Pub Date : 2018-12-12DOI: 10.1080/16000889.2018.1503513
Hana Lee, Woogyung V. Kim, Y. Lee, Ja-Ho Koo, Y. Jung, S. Park, H. Cho, Jhoon Kim
Abstract Atmospheric broadband transmissions of clouds, aerosols, and ozone in the erythemally weighted ultraviolet (EUV, 290–320 nm), total (spectrally integrated) ultraviolet (TUV, 290–363 nm), and total global solar (GS, 305–2800 nm) spectral regions were analysed with ground-based measurements in Seoul, Korea (37.57°N, 128.98°E) from March 2004 to February 2013. The annual average total transmission expressed as a fraction of the clear-sky irradiance was 77.6% in the EUV, 73.6% in the TUV, and 72.0% in the GS spectral regions. The corresponding values for cloud transmission were 78.4%, 73.9%, and 71.7%. In overcast cloudy conditions, atmospheric transmission was reduced by 45.9%, 50.2%, and 56.6% in the three spectral regions, respectively, indicating the dominant effect of clouds. Aerosol and ozone transmissions had almost the same annual average. Annual average atmospheric transmission effectively decreases with increasing wavelength from EUV to GS regions. However, we found that there was a difference in wavelength dependence of atmospheric transmission for monthly averages, which seems related to the monthly variation of total column ozone (TCO), aerosol, and cloud amount. It is also found that there is a critical value of TCO (TCO =370 DU) for the wavelength dependence of transmission. Higher ozone amount than this turnaround value can cause an increase in transmission from the EUV to GS regions. The monthly wavelength-dependent effects may be attributable more to the different climatological characteristics of the TCO rather than aerosols and clouds.
{"title":"Broadband dependence of atmospheric transmissions in the UV and total solar radiation","authors":"Hana Lee, Woogyung V. Kim, Y. Lee, Ja-Ho Koo, Y. Jung, S. Park, H. Cho, Jhoon Kim","doi":"10.1080/16000889.2018.1503513","DOIUrl":"https://doi.org/10.1080/16000889.2018.1503513","url":null,"abstract":"Abstract Atmospheric broadband transmissions of clouds, aerosols, and ozone in the erythemally weighted ultraviolet (EUV, 290–320 nm), total (spectrally integrated) ultraviolet (TUV, 290–363 nm), and total global solar (GS, 305–2800 nm) spectral regions were analysed with ground-based measurements in Seoul, Korea (37.57°N, 128.98°E) from March 2004 to February 2013. The annual average total transmission expressed as a fraction of the clear-sky irradiance was 77.6% in the EUV, 73.6% in the TUV, and 72.0% in the GS spectral regions. The corresponding values for cloud transmission were 78.4%, 73.9%, and 71.7%. In overcast cloudy conditions, atmospheric transmission was reduced by 45.9%, 50.2%, and 56.6% in the three spectral regions, respectively, indicating the dominant effect of clouds. Aerosol and ozone transmissions had almost the same annual average. Annual average atmospheric transmission effectively decreases with increasing wavelength from EUV to GS regions. However, we found that there was a difference in wavelength dependence of atmospheric transmission for monthly averages, which seems related to the monthly variation of total column ozone (TCO), aerosol, and cloud amount. It is also found that there is a critical value of TCO (TCO =370 DU) for the wavelength dependence of transmission. Higher ozone amount than this turnaround value can cause an increase in transmission from the EUV to GS regions. The monthly wavelength-dependent effects may be attributable more to the different climatological characteristics of the TCO rather than aerosols and clouds.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"85 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80450683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1080/16000889.2018.1530031
M. A. Zaidan, V. Haapasilta, R. Relan, H. Junninen, P. Aalto, M. Kulmala, L. Laurson, A. Foster
Abstract Atmospheric new-particle formation (NPF) is an important source of climatically relevant atmospheric aerosol particles. NPF can be directly observed by monitoring the time-evolution of ambient aerosol particle size distributions. From the measured distribution data, it is relatively straightforward to determine whether NPF took place or not on a given day. Due to the noisiness of the real-world ambient data, currently the most reliable way to classify measurement days into NPF event/non-event days is a manual visualization method. However, manual labor, with long multi-year time series, is extremely time-consuming and human subjectivity poses challenges for comparing the results of different data sets. These complications call for an automated classification process. This article presents a Bayesian neural network (BNN) classifier to classify event/non-event days of NPF using a manually generated database at the SMEAR II station in Hyytiälä, Finland. For the classification, a set of informative features are extracted exploiting the properties of multi-modal log normal distribution fitted to the aerosol particle concentration database and the properties of the time series representation of the data at different scales. The proposed method has a classification accuracy of 84.2 % for determining event/non-event days. In particular, the BNN method successfully predicts all event days when the growth and formation rate can be determined with a good confidence level (often labeled as class Ia days). Most misclassified days (with an accuracy of 75 %) are the event days of class II, where the determination of growth and formation rate are much more uncertain. Nevertheless, the results reported in this article using the new machine learning-based approach points towards the potential of these methods and suggest further exploration in this direction.
