首页 > 最新文献

Theoretical and Applied Genetics最新文献

英文 中文
Phenotypic characterization and genetic mapping of the semi-dwarf mutant sdw9 in maize. 玉米半矮突变体 sdw9 的表型特征和遗传图谱。
IF 4.4 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-10-21 DOI: 10.1007/s00122-024-04762-2
Jiawen Zhao, Baiyu Yuan, Hao Zhang, Xiao Guo, Liangfa Wang, Xiaoqian Qiu, QianKun Xie, Liqin Mu, Chenhui Ma, Teng Zhou, Javed Hussain, Xiaoyang Chen, Xuehai Zhang, Dong Ding, Jiong Wan, Jihua Tang

Key message: In summary, we characterized a maize semi-dwarf mutant, sdw9, and successfully isolated the responsible gene, which encodes a GRAS protein, through a combination of map-based cloning and Re-sequencing (Re-seq). Our findings demonstrate that the candidate gene ZmGRAS42 regulates BR signaling genes, thereby influencing internode development. This regulatory function likely involves processes such as cell division, cell cycle regulation and cell wall synthesis. Favorable variations of ZmGRAS42 identified in this study may hold promise for the development of lodging-resistant maize cultivars suitable for high-density planting, contributing to the improvement of maize breeding programs. Plant height and lateral root angle are crucial determinants of plant architecture in maize (Zea mays) which are closely related to lodging resistance at high planting density. These traits are intricately regulated by various phytohormones. Mutations affecting hormone biosynthesis and signaling often lead to reduced yield alongside diminished plant height, posing challenges in breeding dwarf maize varieties. In this study, the maize mutant sdw9 was characterized, which displays shorter stature and altered lateral root angle compared to WT, while showing potential to increase planting density and improve overall yield despite a slight reduction in single-ear yield. Employing positional cloning coupled with Re-seq techniques, we pinpointed a transposon insertion in the candidate gene ZmGRAS42, which encodes a GRAS transcription factor involved in BR signaling in maize. Transcriptome analysis revealed that ZmGRAS42 orchestrates the expression of several known dwarfing genes such as D8, Br2, and Na2, along with genes associated with cell wall organization, cell division, and cell cycle regulation, notably Cesa4, Cesa7, and Cyc11. Furthermore, identification of favorable ZmGRAS42 haplotypes linked to reduced plant height offers novel avenues for maize breeding strategies. These findings not only hold the potential for enhancing maize lodging resistance but also for optimizing land utilization through high-density planting practices.

