar ratios. These observations indicate that, in agreement with other studies at mid-latitudes and in the Arctic, liquid origin cirrus could be associated with thicker, larger and more complex nonspherical ice crystals in comparison to in situ formed cirrus. Cold perturbations were responsible for the formation and evolution of the remaining two-thirds of cirrus clouds. These clouds were mostly associated with in situ formation of ice crystals, in the slow updrafts in the tropical transition layer over the Tibetan Plateau.
{"title":"The role of ASM on the formation and properties of cirrus clouds over the Tibetan Plateau","authors":"Qianshan He, Xiangdong Zheng, Jian Li, Wei Gao, Yanyu Wang, T. Cheng, J. Pu, Jie Liu, LI Chengcai","doi":"10.1080/16000889.2019.1577070","DOIUrl":"https://doi.org/10.1080/16000889.2019.1577070","url":null,"abstract":"Abstract Cirrus clouds play a significant role in the Earth’s energy balance and in the hydrological cycle of the atmosphere. Here, a high-performance Micro Pulse Lidar was continuously used to investigate cirrus cloud formation and characteristics at Ali (32.50°N, 80.08°E; 4279 m), in the western Tibetan Plateau from 25 July to 23 September 2016, a time frame that spanned the prevalence and degeneration period of the Asian summer monsoon (ASM). The cirrus clouds frequently occurred with sharp fluctuations in the vertical distribution from 8 to 14 km above ground level (AGL) during the ASM period. In contrast, cirrus clouds were remarkably reduced and consistently existed near 10 km in September, when the ASM began subsiding due to the lack of a driving force that triggers ice formation. Approximately half of the cirrus clouds were caused by deep convective activity during the ASM period, which held one-third of total cirrus clouds during the whole measurement period. These anvil cirrus clouds have a liquid origin and are characterised by optically thicker clouds with Cloud Optical Depth values greater than 0.2, high depolarisation ratios and high lidar ratios. These observations indicate that, in agreement with other studies at mid-latitudes and in the Arctic, liquid origin cirrus could be associated with thicker, larger and more complex nonspherical ice crystals in comparison to in situ formed cirrus. Cold perturbations were responsible for the formation and evolution of the remaining two-thirds of cirrus clouds. These clouds were mostly associated with in situ formation of ice crystals, in the slow updrafts in the tropical transition layer over the Tibetan Plateau.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"241 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82984605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1080/16000889.2019.1601987
T. Juhlke, C. Meier, R. van Geldern, K. Vanselow, Jakob Wernicke, J. Baidulloeva, J. Barth, S. Weise
Abstract Air moisture of oceanic origin can be subject to long-range transport and could contribute to precipitation at distant places. With ongoing climate change the relationship between water vapour sources and sinks is under constant evolution and plays an important role for water budget assessments. This study analysed monthly integrated and event-based precipitation samples from two field sites in the Western Pamir Mountains (Tajikistan) for stable isotope compositions of oxygen (δ18O) and hydrogen (δ2H) of water. The aim was to investigate water vapour sources and, in particular, to evaluate contributions of water vapour from the Mediterranean region. The latter has been often postulated as a potential moisture source region for Central Asia. Deuterium excess values (d), that serve as a fingerprint of moisture origin, were below 13‰ in monthly integrated samples, for most of the year. This indicates a smaller contribution of high Mediterranean moisture (∼20‰) to the Western Pamir Mountains than originally expected. A maximum d value of 19‰ was observed in March, which is not in agreement with the common observation of increased Mediterranean contribution during winter (DJF). A Lagrangian backward trajectory model (HYSPLIT) was applied to infer the general air mass origin for sampled precipitation events. A maximum contribution of ‘western’ moisture of 40% was also detected in March, while 40%–60% of moisture that contributed to precipitation events in winter was transported by trajectories that originated from the Northern Indian Ocean.