{"title":"Predicting atmospheric particle formation days by Bayesian classification of the time series features","authors":"M. A. Zaidan, V. Haapasilta, R. Relan, H. Junninen, P. Aalto, M. Kulmala, L. Laurson, A. Foster","doi":"10.1080/16000889.2018.1530031","DOIUrl":"https://doi.org/10.1080/16000889.2018.1530031","url":null,"abstract":"Abstract Atmospheric new-particle formation (NPF) is an important source of climatically relevant atmospheric aerosol particles. NPF can be directly observed by monitoring the time-evolution of ambient aerosol particle size distributions. From the measured distribution data, it is relatively straightforward to determine whether NPF took place or not on a given day. Due to the noisiness of the real-world ambient data, currently the most reliable way to classify measurement days into NPF event/non-event days is a manual visualization method. However, manual labor, with long multi-year time series, is extremely time-consuming and human subjectivity poses challenges for comparing the results of different data sets. These complications call for an automated classification process. This article presents a Bayesian neural network (BNN) classifier to classify event/non-event days of NPF using a manually generated database at the SMEAR II station in Hyytiälä, Finland. For the classification, a set of informative features are extracted exploiting the properties of multi-modal log normal distribution fitted to the aerosol particle concentration database and the properties of the time series representation of the data at different scales. The proposed method has a classification accuracy of 84.2 % for determining event/non-event days. In particular, the BNN method successfully predicts all event days when the growth and formation rate can be determined with a good confidence level (often labeled as class Ia days). Most misclassified days (with an accuracy of 75 %) are the event days of class II, where the determination of growth and formation rate are much more uncertain. Nevertheless, the results reported in this article using the new machine learning-based approach points towards the potential of these methods and suggest further exploration in this direction.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"43 1","pages":"1 - 10"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83264291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1080/16000889.2018.1471913
J. Malila
Abstract Atmospheric aerosols have been a subject to scientific interest at least since the Age of Enlightenment, including theories concerning the origins of atmospheric haze and dust. Early studies associated haze with geological sources – earthquakes and volcanism – which were believed to be related to the chemistry of sulphuric compounds. Thus, sulphuric acid became the strongest candidate to explain atmospheric new particle formation. The idea was carried over when the first quantitative studies of condensation nuclei and atmospheric chemistry took place during the later part of the 19th century. Laboratory and field measurements by von Helmholtz, Aitken, Kiessling, and Barus, among others, a century ago led to the conclusion that widespread new particle formation occurs in the atmosphere and is caused by sulphuric acid together with water and ammonia – a viewpoint, which has been rediscovered and expanded during the past 25 years.
