The physics behind the transitions of natural Samaras, or the bio-inspired counterparts, to steady autorotation has been unclear. Theoretical and experimental investigations explore the inertial and aerodynamic characteristics required to guarantee stable transitions of an artificial Samara-like decelerator from chaotic tumbling motions to azimuthal autorotation. A non-dimensional inertial criterion is proposed, which is in accord with experiments.
{"title":"Stability criteria of Samara-like decelerator in unsteady transitions","authors":"H.-C. Wang, R. Breidenthal","doi":"10.1017/aer.2022.95","DOIUrl":"https://doi.org/10.1017/aer.2022.95","url":null,"abstract":"The physics behind the transitions of natural Samaras, or the bio-inspired counterparts, to steady autorotation has been unclear. Theoretical and experimental investigations explore the inertial and aerodynamic characteristics required to guarantee stable transitions of an artificial Samara-like decelerator from chaotic tumbling motions to azimuthal autorotation. A non-dimensional inertial criterion is proposed, which is in accord with experiments.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75180240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Depending on magnitude and duration, any manoeuvering overload can damage the structure of an aircraft and adversely affect the pilot’s concentration and reaction time. These are all threats to flight safety. The flight safety envelope estimation method based on the classical reachable set cannot take into account the effect of manoeuvering overload. To overcome this limitation, a generalized reachable set known as a cost-limited reachable set is introduced into the computation of flight safety envelopes in this paper. It differs from the classical reachable set in that the performance index of the system can be set as the time integral of a running cost, and it can discuss the ability to reach the trim set before the performance index grows to the admissible cost. When computing the flight safety envelope, the running cost is set as a weighted sum of time consumption and manoeuver overload factor, and the flight safety envelope is defined as a cost-limited reachable set of the trim set. The flight safety envelopes and optimal control laws under the different weight of manoeuver overload factors are analyzed.
{"title":"Estimation of safe flight envelope considering manoeuver overload based on cost-limited reachable set","authors":"Feng Zhou, H. Nie","doi":"10.1017/aer.2022.96","DOIUrl":"https://doi.org/10.1017/aer.2022.96","url":null,"abstract":"\u0000 Depending on magnitude and duration, any manoeuvering overload can damage the structure of an aircraft and adversely affect the pilot’s concentration and reaction time. These are all threats to flight safety. The flight safety envelope estimation method based on the classical reachable set cannot take into account the effect of manoeuvering overload. To overcome this limitation, a generalized reachable set known as a cost-limited reachable set is introduced into the computation of flight safety envelopes in this paper. It differs from the classical reachable set in that the performance index of the system can be set as the time integral of a running cost, and it can discuss the ability to reach the trim set before the performance index grows to the admissible cost. When computing the flight safety envelope, the running cost is set as a weighted sum of time consumption and manoeuver overload factor, and the flight safety envelope is defined as a cost-limited reachable set of the trim set. The flight safety envelopes and optimal control laws under the different weight of manoeuver overload factors are analyzed.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88216640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Friction stir welding is a prominent technique for making defect-free joints of aluminum alloys. The aluminum alloy AA2014-T6 finds wide applications in aerospace, naval and automotive applications. This paper attempts to predict the tensile strength and hardness characteristics of friction stir welded aluminum alloy AA2014-T6 by a fuzzy logic model. Friction stir welding was carried out by varying tool rotational speed (700, 1,000 and 1,400rpm), welding speed (20, 35, 50mm/min) and axial force (10, 12, 14kN) at three levels. The tensile strength and hardness characteristics of the welded specimens were obtained from the experiments conducted as per Taguchi’s L27 orthogonal array. A Mamdani-type fuzzy logic model was developed to predict the tensile strength and nugget hardness characteristics of the FSW joints. The fuzzy model was evaluated by comparing the results of confirmation experiments with that of the results predicted by the model. The confirmation experiments were conducted with a new set of parameters other than the ones used for building the model. The fuzzy model exhibits marginal variations of 2.53% for tensile strength and 2.42% for weld nugget hardness compared to the results of the conformation experiments.
