Pub Date : 2023-10-01DOI: 10.2355/tetsutohagane.tetsu-2023-039
Toshiyuki Takahashi, Hotaka Kai, Nobumitsu Hirai
{"title":"微生物バイオフィルムによる表面処理技術の定量的評価法: 鉄鋼スラグ上の微生物バイオフィルムとそのpH緩衝作用","authors":"Toshiyuki Takahashi, Hotaka Kai, Nobumitsu Hirai","doi":"10.2355/tetsutohagane.tetsu-2023-039","DOIUrl":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-039","url":null,"abstract":"","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135368437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.2355/tetsutohagane.tetsu-2023-044
Daichi Fujisaki, Shigenari Hayashi
The effect of C content on the formation of V carbide layer on carbon steels by a powder packed method was investigated. The continuous duplex carbide layer consisting of an outer V2C and inner V6C5 and V8C7 layers was formed on Fe-0.7C and Fe-0.3C (in wt.%), but it was discontinuous on Fe-0.1C. Internal carbide precipitates were observed within the matrix in Fe-0.3C and -0.1C. These precipitates in Fe-0.1C were disappeared after long treatment. The inner carbide layers were confirmed to grow inwardly, which suggests that VCl2 gas can penetrate through the carbide layers to the steel substrate.
{"title":"Mechanism of Formation of Vanadium Carbide Layers on Carbon Steel by Powder Packed Method","authors":"Daichi Fujisaki, Shigenari Hayashi","doi":"10.2355/tetsutohagane.tetsu-2023-044","DOIUrl":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-044","url":null,"abstract":"The effect of C content on the formation of V carbide layer on carbon steels by a powder packed method was investigated. The continuous duplex carbide layer consisting of an outer V2C and inner V6C5 and V8C7 layers was formed on Fe-0.7C and Fe-0.3C (in wt.%), but it was discontinuous on Fe-0.1C. Internal carbide precipitates were observed within the matrix in Fe-0.3C and -0.1C. These precipitates in Fe-0.1C were disappeared after long treatment. The inner carbide layers were confirmed to grow inwardly, which suggests that VCl2 gas can penetrate through the carbide layers to the steel substrate.","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135368431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Controlling the primary recrystallization texture is important to improve the magnetic properties of grain-oriented electrical steel through secondary recrystallization. To understand the factors influencing fine precipitates on the primary recrystallization mechanism and texture formation, changes in the recrystallization behaviors with states of precipitates (extremely fine, and coarse) were investigated through cold rolling, pre-annealing, and primary recrystallization annealing in Fe-3%Si alloy with coarse Goss ({110}<001>) grains using EBSD and TEM. Extremely fine MnS precipitated during the recovery stage had significant effects on the suppression of further recovery and recrystallization, especially after pre-annealing at 550°C. Recrystallized Goss grains were observed after primary recrystallization annealing by nucleation and growth irrespective of the states of precipitates; however, in the steel with extremely fine precipitates, {111}<112> grains remained through primary recrystallization annealing. It is assumed that fine precipitates would inhibit the growth of Goss grains and keep {111}<112> orientation, the main orientation in the cold rolled sheet, which would indicate occurrence of continuous recrystallization.
{"title":"Influence of Fine Precipitates on Primary Recrystallization Mechanism and Texture Formation in Cold Rolled Fe-3%Si Alloy with Initial Coarse Goss Grains","authors":"Nobusato Morishige, Kenichi Murakami, Kohsaku Ushioda","doi":"10.2355/tetsutohagane.tetsu-2023-031","DOIUrl":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-031","url":null,"abstract":"Controlling the primary recrystallization texture is important to improve the magnetic properties of grain-oriented electrical steel through secondary recrystallization. To understand the factors influencing fine precipitates on the primary recrystallization mechanism and texture formation, changes in the recrystallization behaviors with states of precipitates (extremely fine, and coarse) were investigated through cold rolling, pre-annealing, and primary recrystallization annealing in Fe-3%Si alloy with coarse Goss ({110}<001>) grains using EBSD and TEM. Extremely fine MnS precipitated during the recovery stage had significant effects on the suppression of further recovery and recrystallization, especially after pre-annealing at 550°C. Recrystallized Goss grains were observed after primary recrystallization annealing by nucleation and growth irrespective of the states of precipitates; however, in the steel with extremely fine precipitates, {111}<112> grains remained through primary recrystallization annealing. It is assumed that fine precipitates would inhibit the growth of Goss grains and keep {111}<112> orientation, the main orientation in the cold rolled sheet, which would indicate occurrence of continuous recrystallization.","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135368433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The chemical structure models for the extractions and residues of two types of bituminous coals, A and B, were constructed. The molecular weights of the extractions were determined via gel permeation chromatography (GPC). New standard materials with structures similar to those of coal extraction (i.e., 9, 10- diphenylanthracene, 5,6,11,12-tetraphenylnaphthracene, and chemical compounds A (Mw = 811) and B (Mw = 1135), which were synthesized using the coupling reaction) were adopted for GPC in order to obtain more accurate mean molecular weights than those in literature. Furthermore, a support program for constructing chemical structure models based on 1H nuclear magnetic resonance (NMR) spectra was adopted. The coal models constructed suitably indicate the differences between the types of coal. In particular, it is found that a high pyridine-insoluble fraction extracted rate, which accounts for the most significant difference between the total extracted rates for coals A and B, enhance the coking property of coal A. In addition, the cluster size in the magic solvent-insoluble fraction might affect the softening property of coal.