关键信息:综上所述,我们对玉米半矮小突变体 sdw9 进行了鉴定,并通过基于图谱的克隆和测序(Re-sequencing,Re-seq)相结合的方法成功分离出了编码 GRAS 蛋白的责任基因。我们的研究结果表明,候选基因 ZmGRAS42 可调控 BR 信号转导基因,从而影响节间发育。这种调控功能可能涉及细胞分裂、细胞周期调控和细胞壁合成等过程。本研究发现的 ZmGRAS42 的有利变异可能有望培育出适合高密度种植的抗倒伏玉米品种,从而促进玉米育种计划的改进。株高和侧根角是玉米(Zea mays)植株结构的关键决定因素,它们与高密度种植时的抗倒伏性密切相关。这些性状受到各种植物激素的复杂调控。影响激素生物合成和信号传导的突变通常会导致产量下降,同时株高降低,这给培育矮秆玉米品种带来了挑战。本研究对玉米突变体 sdw9 进行了表征,与 WT 相比,sdw9 表现出较矮的株型和改变的侧根角度,尽管单穗产量略有减少,但仍显示出增加种植密度和提高总产量的潜力。通过定位克隆和Re-seq技术,我们确定了候选基因ZmGRAS42中的转座子插入,该基因编码一个参与玉米BR信号转导的GRAS转录因子。转录组分析表明,ZmGRAS42协调了几个已知矮化基因(如D8、Br2和Na2)以及与细胞壁组织、细胞分裂和细胞周期调控有关的基因(特别是Cesa4、Cesa7和Cyc11)的表达。此外,与植株高度降低有关的有利 ZmGRAS42 单倍型的鉴定为玉米育种策略提供了新的途径。这些发现不仅有可能提高玉米的抗倒伏能力,还能通过高密度种植优化土地利用。
{"title":"Phenotypic characterization and genetic mapping of the semi-dwarf mutant sdw9 in maize.","authors":"Jiawen Zhao, Baiyu Yuan, Hao Zhang, Xiao Guo, Liangfa Wang, Xiaoqian Qiu, QianKun Xie, Liqin Mu, Chenhui Ma, Teng Zhou, Javed Hussain, Xiaoyang Chen, Xuehai Zhang, Dong Ding, Jiong Wan, Jihua Tang","doi":"10.1007/s00122-024-04762-2","DOIUrl":"10.1007/s00122-024-04762-2","url":null,"abstract":"<p><strong>Key message: </strong>In summary, we characterized a maize semi-dwarf mutant, sdw9, and successfully isolated the responsible gene, which encodes a GRAS protein, through a combination of map-based cloning and Re-sequencing (Re-seq). Our findings demonstrate that the candidate gene ZmGRAS42 regulates BR signaling genes, thereby influencing internode development. This regulatory function likely involves processes such as cell division, cell cycle regulation and cell wall synthesis. Favorable variations of ZmGRAS42 identified in this study may hold promise for the development of lodging-resistant maize cultivars suitable for high-density planting, contributing to the improvement of maize breeding programs. Plant height and lateral root angle are crucial determinants of plant architecture in maize (Zea mays) which are closely related to lodging resistance at high planting density. These traits are intricately regulated by various phytohormones. Mutations affecting hormone biosynthesis and signaling often lead to reduced yield alongside diminished plant height, posing challenges in breeding dwarf maize varieties. In this study, the maize mutant sdw9 was characterized, which displays shorter stature and altered lateral root angle compared to WT, while showing potential to increase planting density and improve overall yield despite a slight reduction in single-ear yield. Employing positional cloning coupled with Re-seq techniques, we pinpointed a transposon insertion in the candidate gene ZmGRAS42, which encodes a GRAS transcription factor involved in BR signaling in maize. Transcriptome analysis revealed that ZmGRAS42 orchestrates the expression of several known dwarfing genes such as D8, Br2, and Na2, along with genes associated with cell wall organization, cell division, and cell cycle regulation, notably Cesa4, Cesa7, and Cyc11. Furthermore, identification of favorable ZmGRAS42 haplotypes linked to reduced plant height offers novel avenues for maize breeding strategies. These findings not only hold the potential for enhancing maize lodging resistance but also for optimizing land utilization through high-density planting practices.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 11","pages":"253"},"PeriodicalIF":4.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GW3, encoding a member of the P450 subfamily, controls grain width by regulating the GA4 content in spikelets of rice (Oryza sativa L.). 编码 P450 亚家族成员的 GW3 通过调节水稻(Oryza sativa L.)小穗中 GA4 的含量来控制粒宽。
IF 4.4 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-10-19 DOI: 10.1007/s00122-024-04751-5
Xiaojing Dang, Qing Xu, Yulong Li, Shaojie Song, Changmin Hu, Chunyu Jing, Ying Zhang, Dezheng Wang, Delin Hong, Jianhua Jiang

Key message: A stable QTL, GW3, controlling grain width was identified in two populations. Its causal gene LOC_Os03g04680 was verified by gene-based haplotype analysis, expression analysis, gene knockout and complementation transgenic tests. Grain width (GW) is one of the key traits affecting grain size and determines grain yield and appearance quality in rice. Mining gene loci and elite alleles controlling GW is necessary. The GW phenotypes of the two populations were investigated in three environments, which showed abundant phenotypic variation. GW3, encoding a P450 subfamily protein, was identified and validated as a causal gene by gene-based haplotype analysis, expression analysis, gene knockout and complementation transgenic tests. The accessions with large GW values had high gene expression levels. In addition, the GW of the accessions with the GG allele was significantly greater than that of the accessions with the AA allele. The Hap 1 and Hap 3 were identified as elite haplotypes, which can increase GW. The expression levels of OsKO1, OsGA3ox1, OsGA20ox1 and OsGA20ox2 in the young panicle of A7444 were significantly greater than those in the young panicle of the mutants, indicating that GW3 may be involved in the gibberellins (GA) biosynthesis pathway to regulate GW. GA4 content detection and electron scanning analysis revealed that GA4 regulates GW by affecting glume cell size. These results provide new insights for studying the genetic mechanism of rice GW and provide a material basis for breeding high-yield rice varieties.