{"title":"A fuzzy model to predict the mechanical characteristics of friction stir welded joints of aluminum alloy AA2014-T6","authors":"A. S. Kannusamy, S. Ponni alias sathya","doi":"10.1017/aer.2022.90","DOIUrl":"https://doi.org/10.1017/aer.2022.90","url":null,"abstract":"\u0000 Friction stir welding is a prominent technique for making defect-free joints of aluminum alloys. The aluminum alloy AA2014-T6 finds wide applications in aerospace, naval and automotive applications. This paper attempts to predict the tensile strength and hardness characteristics of friction stir welded aluminum alloy AA2014-T6 by a fuzzy logic model. Friction stir welding was carried out by varying tool rotational speed (700, 1,000 and 1,400rpm), welding speed (20, 35, 50mm/min) and axial force (10, 12, 14kN) at three levels. The tensile strength and hardness characteristics of the welded specimens were obtained from the experiments conducted as per Taguchi’s L27 orthogonal array. A Mamdani-type fuzzy logic model was developed to predict the tensile strength and nugget hardness characteristics of the FSW joints. The fuzzy model was evaluated by comparing the results of confirmation experiments with that of the results predicted by the model. The confirmation experiments were conducted with a new set of parameters other than the ones used for building the model. The fuzzy model exhibits marginal variations of 2.53% for tensile strength and 2.42% for weld nugget hardness compared to the results of the conformation experiments.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75305925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To obtain the optimal solution for the performance of the turbofan engine using infrared stealth technology, an engine mathematical model with a backward infrared radiation intensity calculation module was established. The effects of infrared suppression measures on the performance of turbofan engines were analysed. Based on the multi-objective particle swarm optimisation (MOPSO) algorithm, the optimal solution for the performance in the cruise state of the reference engine refitted with the infrared radiation suppression module was obtained; Further, through the multiple design points (MDPs) concept, the thermal cycle optimisation design of the turbofan engine was carried out. The results show that the integrated fully shielded guiding strut (IFSGS) with air film cooling had the ideal infrared suppression effect. Compared with the reference engine refitted with infrared radiation suppression module, the engine after cycle optimisation design could obtain better infrared stealth performance.
{"title":"Optimisation design of turbofan engine using infrared stealth technology","authors":"M. Chen, H. Chen, H. Zhang, J. Luo","doi":"10.1017/aer.2022.88","DOIUrl":"https://doi.org/10.1017/aer.2022.88","url":null,"abstract":"\u0000 To obtain the optimal solution for the performance of the turbofan engine using infrared stealth technology, an engine mathematical model with a backward infrared radiation intensity calculation module was established. The effects of infrared suppression measures on the performance of turbofan engines were analysed. Based on the multi-objective particle swarm optimisation (MOPSO) algorithm, the optimal solution for the performance in the cruise state of the reference engine refitted with the infrared radiation suppression module was obtained; Further, through the multiple design points (MDPs) concept, the thermal cycle optimisation design of the turbofan engine was carried out. The results show that the integrated fully shielded guiding strut (IFSGS) with air film cooling had the ideal infrared suppression effect. Compared with the reference engine refitted with infrared radiation suppression module, the engine after cycle optimisation design could obtain better infrared stealth performance.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87758204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We review the development of the contra-rotating propellers from the origins to the present. Initially, these systems were proposed to increase speed, then to increase propulsive efficiency, and thus reduce fuel burn. Ultimately, they hit another environmental limit: too much noise. Acoustics has been in fact the main focus of the development in the past 30 years. Pioneering work done across countries demonstrated several unique features of this propulsor. Various embodiments are available, namely contra-rotating, counter-rotating, co-axial, tandem, open rotor and prop-fans, collectively named contra-rotating propellers. This review only considers concepts that have been applied to real aircraft, prototypes that are known to have been flight tested (about 70 vehicles), or representative laboratory models. Five classifications are proposed: pioneers (before 1940), golden years (1940–1950), Western airplanes (1950s onwards), Soviet-Russian airplanes (1950s onwards) and modern developments (1980s onwards). Selected experimental aircraft and laboratory concepts are mentioned, where these appear to advance the state-of-the-art. Power plants evolved from internal combustion engines to the modern gas turbine engines requiring new solutions. Engine layouts and propulsion configurations are analysed where appropriate. It is concluded that propulsive efficiency can only be achieved at a cost of multiple engineering problems, some of which remain unsolved.