{"title":"Assessing moisture sources of precipitation in the Western Pamir Mountains (Tajikistan, Central Asia) using deuterium excess","authors":"T. Juhlke, C. Meier, R. van Geldern, K. Vanselow, Jakob Wernicke, J. Baidulloeva, J. Barth, S. Weise","doi":"10.1080/16000889.2019.1601987","DOIUrl":"https://doi.org/10.1080/16000889.2019.1601987","url":null,"abstract":"Abstract Air moisture of oceanic origin can be subject to long-range transport and could contribute to precipitation at distant places. With ongoing climate change the relationship between water vapour sources and sinks is under constant evolution and plays an important role for water budget assessments. This study analysed monthly integrated and event-based precipitation samples from two field sites in the Western Pamir Mountains (Tajikistan) for stable isotope compositions of oxygen (δ18O) and hydrogen (δ2H) of water. The aim was to investigate water vapour sources and, in particular, to evaluate contributions of water vapour from the Mediterranean region. The latter has been often postulated as a potential moisture source region for Central Asia. Deuterium excess values (d), that serve as a fingerprint of moisture origin, were below 13‰ in monthly integrated samples, for most of the year. This indicates a smaller contribution of high Mediterranean moisture (∼20‰) to the Western Pamir Mountains than originally expected. A maximum d value of 19‰ was observed in March, which is not in agreement with the common observation of increased Mediterranean contribution during winter (DJF). A Lagrangian backward trajectory model (HYSPLIT) was applied to infer the general air mass origin for sampled precipitation events. A maximum contribution of ‘western’ moisture of 40% was also detected in March, while 40%–60% of moisture that contributed to precipitation events in winter was transported by trajectories that originated from the Northern Indian Ocean.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83049772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1080/16000889.2018.1559398
Carmen P. Vega, E. Monica Mårtensson, U. Wideqvist, J. Kaiser, P. Zieger, J. Ström
Abstract While dry and rain deposition of nitrate (NO3−) and ammonium (NH4+) are regularly assessed, fog deposition is often overlooked. This work assesses summer fog events contribution to nitrogen deposition and availability for forest ecosystems. Rain and fog samples were collected at Mt Åreskutan, Sweden, during CAEsAR (Cloud and Aerosol Characterization Experiment), in 2014. NH4+ + NO3− represent (31 ± 25) % of total rain ion amount, and (31 ± 42) % in fog. Based on ion concentrations and the nitrate stable isotope signatures δ(15N) and δ(18O), it was possible to detect the plume generated by the Västmanland forest fire; NOx emissions from oil rigs and Kola Peninsula; and the plume of Bardarbunga volcano, Iceland. Scavenging of ions by fog was more efficient than by rain. Rain NH4+ and NO3− deposition was (26 ± 36) μmol m−2 d−1 and (23 ± 27) μmol m−2 d−1, respectively. Fog NH4+ and NO3− contributed (77 ± 80) % to total wet deposition of these species. Upscaling rain deposition fluxes to 1 year gave an inorganic nitrogen deposition of (18 ± 16) mmol m−2 a−1 ((252 ± 224) mg m−2 a−1 N equivalents), whereas fog deposition was estimated as (59 ± 47) mmol m−2 a−1 ((826 ± 658) mg m−2 a−1 N equivalents). Annual fog deposition was four times higher than previously reported for the area which only considered rain deposition. However, great uncertainty on the calculation of fog deposition need to be bear in mind. These findings suggest that fog should be considered in deposition estimates of inorganic nitrogen and major ions. If fog deposition is not accounted for, ion wet deposition may be greatly underestimated. Further sampling of wet and dry deposition is important for understanding the influence of nitrogen deposition on forest and vegetation development, as well as soil major ion loads.
