The high-frequency and high-amplitude pyroshock environment during the service of the spacecraft will cause damage to the equipment. Here, we develop a shock test device based on air cannon to simulate the above pyroshock environment. Then, a finite element model was established by explicit dynamic software ANSYS/LS-DYNA, and the simulation results were proved to be consistent with the test data. Based on the theory of Shock Response Spectrum (SRS), the effects of device parameters such as pressure, bullet material and resonant plate material on SRS were investigated via numerical simulation and shock test. This study shows that the amplitude of SRS increases with the increase of pressure in the range of 0.15–0.60 MPa, and the break frequency amplitude has a square root function relationship with the pressure. Additionally, the high-frequency amplitude of SRS was affected by the energy transfer efficiency of the bullet.
{"title":"Simulation of pyroshock environment and effect rules of shock response spectrum","authors":"W. Wang, K. Huang, F. Zhao","doi":"10.1017/aer.2023.22","DOIUrl":"https://doi.org/10.1017/aer.2023.22","url":null,"abstract":"\u0000 The high-frequency and high-amplitude pyroshock environment during the service of the spacecraft will cause damage to the equipment. Here, we develop a shock test device based on air cannon to simulate the above pyroshock environment. Then, a finite element model was established by explicit dynamic software ANSYS/LS-DYNA, and the simulation results were proved to be consistent with the test data. Based on the theory of Shock Response Spectrum (SRS), the effects of device parameters such as pressure, bullet material and resonant plate material on SRS were investigated via numerical simulation and shock test. This study shows that the amplitude of SRS increases with the increase of pressure in the range of 0.15–0.60 MPa, and the break frequency amplitude has a square root function relationship with the pressure. Additionally, the high-frequency amplitude of SRS was affected by the energy transfer efficiency of the bullet.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83348078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There has been a renewed interest in developing environmentally friendly, economically viable, and technologically feasible supersonic transport aircraft and reduced order modeling methods can play an important contribution in accelerating the design process of these future aircraft. This paper reviews the use of the vortex lattice method (VLM) in modeling the general aerodynamics of subsonic and supersonic aircraft. The historical overview of the vortex lattice method is reviewed which indicates the use of this method for over a century for development and advancements in the aerodynamic analysis of subsonic and supersonic aircraft. The preference of VLM over other potential flow-solvers is because of its low order highly efficient computational analysis which is quick and efficient. Developments in VLM covering steady, unsteady state, linear and non-linear aerodynamic characteristics for different wing planform for the purpose of several different types of design optimisation is reviewed. For over a decade classical vortex lattice method has been used for multi-objective optimisation studies for commercial aircraft and unmanned aerial vehicle’s aerodynamic performance optimisation. VLM was one of the major potential flow solvers for studying the aerodynamic and aeroelastic characteristics of many wings and aircraft for NASA’s supersonic transport mission (SST). VLM is a preferred means for solving large numbers of computational design parameters in less time, more efficiently, and cheaper when compared to conventional CFD analysis which lends itself more to detailed study and solving the more challenging configuration and aerodynamic features of civil supersonic transport.
{"title":"Review of vortex lattice method for supersonic aircraft design","authors":"H. Joshi, P. Thomas","doi":"10.1017/aer.2023.25","DOIUrl":"https://doi.org/10.1017/aer.2023.25","url":null,"abstract":"\u0000 There has been a renewed interest in developing environmentally friendly, economically viable, and technologically feasible supersonic transport aircraft and reduced order modeling methods can play an important contribution in accelerating the design process of these future aircraft. This paper reviews the use of the vortex lattice method (VLM) in modeling the general aerodynamics of subsonic and supersonic aircraft. The historical overview of the vortex lattice method is reviewed which indicates the use of this method for over a century for development and advancements in the aerodynamic analysis of subsonic and supersonic aircraft. The preference of VLM over other potential flow-solvers is because of its low order highly efficient computational analysis which is quick and efficient. Developments in VLM covering steady, unsteady state, linear and non-linear aerodynamic characteristics for different wing planform for the purpose of several different types of design optimisation is reviewed. For over a decade classical vortex lattice method has been used for multi-objective optimisation studies for commercial aircraft and unmanned aerial vehicle’s aerodynamic performance optimisation. VLM was one of the major potential flow solvers for studying the aerodynamic and aeroelastic characteristics of many wings and aircraft for NASA’s supersonic transport mission (SST). VLM is a preferred means for solving large numbers of computational design parameters in less time, more efficiently, and cheaper when compared to conventional CFD analysis which lends itself more to detailed study and solving the more challenging configuration and aerodynamic features of civil supersonic transport.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"1983 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90303634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nowadays most busy international airports and their corresponding terminal areas are suffering from huge congestion issues due to the simultaneity of their arrival aircraft. The aim of this paper is to establish a new separation method using time- based-separation, speed modification during approach phases and Point Merge System (PMS) so as to ensure efficiently the traffic flow. This work took as a case study the busiest airport of Morocco, The Mohammed V International airport of Casablanca. The proposed management model offers very good results when compared with other models such as the first-come first-served (FCFS) model.