{"title":"Historical development of the coaxial contra-rotating propeller","authors":"A. Filippone","doi":"10.1017/aer.2022.92","DOIUrl":"https://doi.org/10.1017/aer.2022.92","url":null,"abstract":"\u0000 We review the development of the contra-rotating propellers from the origins to the present. Initially, these systems were proposed to increase speed, then to increase propulsive efficiency, and thus reduce fuel burn. Ultimately, they hit another environmental limit: too much noise. Acoustics has been in fact the main focus of the development in the past 30 years. Pioneering work done across countries demonstrated several unique features of this propulsor. Various embodiments are available, namely contra-rotating, counter-rotating, co-axial, tandem, open rotor and prop-fans, collectively named contra-rotating propellers. This review only considers concepts that have been applied to real aircraft, prototypes that are known to have been flight tested (about 70 vehicles), or representative laboratory models. Five classifications are proposed: pioneers (before 1940), golden years (1940–1950), Western airplanes (1950s onwards), Soviet-Russian airplanes (1950s onwards) and modern developments (1980s onwards). Selected experimental aircraft and laboratory concepts are mentioned, where these appear to advance the state-of-the-art. Power plants evolved from internal combustion engines to the modern gas turbine engines requiring new solutions. Engine layouts and propulsion configurations are analysed where appropriate. It is concluded that propulsive efficiency can only be achieved at a cost of multiple engineering problems, some of which remain unsolved.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83421013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In view of the cooperative guidance problem with time delay, this paper proposes a two-stage time-delay prescribed-time cooperative guidance law in the three-dimensional (3D) space. In the first stage, by introducing a time scaling function and time-delay consensus, the proposed cooperative guidance law can overcome the negative influence of time delay to guaranteed the desired convergence performance. Derived from the Lyapunov convergence analysis, the time-delay stability of the first stage can be ensured and the convergence time can be described as the relationship between delayed time and mission-assigned convergence time. Then, taking the prescribed-time-related convergence time as the switching point, the second stage begins with suitable initial conditions and all interceptors are governed by proportional navigation guidance. Finally, comparative simulations are performed to demonstrate the effectiveness and superiority of the proposed time-delay guidance law.
{"title":"Prescribed-time cooperative guidance with time delay","authors":"W. Ma, W. Fu, Y. Fang, S. Liu, X. Liang","doi":"10.1017/aer.2022.87","DOIUrl":"https://doi.org/10.1017/aer.2022.87","url":null,"abstract":"\u0000 In view of the cooperative guidance problem with time delay, this paper proposes a two-stage time-delay prescribed-time cooperative guidance law in the three-dimensional (3D) space. In the first stage, by introducing a time scaling function and time-delay consensus, the proposed cooperative guidance law can overcome the negative influence of time delay to guaranteed the desired convergence performance. Derived from the Lyapunov convergence analysis, the time-delay stability of the first stage can be ensured and the convergence time can be described as the relationship between delayed time and mission-assigned convergence time. Then, taking the prescribed-time-related convergence time as the switching point, the second stage begins with suitable initial conditions and all interceptors are governed by proportional navigation guidance. Finally, comparative simulations are performed to demonstrate the effectiveness and superiority of the proposed time-delay guidance law.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79122593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Syed Abdullah, L. Iannucci, E. Greenhalgh, F. Yusof
The aim of this paper is to present a plane-stress damage model based on the Classical Lamination Theory (CLT), developed for polymer fibre-based composite. The proposed numerical model utilises a damage mechanics methodology coupled with fracture mechanics to predict composite failure, particularly under quasi-static and dynamic loadings. In addition, the proposed constitutive equations consider a single secant modulus to describe its tensile and compressive modulus, as opposed to the physically proposed tier models for polymer fibres which possesses a ‘skin-core’ structure. The result of single element and coupon-level modelling showed excellent correlation with the experimental results. In addition, it was also found that the proposed numerical model showed considerable accuracy on the response of the composite under low and high velocity impact loadings.