{"title":"On the early studies recognizing the role of sulphuric acid in atmospheric haze and new particle formation","authors":"J. Malila","doi":"10.1080/16000889.2018.1471913","DOIUrl":"https://doi.org/10.1080/16000889.2018.1471913","url":null,"abstract":"Abstract Atmospheric aerosols have been a subject to scientific interest at least since the Age of Enlightenment, including theories concerning the origins of atmospheric haze and dust. Early studies associated haze with geological sources – earthquakes and volcanism – which were believed to be related to the chemistry of sulphuric compounds. Thus, sulphuric acid became the strongest candidate to explain atmospheric new particle formation. The idea was carried over when the first quantitative studies of condensation nuclei and atmospheric chemistry took place during the later part of the 19th century. Laboratory and field measurements by von Helmholtz, Aitken, Kiessling, and Barus, among others, a century ago led to the conclusion that widespread new particle formation occurs in the atmosphere and is caused by sulphuric acid together with water and ammonia – a viewpoint, which has been rediscovered and expanded during the past 25 years.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"1 1","pages":"1 - 11"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76592723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1080/16000889.2018.1454809
F. Belosi, M. Piazza, A. Nicosia, G. Santachiara
Abstract There is a consensus on the increase in ice nucleating particles (INP) concentration from subsaturated to supersaturated water conditions typically associated with clouds (1 ÷ 2%). However, it is important to evaluate the INP concentration trend when water supersaturation further increases, as supercooled clouds contain pockets of high water vapor supersaturation. Three laboratory dry-generated aerosols, two biological (microcrystalline and fibrous cellulose) and one mineral (Arizona test dust), and a field aerosol, sampled on filters, were investigated. Atmospheric aerosol (PM1 and PM10 fractions) was sampled at Capo Granitola (CG, coastal site in Sicily) and the National Research Council (CNR) research area in Bologna (urban background site). The dynamic filter processing chamber (DFPC) was used to explore the ice nucleation of the sampled aerosol in the deposition and condensation freezing modes. Experiments were performed from water subsaturated conditions (water saturation ratio Sw = 0.94) to Sw = 1.1, at T = −22 °C. At CG we considered separately events with a prevalent contribution of marine aerosol, and those showing a contribution of both marine and continental aerosols. An increase in INP concentration, the aerosol activated fraction (AF) and ice nucleation active surface site density (ns) from water subsaturated conditions to Sw = 1.02 was measured in both laboratory and field campaigns. This increase is due to the transition from deposition nucleation to condensation freezing. The highest increases in AF and ns from Sw = 1.02 to Sw = 1.1 were obtained for urban and mixed aerosol and the lowest for marine aerosol. Samplings performed in Bologna showed a high increase in the average INP concentration from PM1 to PM10. Our results show the importance of performing measurements of ice nucleation efficiency for continental aerosol even at supersaturation values higher than those typically associated with clouds, and also considering the contribution of coarse aerosol particles.
{"title":"Influence of supersaturation on the concentration of ice nucleating particles","authors":"F. Belosi, M. Piazza, A. Nicosia, G. Santachiara","doi":"10.1080/16000889.2018.1454809","DOIUrl":"https://doi.org/10.1080/16000889.2018.1454809","url":null,"abstract":"Abstract There is a consensus on the increase in ice nucleating particles (INP) concentration from subsaturated to supersaturated water conditions typically associated with clouds (1 ÷ 2%). However, it is important to evaluate the INP concentration trend when water supersaturation further increases, as supercooled clouds contain pockets of high water vapor supersaturation. Three laboratory dry-generated aerosols, two biological (microcrystalline and fibrous cellulose) and one mineral (Arizona test dust), and a field aerosol, sampled on filters, were investigated. Atmospheric aerosol (PM1 and PM10 fractions) was sampled at Capo Granitola (CG, coastal site in Sicily) and the National Research Council (CNR) research area in Bologna (urban background site). The dynamic filter processing chamber (DFPC) was used to explore the ice nucleation of the sampled aerosol in the deposition and condensation freezing modes. Experiments were performed from water subsaturated conditions (water saturation ratio Sw = 0.94) to Sw = 1.1, at T = −22 °C. At CG we considered separately events with a prevalent contribution of marine aerosol, and those showing a contribution of both marine and continental aerosols. An increase in INP concentration, the aerosol activated fraction (AF) and ice nucleation active surface site density (ns) from water subsaturated conditions to Sw = 1.02 was measured in both laboratory and field campaigns. This increase is due to the transition from deposition nucleation to condensation freezing. The highest increases in AF and ns from Sw = 1.02 to Sw = 1.1 were obtained for urban and mixed aerosol and the lowest for marine aerosol. Samplings performed in Bologna showed a high increase in the average INP concentration from PM1 to PM10. Our results show the importance of performing measurements of ice nucleation efficiency for continental aerosol even at supersaturation values higher than those typically associated with clouds, and also considering the contribution of coarse aerosol particles.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"12 1","pages":"1 - 10"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82011290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1080/16000889.2018.1476435
Xingcheng Lu, J. Fung
Abstract This study analyses the sensitivity of PM2.5 simulation and source apportionment results by integrating different below-cloud washout (BCW) schemes from various models into the CAMx model during the rainy days (3–13 September 2010). Furthermore, this study has also considered the influence of different raindrop size distribution parameterizations on the simulation. PM2.5 time series, spatial maps and the average concentration of the study region using different BCW schemes are presented. Our results show that different BCW schemes can cause over 50 μg m−3 discrepancies in a PM2.5 simulation during the heavy rain periods. The source apportionment (, and ) results for some cities (e.g. Hong Kong) are also sensitive to the choice of the BCW scheme. After implementing the composition dependent BCW coefficients calculated by using the field observation data, the PM2.5 simulation performance was improved and mean bias was reduced to 0.5 μg m−3 during the study period. Future BCW studies should focus on the effects caused by aerosol compositions and raindrop size distributions in order to produce reliable simulation results for the rainy season.