{"title":"Improving the management of air traffic congestion during the approach phase","authors":"O. Idrissi, A. Bikir, K. Mansouri","doi":"10.1017/aer.2023.20","DOIUrl":"https://doi.org/10.1017/aer.2023.20","url":null,"abstract":"\u0000 Nowadays most busy international airports and their corresponding terminal areas are suffering from huge congestion issues due to the simultaneity of their arrival aircraft. The aim of this paper is to establish a new separation method using time- based-separation, speed modification during approach phases and Point Merge System (PMS) so as to ensure efficiently the traffic flow. This work took as a case study the busiest airport of Morocco, The Mohammed V International airport of Casablanca. The proposed management model offers very good results when compared with other models such as the first-come first-served (FCFS) model.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75670564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Nasoulis, G. Protopapadakis, E. G. Ntouvelos, V. Gkoutzamanis, A. Kalfas
Hybrid-electric propulsion is a promising alternative to sustainable aviation and is mainly considered for the commuter and regional aircraft class. However, the development of hybrid-electric propulsion variants is affected by the technology readiness level of electric components. The components’ technology will determine the electrification benefit, compared to a conventional aircraft, and will suggest which is the most beneficial variant and which has a closer entry into service date. Within this work, three different dates are explored, namely 2027, 2030 and 2040, to size three Parallel and three Series hybrid-electric architecture variants using an in-house aircraft sizing tool. All variants are compared to a conventional configuration sized using technological assumptions of 2014, with the main comparison metrics being the aircraft block fuel, energy consumption, direct operating cost and holistic environmental impact. On one hand, the Parallel configurations have reduced maximum take-off mass and mission energy consumption compared to the Series, however, the latter show a greater potential for block fuel reduction and require less onboard energy for the same mission. The annual operating cost evaluation indicates that the Parallel hybrid variant of 2030 has greater operational costs than the respective Series variant; however, it has reduced capital costs compared to the latter, making it more economical to operate considering both costs. Additionally, in the case of an energy recession, both hybrid variants of 2030 show a further cost reduction, with the Series having a total reduction of 10.4% excluding capital costs, compared to the reference aircraft. Moreover, the life cycle assessment shows that the Series variants have a lower environmental impact, both compared to the reference aircraft and the Parallel variants. The former could be up to 59.7% less detrimental to the environment than the reference aircraft, whereas the latter up to 23.9%, with the integration of renewable sources for electricity production. Finally, by the year 2040, the Series variant shows outstanding performance in all comparison metrics, compared to the Parallel and the reference aircraft.