{"title":"Composition, isotopic fingerprint and source attribution of nitrate deposition from rain and fog at a Sub-Arctic Mountain site in Central Sweden (Mt Åreskutan)","authors":"Carmen P. Vega, E. Monica Mårtensson, U. Wideqvist, J. Kaiser, P. Zieger, J. Ström","doi":"10.1080/16000889.2018.1559398","DOIUrl":"https://doi.org/10.1080/16000889.2018.1559398","url":null,"abstract":"Abstract While dry and rain deposition of nitrate (NO3−) and ammonium (NH4+) are regularly assessed, fog deposition is often overlooked. This work assesses summer fog events contribution to nitrogen deposition and availability for forest ecosystems. Rain and fog samples were collected at Mt Åreskutan, Sweden, during CAEsAR (Cloud and Aerosol Characterization Experiment), in 2014. NH4+ + NO3− represent (31 ± 25) % of total rain ion amount, and (31 ± 42) % in fog. Based on ion concentrations and the nitrate stable isotope signatures δ(15N) and δ(18O), it was possible to detect the plume generated by the Västmanland forest fire; NOx emissions from oil rigs and Kola Peninsula; and the plume of Bardarbunga volcano, Iceland. Scavenging of ions by fog was more efficient than by rain. Rain NH4+ and NO3− deposition was (26 ± 36) μmol m−2 d−1 and (23 ± 27) μmol m−2 d−1, respectively. Fog NH4+ and NO3− contributed (77 ± 80) % to total wet deposition of these species. Upscaling rain deposition fluxes to 1 year gave an inorganic nitrogen deposition of (18 ± 16) mmol m−2 a−1 ((252 ± 224) mg m−2 a−1 N equivalents), whereas fog deposition was estimated as (59 ± 47) mmol m−2 a−1 ((826 ± 658) mg m−2 a−1 N equivalents). Annual fog deposition was four times higher than previously reported for the area which only considered rain deposition. However, great uncertainty on the calculation of fog deposition need to be bear in mind. These findings suggest that fog should be considered in deposition estimates of inorganic nitrogen and major ions. If fog deposition is not accounted for, ion wet deposition may be greatly underestimated. Further sampling of wet and dry deposition is important for understanding the influence of nitrogen deposition on forest and vegetation development, as well as soil major ion loads.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"182 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80314715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1080/16000889.2019.1623639
S. Kinne
Abstract The MAC aerosol climatology defines monthly global maps for aerosol properties. The definition of mid-visible optical and microphysical properties is strongly linked to multi-year statistics of observations by sun-photometers of the AERONET and MAN ground networks. As available statistics are spatially sparse, context from bottom-up global modelling is added. Now in its second version, oceanic MAN reference data are included, a different lower anthropogenic fraction is assumed and the merging of the data-statistics is improved. Hereby, now only absolute properties are merged and trusted photometer data are given stronger weights via regional corrections in place of local domain limited corrections. Global average mid-visible (550 mn) aerosol properties are 0.12 for the aerosol optical depth (AOD), 0.94 for the single scattering albedo (SSA) and 0.7 for the asymmetry-factor (ASY). Averages for sub-micrometer (fine-mode) and super-micrometer (coarse-mode) aerosol sizes are 0.063 (AODf) and 0.058 (AODc), 0.92 (SSAf) and 0.965 (SSAc) and 0.64 (ASYf) and 0.77 (ASYc), respectively. A new element is the separation of aerosol absorption (AAOD) by sky-/sun-photometers into fine-mode and coarse-mode contributions. These properties as well as the fine-mode effective radii were merged with background data from global modelling yielding global averages of 0.0051 (AAODf), 0.0021 (AAODc) and 0.18 μm (RE,f). Local monthly mode detail now allows (in a ‘top-down’ approach) to extract global distributions for aerosol component amounts and sizes. As the considered components for soot (BC), organics (OC), non-absorbing fine-mode (SU), sea-salt (SS) and mineral dust (DU) have pre-defined spectrally resolved properties, optical properties at other than mid-visible wavelengths are automatically defined – as required in broadband radiative transfer applications. With component information (e.g. amount, composition and size) also MAC estimates for CCN and IN concentrations are possible and also a simple MAC based aerosol retrieval model for satellite sensor data is suggested.