{"title":"Sensitivity assessment of PM2.5 simulation to the below-cloud washout schemes in an atmospheric chemical transport model","authors":"Xingcheng Lu, J. Fung","doi":"10.1080/16000889.2018.1476435","DOIUrl":"https://doi.org/10.1080/16000889.2018.1476435","url":null,"abstract":"Abstract This study analyses the sensitivity of PM2.5 simulation and source apportionment results by integrating different below-cloud washout (BCW) schemes from various models into the CAMx model during the rainy days (3–13 September 2010). Furthermore, this study has also considered the influence of different raindrop size distribution parameterizations on the simulation. PM2.5 time series, spatial maps and the average concentration of the study region using different BCW schemes are presented. Our results show that different BCW schemes can cause over 50 μg m−3 discrepancies in a PM2.5 simulation during the heavy rain periods. The source apportionment (, and ) results for some cities (e.g. Hong Kong) are also sensitive to the choice of the BCW scheme. After implementing the composition dependent BCW coefficients calculated by using the field observation data, the PM2.5 simulation performance was improved and mean bias was reduced to 0.5 μg m−3 during the study period. Future BCW studies should focus on the effects caused by aerosol compositions and raindrop size distributions in order to produce reliable simulation results for the rainy season.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"22 1","pages":"1 - 17"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78068375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1080/16000889.2018.1513291
C. Jung, Y. Yoon, H. Kang, Y. Gim, B. Lee, J. Ström, R. Krejci, P. Tunved
Abstract Cloud Condensation Nuclei (CCN) concentration and aerosol size distributions in the Arctic were collected during the period 2007–2013 at the Zeppelin observatory (78.91° N, 11.89° E, 474 masl). Annual median CCN concentration at a supersaturation (SS) of 0.4% show the ranges of 45 ∼ 81 cm−3. The monthly median CCN number density varied between 17 cm−3 in October 2007 and 198 cm−3 in March, 2008. The CCN spectra parameters C (83 cm−3) and k (0.23) were derived. In addition, calculated annual median value of hygroscopicity parameter is 0.46 at SS of 0.4%. Particle number concentration of accumulation mode from aerosol size distribution measurements are well correlated with CCN concentration. The CCN to CN>10 nm (particle number concentration larger than 10nm in diameter) ratio shows a maximum during March and minimum during July. The springtime high CCN concentration is attributed to high load of accumulation mode aerosol transported from the mid-latitudes, known as Arctic Haze. CCN concentration remains high also during Arctic summer due to the source of new CCN through particle formation followed by consecutive aerosol growth. Lowest aerosol as well as CCN number densities were observed during Arctic autumn and early winter when aerosol formation in the Arctic and long-range transport into the Arctic are not effective.