{"title":"Environmental and techno-economic evaluation for hybrid-electric propulsion architectures","authors":"C. Nasoulis, G. Protopapadakis, E. G. Ntouvelos, V. Gkoutzamanis, A. Kalfas","doi":"10.1017/aer.2023.27","DOIUrl":"https://doi.org/10.1017/aer.2023.27","url":null,"abstract":"\u0000 Hybrid-electric propulsion is a promising alternative to sustainable aviation and is mainly considered for the commuter and regional aircraft class. However, the development of hybrid-electric propulsion variants is affected by the technology readiness level of electric components. The components’ technology will determine the electrification benefit, compared to a conventional aircraft, and will suggest which is the most beneficial variant and which has a closer entry into service date. Within this work, three different dates are explored, namely 2027, 2030 and 2040, to size three Parallel and three Series hybrid-electric architecture variants using an in-house aircraft sizing tool. All variants are compared to a conventional configuration sized using technological assumptions of 2014, with the main comparison metrics being the aircraft block fuel, energy consumption, direct operating cost and holistic environmental impact. On one hand, the Parallel configurations have reduced maximum take-off mass and mission energy consumption compared to the Series, however, the latter show a greater potential for block fuel reduction and require less onboard energy for the same mission. The annual operating cost evaluation indicates that the Parallel hybrid variant of 2030 has greater operational costs than the respective Series variant; however, it has reduced capital costs compared to the latter, making it more economical to operate considering both costs. Additionally, in the case of an energy recession, both hybrid variants of 2030 show a further cost reduction, with the Series having a total reduction of 10.4% excluding capital costs, compared to the reference aircraft. Moreover, the life cycle assessment shows that the Series variants have a lower environmental impact, both compared to the reference aircraft and the Parallel variants. The former could be up to 59.7% less detrimental to the environment than the reference aircraft, whereas the latter up to 23.9%, with the integration of renewable sources for electricity production. Finally, by the year 2040, the Series variant shows outstanding performance in all comparison metrics, compared to the Parallel and the reference aircraft.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77044232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lift alleviation by a mini-spoiler on aerofoils, unswept and swept wings encountering an isolated counter-clockwise vortical gust was investigated by means of force and velocity measurements. The flow separation region behind the spoiler remains little affected during the gust encounter. The maximum lift reduction is found for the static stall angle of attack. The change in the maximum lift during the gust encounter is approximately equal to that in steady freestream. The comparison with plunging aerofoils reveals that, for the same maximum gust and plunge velocity, the effectiveness of the mini-spoiler is much better in travelling gusts. This reveals the importance of the streamwise length scale of the incident gust. For the unswept wing, there is some three-dimensionality of the flow separation induced by the mini-spoiler near the wing tip. The magnitude of the lift reduction can be estimated using the aerofoil data and by making an aspect ratio correction for the reduced effective angle of attack. For the swept wing, the mini-spoiler can disrupt the formation of a leading-edge vortex induced by the incident vortex on the clean wing and can still reduce the maximum lift.
{"title":"Lift alleviation in travelling vortical gusts","authors":"Y. Qian, Z. Wang, I. Gursul","doi":"10.1017/aer.2023.26","DOIUrl":"https://doi.org/10.1017/aer.2023.26","url":null,"abstract":"\u0000 Lift alleviation by a mini-spoiler on aerofoils, unswept and swept wings encountering an isolated counter-clockwise vortical gust was investigated by means of force and velocity measurements. The flow separation region behind the spoiler remains little affected during the gust encounter. The maximum lift reduction is found for the static stall angle of attack. The change in the maximum lift during the gust encounter is approximately equal to that in steady freestream. The comparison with plunging aerofoils reveals that, for the same maximum gust and plunge velocity, the effectiveness of the mini-spoiler is much better in travelling gusts. This reveals the importance of the streamwise length scale of the incident gust. For the unswept wing, there is some three-dimensionality of the flow separation induced by the mini-spoiler near the wing tip. The magnitude of the lift reduction can be estimated using the aerofoil data and by making an aspect ratio correction for the reduced effective angle of attack. For the swept wing, the mini-spoiler can disrupt the formation of a leading-edge vortex induced by the incident vortex on the clean wing and can still reduce the maximum lift.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79688692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In an aircraft design, optimisation has become a common practice, especially when structural and aerodynamics interactions are considered. Performance measures often used in an industrial setting include structural weight, drag, lift to drag ratio, fuel burn or maximum range. It is a common practice to evaluate such performance indicators only on a handful of sample points. To achieve a truly economical aircraft design it is necessary to include a fully integrated mission analysis during a multidisciplinary structural optimisation, as there is a strong coupling between a flight behaviour and actual operational conditions of an aircraft. This paper makes a case for a modular approach to a mission analysis implementation that could utilise a variety of physical models and their combinations, offsetting some of the computational demands related to a fully integrated mission analysis and allowing to focus resources where they are needed.