{"title":"The MACv2 aerosol climatology","authors":"S. Kinne","doi":"10.1080/16000889.2019.1623639","DOIUrl":"https://doi.org/10.1080/16000889.2019.1623639","url":null,"abstract":"Abstract The MAC aerosol climatology defines monthly global maps for aerosol properties. The definition of mid-visible optical and microphysical properties is strongly linked to multi-year statistics of observations by sun-photometers of the AERONET and MAN ground networks. As available statistics are spatially sparse, context from bottom-up global modelling is added. Now in its second version, oceanic MAN reference data are included, a different lower anthropogenic fraction is assumed and the merging of the data-statistics is improved. Hereby, now only absolute properties are merged and trusted photometer data are given stronger weights via regional corrections in place of local domain limited corrections. Global average mid-visible (550 mn) aerosol properties are 0.12 for the aerosol optical depth (AOD), 0.94 for the single scattering albedo (SSA) and 0.7 for the asymmetry-factor (ASY). Averages for sub-micrometer (fine-mode) and super-micrometer (coarse-mode) aerosol sizes are 0.063 (AODf) and 0.058 (AODc), 0.92 (SSAf) and 0.965 (SSAc) and 0.64 (ASYf) and 0.77 (ASYc), respectively. A new element is the separation of aerosol absorption (AAOD) by sky-/sun-photometers into fine-mode and coarse-mode contributions. These properties as well as the fine-mode effective radii were merged with background data from global modelling yielding global averages of 0.0051 (AAODf), 0.0021 (AAODc) and 0.18 μm (RE,f). Local monthly mode detail now allows (in a ‘top-down’ approach) to extract global distributions for aerosol component amounts and sizes. As the considered components for soot (BC), organics (OC), non-absorbing fine-mode (SU), sea-salt (SS) and mineral dust (DU) have pre-defined spectrally resolved properties, optical properties at other than mid-visible wavelengths are automatically defined – as required in broadband radiative transfer applications. With component information (e.g. amount, composition and size) also MAC estimates for CCN and IN concentrations are possible and also a simple MAC based aerosol retrieval model for satellite sensor data is suggested.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81327636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1080/16000889.2019.1663994
Junxia Li, Peiren Li, G. Ren, Liang Yuan, Yiyu Li, Junmei Yang
Abstract In situ aircraft measurements of aerosols and clouds were performed over the eastern Loess Plateau in Shanxi Province, China. The microphysical properties of both aerosols and warm clouds, including aerosol number concentration (Na), particle effective diameter (ED), number concentration of cloud droplets (Nc), cloud droplet diameter (Dc), and liquid water content (LWC) of clouds, determined through six flight observations performed in May 2013 were obtained and analysed. The mean magnitude of measured Na over the six flights was 103 cm−3, and accumulation mode particles dominated the majority. Most EDs of aerosol particles were less than 1 μm. Large amounts of fine aerosol particles were constrained to the lower layer, with ED smaller than 0.5 μm, and Na decreased with height. The base heights of warm clouds ranged from 1000 to 2800 m. The maximum and average values of the measured Nc ranged from 147 to 311 cm−3 and 51 to 157 cm−3, respectively. The maximum and average Dc ranged from 13.5 to 28.9 and 5.8 to 13.1 μm, respectively. The average LWC of warm clouds was 0.05 g·m−3. Na was negatively correlated with Nc either in the vertical or horizontal direction. Nc was higher with a smaller size of cloud droplets under high aerosol loading conditions. A small number of cloud droplets with larger size were formed under low aerosol loading conditions. At a certain range of LWC, Nc and Dc showed a negative correlation. The increase in LWC was related to an increase in the size of cloud droplets rather than the number of cloud droplets. The cloud droplet size distribution showed that small droplets dominated the total cloud droplet concentration. A bimodal lognormal distribution function can be efficiently used to describe the average spectrum of warm cloud droplets.