{"title":"Impact on Vectran/Epoxy composites: Experimental and numerical analysis","authors":"S. Syed Abdullah, L. Iannucci, E. Greenhalgh, F. Yusof","doi":"10.1017/aer.2022.93","DOIUrl":"https://doi.org/10.1017/aer.2022.93","url":null,"abstract":"\u0000 The aim of this paper is to present a plane-stress damage model based on the Classical Lamination Theory (CLT), developed for polymer fibre-based composite. The proposed numerical model utilises a damage mechanics methodology coupled with fracture mechanics to predict composite failure, particularly under quasi-static and dynamic loadings. In addition, the proposed constitutive equations consider a single secant modulus to describe its tensile and compressive modulus, as opposed to the physically proposed tier models for polymer fibres which possesses a ‘skin-core’ structure. The result of single element and coupon-level modelling showed excellent correlation with the experimental results. In addition, it was also found that the proposed numerical model showed considerable accuracy on the response of the composite under low and high velocity impact loadings.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77887803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In some small airports, a parallel taxiway is not built due to space restrictions or financial issues; hence, the runway itself is often used as a taxiway in this type of airport. After touch down, aircraft move to the U-turn area at the end of the runway and turn 180 degrees, then move back to the desired point, such as a gate or the apron, using the runway. The runway is blocked to other arrivals and departures during this process. This process, called backtrack or back-taxi, can result in high delays for both arrivals and departures. Runway occupancy times (ROTs) vary depending on numerous conditions, including pilot performance, weather conditions, aircraft type, etc. Although there are speed restrictions and procedures announced in advance, the actual performance can be uncertain. In addition, most aircraft can make a U-turn as soon as they sufficiently reduce their speed before they reach the U-turn area especially if they are already delayed. These situations bring enormous uncertainties for traffic management at such an airport. Controllers may need help to sequence aircraft, particularly in busy traffic. In this study, a stochastic mathematical model is developed to sequence arrival/departure operations at such an airport considering the ROT uncertainties of arrivals. The objective function of the developed model is determined as the minimisation of the total delay. ROT data was obtained by observing radar tracks of 120 arriving flights. Reasonable ROT scenarios with various probabilities to represent ROT uncertainties were integrated into the mathematical modeling. In addition, two different sequencing approaches are presented as well as the first come first serve (FCFS) approach. As a result, the proposed stochastic approach provides robust sequences applicable for all ROT scenarios with significant delay savings up to an average of 18.4% and 39.5% compared to deterministic and FCFS approaches, respectively.
{"title":"Aircraft sequencing under the uncertainty of the runway occupancy times of arrivals during the backtrack procedure","authors":"K. Dönmez","doi":"10.1017/aer.2022.91","DOIUrl":"https://doi.org/10.1017/aer.2022.91","url":null,"abstract":"\u0000 In some small airports, a parallel taxiway is not built due to space restrictions or financial issues; hence, the runway itself is often used as a taxiway in this type of airport. After touch down, aircraft move to the U-turn area at the end of the runway and turn 180 degrees, then move back to the desired point, such as a gate or the apron, using the runway. The runway is blocked to other arrivals and departures during this process. This process, called backtrack or back-taxi, can result in high delays for both arrivals and departures. Runway occupancy times (ROTs) vary depending on numerous conditions, including pilot performance, weather conditions, aircraft type, etc. Although there are speed restrictions and procedures announced in advance, the actual performance can be uncertain. In addition, most aircraft can make a U-turn as soon as they sufficiently reduce their speed before they reach the U-turn area especially if they are already delayed. These situations bring enormous uncertainties for traffic management at such an airport. Controllers may need help to sequence aircraft, particularly in busy traffic. In this study, a stochastic mathematical model is developed to sequence arrival/departure operations at such an airport considering the ROT uncertainties of arrivals. The objective function of the developed model is determined as the minimisation of the total delay. ROT data was obtained by observing radar tracks of 120 arriving flights. Reasonable ROT scenarios with various probabilities to represent ROT uncertainties were integrated into the mathematical modeling. In addition, two different sequencing approaches are presented as well as the first come first serve (FCFS) approach. As a result, the proposed stochastic approach provides robust sequences applicable for all ROT scenarios with significant delay savings up to an average of 18.4% and 39.5% compared to deterministic and FCFS approaches, respectively.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73873695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a basic flow model for engineering applications, wall-bounded turbulent flow has been widely studied in the field of aero-optics, but the flow control methods that could effectively suppress aero-optical effects are relatively rare. As an urgent requirement in engineering application, the concept of the steady wall blowing and suction is proposed by the author. Firstly, the author briefly described the flow model and physical method. Secondly, the choice of disturbance type is given. Then, the results of wall blowing-suction, suction and blowing ways based on steady and unsteady disturbance are compared. Finally, it is concluded that employing the high steady wall blowing disturbance (A = 0.2) could realise aero-optical suppression by around 20%. Besides, the steady wall suction scheme contributes to about 70%–80% reduction effect within a wide amplitude range (A = 0.2–1.0), which suppresses this effect by maintaining laminar state downstream contrasted by the baseline case.