关键信息在两个群体中发现了控制粒宽的稳定 QTL GW3。通过基于基因的单倍型分析、表达分析、基因敲除和互补转基因试验验证了其致病基因LOC_Os03g04680。粒宽(GW)是影响水稻籽粒大小的关键性状之一,决定着水稻的籽粒产量和外观品质。挖掘控制粒宽的基因位点和精英等位基因是必要的。在三个环境中对两个群体的 GW 表型进行了研究,结果表明表型差异很大。通过基于基因的单倍型分析、表达分析、基因敲除和互补转基因试验,确定并验证了编码 P450 亚家族蛋白的 GW3 为致病基因。GW值大的基因序列具有较高的基因表达水平。此外,具有 GG 等位基因的种群的 GW 值明显高于具有 AA 等位基因的种群。Hap 1 和 Hap 3 被鉴定为精英单倍型,可提高 GW 值。A7444幼苗圆锥花序中OsKO1、OsGA3ox1、OsGA20ox1和OsGA20ox2的表达水平明显高于突变体幼苗圆锥花序中的表达水平,表明GW3可能参与赤霉素(GA)生物合成途径,调控GW。GA4含量检测和电子扫描分析表明,GA4通过影响颖果细胞大小来调控GW。这些结果为研究水稻GW的遗传机制提供了新的见解,为培育高产水稻品种提供了物质基础。
{"title":"GW3, encoding a member of the P450 subfamily, controls grain width by regulating the GA<sub>4</sub> content in spikelets of rice (Oryza sativa L.).","authors":"Xiaojing Dang, Qing Xu, Yulong Li, Shaojie Song, Changmin Hu, Chunyu Jing, Ying Zhang, Dezheng Wang, Delin Hong, Jianhua Jiang","doi":"10.1007/s00122-024-04751-5","DOIUrl":"10.1007/s00122-024-04751-5","url":null,"abstract":"<p><strong>Key message: </strong>A stable QTL, GW3, controlling grain width was identified in two populations. Its causal gene LOC_Os03g04680 was verified by gene-based haplotype analysis, expression analysis, gene knockout and complementation transgenic tests. Grain width (GW) is one of the key traits affecting grain size and determines grain yield and appearance quality in rice. Mining gene loci and elite alleles controlling GW is necessary. The GW phenotypes of the two populations were investigated in three environments, which showed abundant phenotypic variation. GW3, encoding a P450 subfamily protein, was identified and validated as a causal gene by gene-based haplotype analysis, expression analysis, gene knockout and complementation transgenic tests. The accessions with large GW values had high gene expression levels. In addition, the GW of the accessions with the GG allele was significantly greater than that of the accessions with the AA allele. The Hap 1 and Hap 3 were identified as elite haplotypes, which can increase GW. The expression levels of OsKO1, OsGA3ox1, OsGA20ox1 and OsGA20ox2 in the young panicle of A7444 were significantly greater than those in the young panicle of the mutants, indicating that GW3 may be involved in the gibberellins (GA) biosynthesis pathway to regulate GW. GA<sub>4</sub> content detection and electron scanning analysis revealed that GA<sub>4</sub> regulates GW by affecting glume cell size. These results provide new insights for studying the genetic mechanism of rice GW and provide a material basis for breeding high-yield rice varieties.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 11","pages":"251"},"PeriodicalIF":4.4,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yr29 combined with QYr.nwafu-4BL.3 confers durable resistance to stripe rust in wheat cultivar Jing 411. Yr29与QYr.nwafu-4BL.3结合可赋予小麦品种京411对条锈病的持久抗性。
IF 4.4 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-10-19 DOI: 10.1007/s00122-024-04758-y
Mingjie Xiang, Bo Tian, Jianghao Cao, Shengjie Liu, Caie Zhou, Xiaoting Wang, Yibo Zhang, Jiale Li, Xunying Yuan, Jufen Wan, Rui Yu, Weijun Zheng, Jianhui Wu, Qingdong Zeng, Zhensheng Kang, Chunlian Li, Fa Cui, Dejun Han