{"title":"The seasonal characteristics of cloud condensation nuclei (CCN) in the arctic lower troposphere","authors":"C. Jung, Y. Yoon, H. Kang, Y. Gim, B. Lee, J. Ström, R. Krejci, P. Tunved","doi":"10.1080/16000889.2018.1513291","DOIUrl":"https://doi.org/10.1080/16000889.2018.1513291","url":null,"abstract":"Abstract Cloud Condensation Nuclei (CCN) concentration and aerosol size distributions in the Arctic were collected during the period 2007–2013 at the Zeppelin observatory (78.91° N, 11.89° E, 474 masl). Annual median CCN concentration at a supersaturation (SS) of 0.4% show the ranges of 45 ∼ 81 cm−3. The monthly median CCN number density varied between 17 cm−3 in October 2007 and 198 cm−3 in March, 2008. The CCN spectra parameters C (83 cm−3) and k (0.23) were derived. In addition, calculated annual median value of hygroscopicity parameter is 0.46 at SS of 0.4%. Particle number concentration of accumulation mode from aerosol size distribution measurements are well correlated with CCN concentration. The CCN to CN>10 nm (particle number concentration larger than 10nm in diameter) ratio shows a maximum during March and minimum during July. The springtime high CCN concentration is attributed to high load of accumulation mode aerosol transported from the mid-latitudes, known as Arctic Haze. CCN concentration remains high also during Arctic summer due to the source of new CCN through particle formation followed by consecutive aerosol growth. Lowest aerosol as well as CCN number densities were observed during Arctic autumn and early winter when aerosol formation in the Arctic and long-range transport into the Arctic are not effective.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"51 1","pages":"1 - 13"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76632985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1080/16000889.2018.1507391
A. M. Zafar, R. Müller, J. Grooß, Sabine Robrecht, Bärbel, Vogel, R. Lehmann
Abstract The maintenance of large concentrations of active chlorine in Antarctic spring allows strong chemical ozone destruction to occur. In the lower stratosphere (approximately 16–18 km, 85–55 hPa, 390–430 K) in the core of the polar vortex, high levels of active chlorine are maintained, although rapid gas-phase production of HCl occurs. The maintenance is achieved through HCl null cycles in which the HCl production is balanced by immediate reactivation. The chemistry of the methyl peroxy radical (CH3O2) is essential for these HCl null cycles and thus for Antarctic chlorine and ozone loss chemistry in the lower stratosphere in the core of the polar vortex. The key reaction here is the reaction ; this reaction should not be neglected in simulations of polar ozone loss. Here we investigate the full chemistry of CH3O2 in box-model simulations representative for the conditions in the core of the polar vortex in the lower stratosphere. These simulations include the reaction CH3O2 + Cl, the product methylhypochlorite (CH3OCl) of the reaction CH3O2 + ClO, and the subsequent chemical decomposition of CH3OCl. We find that when the formation of CH3OCl is taken into account, it is important that also the main loss channels for CH3OCl, namely photolysis and reaction with Cl are considered. Provided that this is the case, there is only a moderate impact of the formation of CH3OCl in the reaction CH3O2 + ClO on polar chlorine chemistry in our simulations. Simulated peak mixing ratios of CH3OCl ( ppb) occur at the time of the lowest ozone mixing ratios. Further, our model simulations indicate that the reaction CH3O2 + Cl does not have a strong impact on polar chlorine chemistry. During the period of the lowest ozone concentrations in late September, enhanced values of CH3O2 are simulated and, as a consequence, also enhanced values of formaldehyde (about 100 ppt) and methanol (about 5 ppt).
{"title":"The relevance of reactions of the methyl peroxy radical (CH3O2) and methylhypochlorite (CH3OCl) for Antarctic chlorine activation and ozone loss","authors":"A. M. Zafar, R. Müller, J. Grooß, Sabine Robrecht, Bärbel, Vogel, R. Lehmann","doi":"10.1080/16000889.2018.1507391","DOIUrl":"https://doi.org/10.1080/16000889.2018.1507391","url":null,"abstract":"Abstract The maintenance of large concentrations of active chlorine in Antarctic spring allows strong chemical ozone destruction to occur. In the lower stratosphere (approximately 16–18 km, 85–55 hPa, 390–430 K) in the core of the polar vortex, high levels of active chlorine are maintained, although rapid gas-phase production of HCl occurs. The maintenance is achieved through HCl null cycles in which the HCl production is balanced by immediate reactivation. The chemistry of the methyl peroxy radical (CH3O2) is essential for these HCl null cycles and thus for Antarctic chlorine and ozone loss chemistry in the lower stratosphere in the core of the polar vortex. The key reaction here is the reaction ; this reaction should not be neglected in simulations of polar ozone loss. Here we investigate the full chemistry of CH3O2 in box-model simulations representative for the conditions in the core of the polar vortex in the lower stratosphere. These simulations include the reaction CH3O2 + Cl, the product methylhypochlorite (CH3OCl) of the reaction CH3O2 + ClO, and the subsequent chemical decomposition of CH3OCl. We find that when the formation of CH3OCl is taken into account, it is important that also the main loss channels for CH3OCl, namely photolysis and reaction with Cl are considered. Provided that this is the case, there is only a moderate impact of the formation of CH3OCl in the reaction CH3O2 + ClO on polar chlorine chemistry in our simulations. Simulated peak mixing ratios of CH3OCl ( ppb) occur at the time of the lowest ozone mixing ratios. Further, our model simulations indicate that the reaction CH3O2 + Cl does not have a strong impact on polar chlorine chemistry. During the period of the lowest ozone concentrations in late September, enhanced values of CH3O2 are simulated and, as a consequence, also enhanced values of formaldehyde (about 100 ppt) and methanol (about 5 ppt).","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"30 1","pages":"1 - 18"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72942486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1080/16000889.2018.1446643
T. Trávníčková, Lenka Škrabalová, J. Havlica, P. Krejci, J. Hrubý, V. Ždímal
Abstract Nucleation of aerosol particles from gaseous precursors is an important stage in the formation of atmospheric secondary aerosols or in industrial applications, particularly coal burning boilers. We introduce a novel laboratory device for studying binary or ternary nucleation – a laminar co-flow tube (LCFT) – and provide first data for the H2SO4/H2O system, showing that LCFT is able to cover a wide range of nucleation rates. The experimental set-up and the underlying transport processes are explained. Advantages of LCFT over methods employing turbulent mixing are suppression of wall losses and an accurate mathematical model. The determined nucleation rates are by about two orders of magnitude lower than typical literature values. Results of various nucleation experiments often show systematic differences unexplained by the present level of knowledge. Introduction of the LCFT technique based on a well-defined laminar diffusion process may help to identify the method-related biases.