{"title":"Effective aero-optical suppression by steady wall blowing and wall suction schemes for supersonic turbulent boundary layer","authors":"H. Zou, X. Yang, X.-W. Sun, W. Liu, Q. Yang","doi":"10.1017/aer.2022.84","DOIUrl":"https://doi.org/10.1017/aer.2022.84","url":null,"abstract":"\u0000 As a basic flow model for engineering applications, wall-bounded turbulent flow has been widely studied in the field of aero-optics, but the flow control methods that could effectively suppress aero-optical effects are relatively rare. As an urgent requirement in engineering application, the concept of the steady wall blowing and suction is proposed by the author. Firstly, the author briefly described the flow model and physical method. Secondly, the choice of disturbance type is given. Then, the results of wall blowing-suction, suction and blowing ways based on steady and unsteady disturbance are compared. Finally, it is concluded that employing the high steady wall blowing disturbance (A = 0.2) could realise aero-optical suppression by around 20%. Besides, the steady wall suction scheme contributes to about 70%–80% reduction effect within a wide amplitude range (A = 0.2–1.0), which suppresses this effect by maintaining laminar state downstream contrasted by the baseline case.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81564320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, the aerodynamic performances and the flow separation behaviour of the wing profiles, used in the wing of Boeing 737-Classic aircraft, and a model wing formed of these profiles were investigated at 2 × 105 Reynolds number (Re) and different angles of attack ranging from −4° to the angle, which maximum lift point obtained. The experiments were conducted in a low-speed wind tunnel in Erciyes University Faculty of Aeronautics and Astronautics Aerodynamic Laboratory. Four profiles and the model wing, which was obtained from the combination of the four profiles were produced in a rectangular shape with dimensions of 0.21m × 0.21m. In the first part of this two-part study, the wing profiles were examined individually regarding aerodynamic performance and flow separation. In the second phase of the study, the aerodynamic performance and the flow separation behaviour of the model wing were examined and the results were compared with the data obtained from each profile. The study results showed that the slopes of the numerical graphics are generally quite consistent with experimental results. In addition, the pressure and velocity distributions have followed the normal trend until the angle-of-attack (AoA) of 20°. In contrast, the negative speed values and negative pressure zones have appeared on the profile above this angle. The air flowed as laminar on the profiles and the model wing until 20°, while laminar separation bubbles are begun to take place at about 24° AoA. Finally, the best aerodynamic performance has been obtained with the model wing.
{"title":"An investigation of aerodynamic behaviours and aerodynamic performance of a model wing formed from different profiles","authors":"A. Askan, S. Tangöz, M. Konar","doi":"10.1017/aer.2022.85","DOIUrl":"https://doi.org/10.1017/aer.2022.85","url":null,"abstract":"\u0000 In this study, the aerodynamic performances and the flow separation behaviour of the wing profiles, used in the wing of Boeing 737-Classic aircraft, and a model wing formed of these profiles were investigated at 2 × 105 Reynolds number (Re) and different angles of attack ranging from −4° to the angle, which maximum lift point obtained. The experiments were conducted in a low-speed wind tunnel in Erciyes University Faculty of Aeronautics and Astronautics Aerodynamic Laboratory. Four profiles and the model wing, which was obtained from the combination of the four profiles were produced in a rectangular shape with dimensions of 0.21m × 0.21m. In the first part of this two-part study, the wing profiles were examined individually regarding aerodynamic performance and flow separation. In the second phase of the study, the aerodynamic performance and the flow separation behaviour of the model wing were examined and the results were compared with the data obtained from each profile. The study results showed that the slopes of the numerical graphics are generally quite consistent with experimental results. In addition, the pressure and velocity distributions have followed the normal trend until the angle-of-attack (AoA) of 20°. In contrast, the negative speed values and negative pressure zones have appeared on the profile above this angle. The air flowed as laminar on the profiles and the model wing until 20°, while laminar separation bubbles are begun to take place at about 24° AoA. Finally, the best aerodynamic performance has been obtained with the model wing.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90753448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}