Key message: The combination of a QTL on chromosome arm 4BL and Yr29 provides durable resistance with no significant yield penalty. Wheat stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), causes substantial yield reductions globally, but losses can be minimized by using resistance genes. Chinese wheat cultivar Jing 411 (J411) has continued to display an acceptable level of adult-plant resistance (APR) to YR in varied field conditions since its release in the 1990s. A recombinant inbred line (RIL) population comprising 187 lines developed from a cross of J411 and Kenong 9204 (KN9204) was evaluated in multiple environments to identify genomic regions carrying genes for YR resistance. A total of five quantitative trait loci (QTL) on chromosome arm 1BL, 3BS, 4BL, 6BS, and 7BL from J411 and two QTL on 3DS and 7DL from KN9204 were detected using inclusive composite interval mapping with the wheat 660 K SNP array. QYr.nwafu-1BL.5 and QYr.nwafu-4BL.3 from J411 were robust and showed similar effects in all environments. QYr.nwafu-1BL.5 was likely the pleiotropic gene of Yr29/Lr46. QYr.nwafu-4BL.3 was located within a 1.0 cM interval delimited by KASP markers AX-111609222 and AX-89755491. Based on haplotype analysis, Yr29 and QYr.nwafu-4BL.3 were identified as genetic components of quantitative resistance in a number of wheat cultivars. Moreover, RILs with Yr29 and QYr.nwafu-4BL.3 individually or when combined showed higher resistance to YR in rust nurseries compared with RILs without them, and there was no negative effect of their presence on agronomic traits under rust-free conditions. These results suggest that effective polymerization strategy is important for breeding high yielding and durable resistance cultivars.