{"title":"Laboratory study of H2SO4/H2O nucleation using a new technique – a laminar co-flow tube","authors":"T. Trávníčková, Lenka Škrabalová, J. Havlica, P. Krejci, J. Hrubý, V. Ždímal","doi":"10.1080/16000889.2018.1446643","DOIUrl":"https://doi.org/10.1080/16000889.2018.1446643","url":null,"abstract":"Abstract Nucleation of aerosol particles from gaseous precursors is an important stage in the formation of atmospheric secondary aerosols or in industrial applications, particularly coal burning boilers. We introduce a novel laboratory device for studying binary or ternary nucleation – a laminar co-flow tube (LCFT) – and provide first data for the H2SO4/H2O system, showing that LCFT is able to cover a wide range of nucleation rates. The experimental set-up and the underlying transport processes are explained. Advantages of LCFT over methods employing turbulent mixing are suppression of wall losses and an accurate mathematical model. The determined nucleation rates are by about two orders of magnitude lower than typical literature values. Results of various nucleation experiments often show systematic differences unexplained by the present level of knowledge. Introduction of the LCFT technique based on a well-defined laminar diffusion process may help to identify the method-related biases.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"24 1","pages":"1 - 11"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72944291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1080/16000889.2018.1443655
Paramate Payomrat, Yu Liu, N. Pumijumnong, Qiang Li, Huiming Song
Abstract The first study of tree-ring stable carbon isotopes in Thailand has demonstrated that stable carbon isotope in northwestern Thailand represents a promising proxy for the temperature reconstruction of core-monsoon periods. A tree-ring δ13C chronology was constructed based on four cores covering the period of 1788–2013. After removing the long-term decreasing trend reflecting atmospheric CO2 concentrations, the ∆13C chronology was able to capture both temperature and hydro-climate signals. ∆13C chronology showed particularly strong and significant negative correlation (r = –0.62, p < 0.0001) with June–September maximum temperature (CRU TS 3.24). The maximum temperature was reconstructed, which explained 37.8% of the variance in the instrumental maximum temperatures over the period of 1901–2013. The maximum temperature reconstruction revealed that four cooler and three warmer periods, as well as a slightly increasing temperature trend, occurred during the late seventeenth to mid-eighteenth centuries, which were followed by severe temperature fluctuations during the twentieth century century. While the sea surface temperature anomaly in the Indian Ocean might not affect the maximum temperature, its unstable relationship with the El Niño-Southern Oscillation (ENSO) was detected. In addition, a close relationship was observed between the maximum temperature and ENSO during the negative phase of the Pacific Decadal Oscillation (PDO), but this relationship was lost during the positive phase of the PDO.