{"title":"Aircraft measurements of aerosol distribution, warm cloud microphysical properties, and their relationship over the Eastern Loess Plateau in China","authors":"Junxia Li, Peiren Li, G. Ren, Liang Yuan, Yiyu Li, Junmei Yang","doi":"10.1080/16000889.2019.1663994","DOIUrl":"https://doi.org/10.1080/16000889.2019.1663994","url":null,"abstract":"Abstract In situ aircraft measurements of aerosols and clouds were performed over the eastern Loess Plateau in Shanxi Province, China. The microphysical properties of both aerosols and warm clouds, including aerosol number concentration (Na), particle effective diameter (ED), number concentration of cloud droplets (Nc), cloud droplet diameter (Dc), and liquid water content (LWC) of clouds, determined through six flight observations performed in May 2013 were obtained and analysed. The mean magnitude of measured Na over the six flights was 103 cm−3, and accumulation mode particles dominated the majority. Most EDs of aerosol particles were less than 1 μm. Large amounts of fine aerosol particles were constrained to the lower layer, with ED smaller than 0.5 μm, and Na decreased with height. The base heights of warm clouds ranged from 1000 to 2800 m. The maximum and average values of the measured Nc ranged from 147 to 311 cm−3 and 51 to 157 cm−3, respectively. The maximum and average Dc ranged from 13.5 to 28.9 and 5.8 to 13.1 μm, respectively. The average LWC of warm clouds was 0.05 g·m−3. Na was negatively correlated with Nc either in the vertical or horizontal direction. Nc was higher with a smaller size of cloud droplets under high aerosol loading conditions. A small number of cloud droplets with larger size were formed under low aerosol loading conditions. At a certain range of LWC, Nc and Dc showed a negative correlation. The increase in LWC was related to an increase in the size of cloud droplets rather than the number of cloud droplets. The cloud droplet size distribution showed that small droplets dominated the total cloud droplet concentration. A bimodal lognormal distribution function can be efficiently used to describe the average spectrum of warm cloud droplets.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84354917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1080/16000889.2018.1554414
P. Glantz, E. Freud, C. Johansson, K. Noone, M. Tesche
Abstract Long-term Aqua and Terra MODIS (MODerate resolution Imaging Spectroradiometer) Collections 5.1 and 6.1 (c051 and c061, respectively) aerosol data have been combined with AERONET (AERosol RObotic NETwork) ground-based sun photometer observations to examine trends in aerosol optical thickness (AOT, at 550 nm) over Northern Europe for the months April to September. For the 1927 and 1559 daily coincident measurements that were obtained for c051 and c061, respectively, MODIS AOT varied by 86 and 90%, respectively, within the predicted uncertainty of one standard deviation of the retrieval over land (ΔAOT = ±0.05 ± 0.15·AOT). For the coastal AERONET site Gustav Dalen Tower (GDT), Sweden, larger deviations were found for MODIS c051 and c061 (79% and 75%, respectively, within predicted uncertainty). The Baltic Sea provides substantially better statistical representation of AOT than the surrounding land areas and therefore favours the investigations of trends in AOT over the region. Negative trends of 1.5% and 1.2% per year in AOT, based on daily averaging, were found for the southwestern Baltic Sea from MODIS c051 and c061, respectively. This is in line with a decrease of 1.2% per year in AOT at the AERONET station Hamburg. For the western Gotland Basin area, Sweden, negative trends of 1.5%, 1.1% and 1.6% per year in AOT have been found for MODIS c051, MODIS c061 and AERONET GDT, respectively. The strongest trend of –1.8% per year in AOT was found for AERONET Belsk, Poland, which can be compared to –1.5% per day obtained from MODIS c051 over central Poland. The trends in MODIS and AERONET AOT are nearly all statistically significant at the 95% confidence level. The strongest aerosol sources are suggested to be located southwest, south and southeast of the investigation area, although the highest prevalence of pollution events is associated with air mass transport from southwest.