{"title":"Structural wing optimisation targeting economical mission performance of a passenger aircraft","authors":"","doi":"10.1017/aer.2023.21","DOIUrl":"https://doi.org/10.1017/aer.2023.21","url":null,"abstract":"\u0000 In an aircraft design, optimisation has become a common practice, especially when structural and aerodynamics interactions are considered. Performance measures often used in an industrial setting include structural weight, drag, lift to drag ratio, fuel burn or maximum range. It is a common practice to evaluate such performance indicators only on a handful of sample points. To achieve a truly economical aircraft design it is necessary to include a fully integrated mission analysis during a multidisciplinary structural optimisation, as there is a strong coupling between a flight behaviour and actual operational conditions of an aircraft. This paper makes a case for a modular approach to a mission analysis implementation that could utilise a variety of physical models and their combinations, offsetting some of the computational demands related to a fully integrated mission analysis and allowing to focus resources where they are needed.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81980185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The increasingly widespread application of drones and the emergence of urban air mobility leads to a challenging question in airspace modernisation: how to create a safe and scalable air traffic management system that can handle the expected density of operations. Increasing the number of vehicles in a given airspace volume and enabling routine operations are essential for these services to be economically viable. However, a higher density of operations increases risks, poses a great challenge for coordination and necessitates the development of a novel solution for traffic management. This paper contributes to the research towards such a strategy and the field of airspace management by calculating and analysing the conflict probability in an en-route, free-flight scenario for autonomous vehicles. Analytical methods are used to determine the directional dependence of conflict probabilities for exponential and normal prescribed speed probability distributions. The notions of geometric and speed conflict are introduced and distinguished throughout the calculations of the paper. The effect of truncating the set of available flight speeds is also investigated. The sensitivity of the calculated results to speed and heading perturbations is studied within the analytical framework and verified by numerical simulations. Results enable a fresh approach to conflict detection and resolution through distribution shaping and are intended to be used in an integrated, stochastic coordination framework.
{"title":"Analysis of the traffic conflict situation for speed probability distributions","authors":"Zsombor Öreg, H. Shin, A. Tsourdos","doi":"10.1017/aer.2023.12","DOIUrl":"https://doi.org/10.1017/aer.2023.12","url":null,"abstract":"\u0000 The increasingly widespread application of drones and the emergence of urban air mobility leads to a challenging question in airspace modernisation: how to create a safe and scalable air traffic management system that can handle the expected density of operations. Increasing the number of vehicles in a given airspace volume and enabling routine operations are essential for these services to be economically viable. However, a higher density of operations increases risks, poses a great challenge for coordination and necessitates the development of a novel solution for traffic management. This paper contributes to the research towards such a strategy and the field of airspace management by calculating and analysing the conflict probability in an en-route, free-flight scenario for autonomous vehicles. Analytical methods are used to determine the directional dependence of conflict probabilities for exponential and normal prescribed speed probability distributions. The notions of geometric and speed conflict are introduced and distinguished throughout the calculations of the paper. The effect of truncating the set of available flight speeds is also investigated. The sensitivity of the calculated results to speed and heading perturbations is studied within the analytical framework and verified by numerical simulations. Results enable a fresh approach to conflict detection and resolution through distribution shaping and are intended to be used in an integrated, stochastic coordination framework.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79692022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In January 2017, a business jet flew in Norway on a short repositioning flight with two pilots onboard, no passengers or cargo. Initially, the take-off proceeded as normal but as the landing gear was retracted both pilots observed that the airspeed was rapidly approaching the flap limiting speed of 200kts. When the flaps were fully retracted at a height of approximately 2,100ft above ground level, the crew experienced a violent nose-down pitch motion. Control was regained at a height of approximately 170ft above ground level and, following the accident, data from the flight data recorder showed that the aircraft experienced –2.62G during the pitch upset. A tailplane stall due to icing was suspected; however, the flight data recorder, being limited to 36 parameters, was not able to confirm this. For expediency during the accident investigation process, a simplified, linear flight dynamics model was developed using Matlab/Simulink to assess static and dynamic stability for a range of tailplane efficiency factors to simulate the effects of tailplane icing.
{"title":"Loss of control in flight accident case study: icing-related tailplane stall","authors":"M. Bromfield, N. Horri, K. Halvorsen, K. Lande","doi":"10.1017/aer.2023.18","DOIUrl":"https://doi.org/10.1017/aer.2023.18","url":null,"abstract":"\u0000 In January 2017, a business jet flew in Norway on a short repositioning flight with two pilots onboard, no passengers or cargo. Initially, the take-off proceeded as normal but as the landing gear was retracted both pilots observed that the airspeed was rapidly approaching the flap limiting speed of 200kts. When the flaps were fully retracted at a height of approximately 2,100ft above ground level, the crew experienced a violent nose-down pitch motion. Control was regained at a height of approximately 170ft above ground level and, following the accident, data from the flight data recorder showed that the aircraft experienced –2.62G during the pitch upset. A tailplane stall due to icing was suspected; however, the flight data recorder, being limited to 36 parameters, was not able to confirm this. For expediency during the accident investigation process, a simplified, linear flight dynamics model was developed using Matlab/Simulink to assess static and dynamic stability for a range of tailplane efficiency factors to simulate the effects of tailplane icing.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91159910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A distributed UAV (unmanned aerial vehicle) flocking control method based on vision geometry is proposed, in which only monocular RGB (red, green, blue) images are used to estimate the relative positions and velocities between drones. It does not rely on special visual markers and external infrastructure, nor does it require inter-UAV communication or prior knowledge of UAV size. This method combines the advantages of deep learning and classical geometry. It adopts a deep optical flow network to estimate dense matching points between two consecutive images, uses segmentation technology to classify these matching points into background and specific UAV, and then maps the classified matching points to Euclidean space based on the depth map information. In 3D matching points, also known as 3D feature point pairs, each of their classifications is used to estimate the rotation matrix, translation vector, velocity of the corresponding UAV, as well as the relative position between drones, based on RANSAC and least squares method. On this basis, a flocking control model is constructed. Experimental results in the Microsoft Airsim simulation environment show that in all evaluation metrics, our method achieves almost the same performance as the UAV flocking algorithm based on ground truth cluster state.