{"title":"Tree-ring stable carbon isotope-based June–September maximum temperature reconstruction since AD 1788, north-west Thailand","authors":"Paramate Payomrat, Yu Liu, N. Pumijumnong, Qiang Li, Huiming Song","doi":"10.1080/16000889.2018.1443655","DOIUrl":"https://doi.org/10.1080/16000889.2018.1443655","url":null,"abstract":"Abstract The first study of tree-ring stable carbon isotopes in Thailand has demonstrated that stable carbon isotope in northwestern Thailand represents a promising proxy for the temperature reconstruction of core-monsoon periods. A tree-ring δ13C chronology was constructed based on four cores covering the period of 1788–2013. After removing the long-term decreasing trend reflecting atmospheric CO2 concentrations, the ∆13C chronology was able to capture both temperature and hydro-climate signals. ∆13C chronology showed particularly strong and significant negative correlation (r = –0.62, p < 0.0001) with June–September maximum temperature (CRU TS 3.24). The maximum temperature was reconstructed, which explained 37.8% of the variance in the instrumental maximum temperatures over the period of 1901–2013. The maximum temperature reconstruction revealed that four cooler and three warmer periods, as well as a slightly increasing temperature trend, occurred during the late seventeenth to mid-eighteenth centuries, which were followed by severe temperature fluctuations during the twentieth century century. While the sea surface temperature anomaly in the Indian Ocean might not affect the maximum temperature, its unstable relationship with the El Niño-Southern Oscillation (ENSO) was detected. In addition, a close relationship was observed between the maximum temperature and ENSO during the negative phase of the Pacific Decadal Oscillation (PDO), but this relationship was lost during the positive phase of the PDO.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"2015 1","pages":"1 - 13"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87813364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1080/16000889.2018.1528133
D. Zhao, Nan Jia, Yuanxu Dong
Abstract The nonlinear dependence of gas transfer velocity on wind speed typically results in the best fit of observational data; however, gas transfer velocity is dimensionally inconsistent with the nonlinear wind speeds. The objective of the current study was to show that, in the case of wind waves, gas transfer velocity with a consistent dimension should be determined by turbulent viscosity instead of by the viscosity of water when parameterised using the renewal model. Turbulent kinetic energy (TKE) near the air–sea interface is significantly intensified by breaking wind waves. By analyzing various models, we found that the TKE dissipation rate was explicitly linearly related to wind speed and dependent on wave age, with powers ranging from –2.36 to 4.0. Various models show that wave energy dissipation (WED) due to wind wave breaking explicitly increases with the cube of the wind speed and weakly depends on wave age. Assuming a balance between WED and total TKE dissipation in a constant dissipation layer, the depth of this layer was shown to be comparable to the wave height. Using the traditional renewal model with wind wave turbulent viscosity and TKE dissipation rate at the sea surface, we found that the gas transfer velocity was explicitly linearly related to wind speed in a dimensionally consistent manner, and depended simultaneously on the wave age and drag coefficient. These results are consistent with observational data obtained using the eddy correlation method. We emphasise that the linear dependence on wind speed is only valid when the wave age and drag coefficient are fixed; thus, this finding cannot be directly confirmed by currently available observational data due to a lack of wave state information.
{"title":"Relationship between turbulent energy dissipation and gas transfer through the air–sea interface","authors":"D. Zhao, Nan Jia, Yuanxu Dong","doi":"10.1080/16000889.2018.1528133","DOIUrl":"https://doi.org/10.1080/16000889.2018.1528133","url":null,"abstract":"Abstract The nonlinear dependence of gas transfer velocity on wind speed typically results in the best fit of observational data; however, gas transfer velocity is dimensionally inconsistent with the nonlinear wind speeds. The objective of the current study was to show that, in the case of wind waves, gas transfer velocity with a consistent dimension should be determined by turbulent viscosity instead of by the viscosity of water when parameterised using the renewal model. Turbulent kinetic energy (TKE) near the air–sea interface is significantly intensified by breaking wind waves. By analyzing various models, we found that the TKE dissipation rate was explicitly linearly related to wind speed and dependent on wave age, with powers ranging from –2.36 to 4.0. Various models show that wave energy dissipation (WED) due to wind wave breaking explicitly increases with the cube of the wind speed and weakly depends on wave age. Assuming a balance between WED and total TKE dissipation in a constant dissipation layer, the depth of this layer was shown to be comparable to the wave height. Using the traditional renewal model with wind wave turbulent viscosity and TKE dissipation rate at the sea surface, we found that the gas transfer velocity was explicitly linearly related to wind speed in a dimensionally consistent manner, and depended simultaneously on the wave age and drag coefficient. These results are consistent with observational data obtained using the eddy correlation method. We emphasise that the linear dependence on wind speed is only valid when the wave age and drag coefficient are fixed; thus, this finding cannot be directly confirmed by currently available observational data due to a lack of wave state information.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"51 1","pages":"1 - 11"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80342671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}