{"title":"Trends in MODIS and AERONET derived aerosol optical thickness over Northern Europe","authors":"P. Glantz, E. Freud, C. Johansson, K. Noone, M. Tesche","doi":"10.1080/16000889.2018.1554414","DOIUrl":"https://doi.org/10.1080/16000889.2018.1554414","url":null,"abstract":"Abstract Long-term Aqua and Terra MODIS (MODerate resolution Imaging Spectroradiometer) Collections 5.1 and 6.1 (c051 and c061, respectively) aerosol data have been combined with AERONET (AERosol RObotic NETwork) ground-based sun photometer observations to examine trends in aerosol optical thickness (AOT, at 550 nm) over Northern Europe for the months April to September. For the 1927 and 1559 daily coincident measurements that were obtained for c051 and c061, respectively, MODIS AOT varied by 86 and 90%, respectively, within the predicted uncertainty of one standard deviation of the retrieval over land (ΔAOT = ±0.05 ± 0.15·AOT). For the coastal AERONET site Gustav Dalen Tower (GDT), Sweden, larger deviations were found for MODIS c051 and c061 (79% and 75%, respectively, within predicted uncertainty). The Baltic Sea provides substantially better statistical representation of AOT than the surrounding land areas and therefore favours the investigations of trends in AOT over the region. Negative trends of 1.5% and 1.2% per year in AOT, based on daily averaging, were found for the southwestern Baltic Sea from MODIS c051 and c061, respectively. This is in line with a decrease of 1.2% per year in AOT at the AERONET station Hamburg. For the western Gotland Basin area, Sweden, negative trends of 1.5%, 1.1% and 1.6% per year in AOT have been found for MODIS c051, MODIS c061 and AERONET GDT, respectively. The strongest trend of –1.8% per year in AOT was found for AERONET Belsk, Poland, which can be compared to –1.5% per day obtained from MODIS c051 over central Poland. The trends in MODIS and AERONET AOT are nearly all statistically significant at the 95% confidence level. The strongest aerosol sources are suggested to be located southwest, south and southeast of the investigation area, although the highest prevalence of pollution events is associated with air mass transport from southwest.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72809481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1080/16000889.2018.1528134
J. Zhong, Xiaoye Zhang, Yaqiang Wang
Abstract Particulate matter smaller than 2.5 μm in diameters (PM2.5) often experiences explosive growth (mass concentration at least doubled in several to 10 h) in winter aerosol pollution episodes (HPEs) in Beijing. Whether a threshold value exists for such PM2.5 explosive growth is uncertain. Here, we used PM2.5 mass concentration, surface and vertical meteorological factors including winds, temperature, relative humidity (RH), and radiation in winter (Jan., Feb., and Dec.) from 2013 to 2017 to confirm the existence of the threshold for PM2.5 explosive growth and determine the threshold value. We found that the positive feedback from aerosols to near-ground radiative cooling to anomalous inversion is effectively triggered under slight or calm winds when the near-ground PM2.5 mass reaches a certain threshold. A threshold value for PM2.5 explosive growth (100 μg m−3) is determined by analyzing 30 cumulative stages (CSs) during 28 HPEs. Keeping the PM2.5 mass concentration transported from the south of Beijing below this value would avoid the majority of PM2.5 explosive growth during the 30 CSs. As a reference for the government to further set the emission reduction target, a more stringent threshold value (∼71 μg m−3) is established by differentiating the lighter HPEs from the heavier HPEs.
{"title":"Reflections on the threshold for PM2.5 explosive growth in the cumulative stage of winter heavy aerosol pollution episodes (HPEs) in Beijing","authors":"J. Zhong, Xiaoye Zhang, Yaqiang Wang","doi":"10.1080/16000889.2018.1528134","DOIUrl":"https://doi.org/10.1080/16000889.2018.1528134","url":null,"abstract":"Abstract Particulate matter smaller than 2.5 μm in diameters (PM2.5) often experiences explosive growth (mass concentration at least doubled in several to 10 h) in winter aerosol pollution episodes (HPEs) in Beijing. Whether a threshold value exists for such PM2.5 explosive growth is uncertain. Here, we used PM2.5 mass concentration, surface and vertical meteorological factors including winds, temperature, relative humidity (RH), and radiation in winter (Jan., Feb., and Dec.) from 2013 to 2017 to confirm the existence of the threshold for PM2.5 explosive growth and determine the threshold value. We found that the positive feedback from aerosols to near-ground radiative cooling to anomalous inversion is effectively triggered under slight or calm winds when the near-ground PM2.5 mass reaches a certain threshold. A threshold value for PM2.5 explosive growth (100 μg m−3) is determined by analyzing 30 cumulative stages (CSs) during 28 HPEs. Keeping the PM2.5 mass concentration transported from the south of Beijing below this value would avoid the majority of PM2.5 explosive growth during the 30 CSs. As a reference for the government to further set the emission reduction target, a more stringent threshold value (∼71 μg m−3) is established by differentiating the lighter HPEs from the heavier HPEs.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81500405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}