{"title":"Vision geometry-based UAV flocking","authors":"L. Wang, T. He","doi":"10.1017/aer.2022.112","DOIUrl":"https://doi.org/10.1017/aer.2022.112","url":null,"abstract":"\u0000 A distributed UAV (unmanned aerial vehicle) flocking control method based on vision geometry is proposed, in which only monocular RGB (red, green, blue) images are used to estimate the relative positions and velocities between drones. It does not rely on special visual markers and external infrastructure, nor does it require inter-UAV communication or prior knowledge of UAV size. This method combines the advantages of deep learning and classical geometry. It adopts a deep optical flow network to estimate dense matching points between two consecutive images, uses segmentation technology to classify these matching points into background and specific UAV, and then maps the classified matching points to Euclidean space based on the depth map information. In 3D matching points, also known as 3D feature point pairs, each of their classifications is used to estimate the rotation matrix, translation vector, velocity of the corresponding UAV, as well as the relative position between drones, based on RANSAC and least squares method. On this basis, a flocking control model is constructed. Experimental results in the Microsoft Airsim simulation environment show that in all evaluation metrics, our method achieves almost the same performance as the UAV flocking algorithm based on ground truth cluster state.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87348118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although a coaxial compound helicopter can takeoff without propeller in the normal condition, the distance should be as short as possible for obstacle avoidance when the vehicle operates in a confined area with heavy loads. Therefore, a suitable propeller control is required to improve the takeoff performance while the total power consumption is no more than the available power. The path is predicted by applying trajectory optimisation. Several varying takeoff parameters, including attitude, liftoff speed and obstacle height, are considered for optimum global performance. Three path indicators are proposed. Apart from typical distance and pilot workload, path sensitivity is quantified based on deviation from takeoff parameter variation. Results indicated that low propeller thrust at hover and moderate allocation on the propeller through flight is recommended. The aircraft achieves significantly improved takeoff performance compared to flight with pure rotors while maintaining the maximum takeoff weight. The distance is shortened by 12.6%, and the longitudinal pilot workload is alleviated by 9.8% and 7.3% from mean and maximum power frequency aspects. Besides, the path is less sensitive to takeoff parameter variations, such as speed, altitude and height.
{"title":"Propeller control for takeoff of a heavily loaded coaxial compound helicopter","authors":"Y. Zhao, Y. Yuan, R. Chen, X. Yan","doi":"10.1017/aer.2023.7","DOIUrl":"https://doi.org/10.1017/aer.2023.7","url":null,"abstract":"\u0000 Although a coaxial compound helicopter can takeoff without propeller in the normal condition, the distance should be as short as possible for obstacle avoidance when the vehicle operates in a confined area with heavy loads. Therefore, a suitable propeller control is required to improve the takeoff performance while the total power consumption is no more than the available power. The path is predicted by applying trajectory optimisation. Several varying takeoff parameters, including attitude, liftoff speed and obstacle height, are considered for optimum global performance. Three path indicators are proposed. Apart from typical distance and pilot workload, path sensitivity is quantified based on deviation from takeoff parameter variation. Results indicated that low propeller thrust at hover and moderate allocation on the propeller through flight is recommended. The aircraft achieves significantly improved takeoff performance compared to flight with pure rotors while maintaining the maximum takeoff weight. The distance is shortened by 12.6%, and the longitudinal pilot workload is alleviated by 9.8% and 7.3% from mean and maximum power frequency aspects. Besides, the path is less sensitive to takeoff parameter variations, such as speed, altitude and height.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86197247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}