{"title":"平均分子量に基づく二種類の石炭の化学構造モデル","authors":"Yuki Hata, Hideyuki Hayashizaki, Toshimasa Takanohashi, Takafumi Takahashi, Koji Kanehashi, Koyo Norinaga","doi":"10.2355/tetsutohagane.tetsu-2023-042","DOIUrl":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-042","url":null,"abstract":"The chemical structure models for the extractions and residues of two types of bituminous coals, A and B, were constructed. The molecular weights of the extractions were determined via gel permeation chromatography (GPC). New standard materials with structures similar to those of coal extraction (i.e., 9, 10- diphenylanthracene, 5,6,11,12-tetraphenylnaphthracene, and chemical compounds A (Mw = 811) and B (Mw = 1135), which were synthesized using the coupling reaction) were adopted for GPC in order to obtain more accurate mean molecular weights than those in literature. Furthermore, a support program for constructing chemical structure models based on 1H nuclear magnetic resonance (NMR) spectra was adopted. The coal models constructed suitably indicate the differences between the types of coal. In particular, it is found that a high pyridine-insoluble fraction extracted rate, which accounts for the most significant difference between the total extracted rates for coals A and B, enhance the coking property of coal A. In addition, the cluster size in the magic solvent-insoluble fraction might affect the softening property of coal.","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"148 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135368436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.2355/tetsutohagane.tetsu-2023-035
Ryotaro Miyoshi, Gen Tsukamoto
{"title":"In-situ Observation of Sliding Interface in Commercially Pure Titanium Sheet with a TiO2 Film","authors":"Ryotaro Miyoshi, Gen Tsukamoto","doi":"10.2355/tetsutohagane.tetsu-2023-035","DOIUrl":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-035","url":null,"abstract":"","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"16 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85307261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.2355/tetsutohagane.tetsu-2023-018
Koichi Momono, J. Ishii, Seiji Hosohara, Hideo Kijima
{"title":"Development of Innovative Gasification Process of Used Plastics by Using Fluidized Bed","authors":"Koichi Momono, J. Ishii, Seiji Hosohara, Hideo Kijima","doi":"10.2355/tetsutohagane.tetsu-2023-018","DOIUrl":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-018","url":null,"abstract":"","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"84 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80454103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"密度成層流における液液分散挙動に対する粘度の影響","authors":"Norifumi Asahara, Katsuhiro Fuchigami, Masafumi Zeze","doi":"10.2355/tetsutohagane.tetsu-2023-006","DOIUrl":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-006","url":null,"abstract":"","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"12 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84749996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.2355/tetsutohagane.tetsu-2023-019
Yutaro Suzuki, Toshio Ogawa, Fei Sun, Y. Adachi, Atsushi Yamaguchi, Y. Matsubara
{"title":"Analysis of Crystal Orientation in Two-Way Cold-Rolled and Annealed Pure Iron","authors":"Yutaro Suzuki, Toshio Ogawa, Fei Sun, Y. Adachi, Atsushi Yamaguchi, Y. Matsubara","doi":"10.2355/tetsutohagane.tetsu-2023-019","DOIUrl":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-019","url":null,"abstract":"","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"7 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73075443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.2355/tetsutohagane.tetsu-2023-014
Hirokazu Kobayashi, Gentaro Takeda, K. Katoh, T. Wakimoto
{"title":"Coating Weight Reduction Technology in Gas Wiping of Hot-Dip Galvanizing on Steel Strip","authors":"Hirokazu Kobayashi, Gentaro Takeda, K. Katoh, T. Wakimoto","doi":"10.2355/tetsutohagane.tetsu-2023-014","DOIUrl":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-014","url":null,"abstract":"","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"57 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84606603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-15DOI: 10.2355/tetsutohagane.tetsu-2022-034
Naoya Ihara, Takashi Iwamoto, K. Nishimura
: The crack propagation behavior of nitrocarburized JIS SCM420 steel was investigated in a rotating bending fatigue test, focusing on crack stagnation behavior. The crack had clearly stagnated at a length of approximately 200 µm at the fatigue limit of 400 MPa, indicating that crack stagnation could control fatigue strength. The crack stagnation cannot be explained only by the change of the stress intensity factor, since the calculated value in this process increases with the depth from the notch. A large amount of plas-tic strain was observed around the tip of the crack by EBSD analysis. Because the stagnated position cor-responds to the critical depth between the hardened and unhardened regions formed by nitrocarburizing, it can be easily deformed. Therefore, it is inferred that the crack stagnation nitrocarburized JIS SCM420 steel can be explained by a plastic-induced closure mechanism.
{"title":"Crack Propagation Behavior in Rotational Bending Fatigue Test of Nitrocarburized JIS SCM420 Steel","authors":"Naoya Ihara, Takashi Iwamoto, K. Nishimura","doi":"10.2355/tetsutohagane.tetsu-2022-034","DOIUrl":"https://doi.org/10.2355/tetsutohagane.tetsu-2022-034","url":null,"abstract":": The crack propagation behavior of nitrocarburized JIS SCM420 steel was investigated in a rotating bending fatigue test, focusing on crack stagnation behavior. The crack had clearly stagnated at a length of approximately 200 µm at the fatigue limit of 400 MPa, indicating that crack stagnation could control fatigue strength. The crack stagnation cannot be explained only by the change of the stress intensity factor, since the calculated value in this process increases with the depth from the notch. A large amount of plas-tic strain was observed around the tip of the crack by EBSD analysis. Because the stagnated position cor-responds to the critical depth between the hardened and unhardened regions formed by nitrocarburizing, it can be easily deformed. Therefore, it is inferred that the crack stagnation nitrocarburized JIS SCM420 steel can be explained by a plastic-induced closure mechanism.","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"43 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90705207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}