关键信息:染色体臂 4BL 上的 QTL 与 Yr29 的结合可提供持久的抗性,且不会造成显著的产量损失。由Puccinia striiformis f. sp. tritici (Pst)引起的小麦条锈病或黄锈病(YR)在全球范围内造成大幅减产,但通过使用抗性基因可将损失降至最低。中国小麦栽培品种京 411(J411)自 20 世纪 90 年代发布以来,在不同的田间条件下持续表现出可接受的成株抗性(APR)。我们在多种环境中评估了由 J411 和 Kenong 9204(KN9204)杂交育成的 187 个品系组成的重组近交系(RIL)群体,以确定携带抗 YR 基因的基因组区域。利用小麦 660 K SNP 阵列的包容性复合间隔图谱,在 J411 的染色体臂 1BL、3BS、4BL、6BS 和 7BL 上共检测到五个数量性状位点(QTL),在 KN9204 的 3DS 和 7DL 上检测到两个 QTL。来自J411的QYr.nwafu-1BL.5和QYr.nwafu-4BL.3是稳健的,在所有环境中都表现出相似的效应。QYr.nwafu-1BL.5可能是Yr29/Lr46的多效基因。QYr.nwafu-4BL.3 位于由 KASP 标记 AX-111609222 和 AX-89755491 限定的 1.0 cM 区间内。根据单倍型分析,Yr29 和 QYr.nwafu-4BL.3 被确定为多个小麦栽培品种的数量抗性遗传成分。此外,与不含Yr29和QYr.nwafu-4BL.3的RIL相比,单独或组合含Yr29和QYr.nwafu-4BL.3的RIL在锈病苗圃中对YR表现出更高的抗性,而且在无锈病条件下,它们的存在对农艺性状没有负面影响。这些结果表明,有效的聚合策略对于培育高产、耐久的抗性栽培品种非常重要。
{"title":"Yr29 combined with QYr.nwafu-4BL.3 confers durable resistance to stripe rust in wheat cultivar Jing 411.","authors":"Mingjie Xiang, Bo Tian, Jianghao Cao, Shengjie Liu, Caie Zhou, Xiaoting Wang, Yibo Zhang, Jiale Li, Xunying Yuan, Jufen Wan, Rui Yu, Weijun Zheng, Jianhui Wu, Qingdong Zeng, Zhensheng Kang, Chunlian Li, Fa Cui, Dejun Han","doi":"10.1007/s00122-024-04758-y","DOIUrl":"10.1007/s00122-024-04758-y","url":null,"abstract":"<p><strong>Key message: </strong>The combination of a QTL on chromosome arm 4BL and Yr29 provides durable resistance with no significant yield penalty. Wheat stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), causes substantial yield reductions globally, but losses can be minimized by using resistance genes. Chinese wheat cultivar Jing 411 (J411) has continued to display an acceptable level of adult-plant resistance (APR) to YR in varied field conditions since its release in the 1990s. A recombinant inbred line (RIL) population comprising 187 lines developed from a cross of J411 and Kenong 9204 (KN9204) was evaluated in multiple environments to identify genomic regions carrying genes for YR resistance. A total of five quantitative trait loci (QTL) on chromosome arm 1BL, 3BS, 4BL, 6BS, and 7BL from J411 and two QTL on 3DS and 7DL from KN9204 were detected using inclusive composite interval mapping with the wheat 660 K SNP array. QYr.nwafu-1BL.5 and QYr.nwafu-4BL.3 from J411 were robust and showed similar effects in all environments. QYr.nwafu-1BL.5 was likely the pleiotropic gene of Yr29/Lr46. QYr.nwafu-4BL.3 was located within a 1.0 cM interval delimited by KASP markers AX-111609222 and AX-89755491. Based on haplotype analysis, Yr29 and QYr.nwafu-4BL.3 were identified as genetic components of quantitative resistance in a number of wheat cultivars. Moreover, RILs with Yr29 and QYr.nwafu-4BL.3 individually or when combined showed higher resistance to YR in rust nurseries compared with RILs without them, and there was no negative effect of their presence on agronomic traits under rust-free conditions. These results suggest that effective polymerization strategy is important for breeding high yielding and durable resistance cultivars.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 11","pages":"252"},"PeriodicalIF":4.4,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An island of receptor-like genes at the Rrs13 locus on barley chromosome 6HS co-locate with three novel sources of scald resistance. 大麦 6HS 染色体 Rrs13 基因座上的受体样基因岛与三种新型烫伤抗性来源同位。
IF 4.4 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-10-09 DOI: 10.1007/s00122-024-04746-2
Peter E Eckstein, Lindsay J Griffith, Xiang M Zhang, T Kelly Turkington, Mark G Colin, Samuel Holden, Sean Walkowiak, Gurcharn S Brar, Aaron D Beattie

Three Hordeum spontaneum-derived resistances (referred to as 145L2, 41T1 and 40Y5) have demonstrated long-term effectiveness against barley scald, caused by Rhynchosporium commune, in western Canada. Genetic mapping of these resistances in three populations, and the use of five barley genome assemblies, revealed they co-located to a narrowly defined 0.58-1.2 Mbp region of chromosome 6HS containing the Rrs13 scald resistance gene. Differential disease reactions among the three resistances and a Rrs13 carrier (AB6) to a panel of 24 scald isolates indicated that the four resistances were unique from one another. A marker created to target the 6HS scald locus was screened across a panel of barley germplasm that included H. vulgare, H. spontaneum and H. bulbosum lines. The marker showed specificity to H. vulgare lines known to carry the 6HS scald resistances and to two H. spontaneum lines that trace their origins to Jordan. Within the 0.58-1.2 Mbp region were 2-7 tandemly repeated leucine-rich repeat receptor-like proteins (LRR-RLP) and one lectin receptor-like kinase (Lec-RLK) genes with abundant sequence variation between them. The well-defined role that RLP and RLK genes play in plant defense responses make them logical candidate resistance genes, with one possible hypothesis being that each unique scald resistance may be encoded by a different RLP that interacts with a common RLK. It is suggested the three scald resistances be temporarily named Rrs13145L2, Rrs1341T1 and Rrs1340Y5 to recognize their co-location to the Rrs13 locus until it is determined whether these resistances represent unique genes or alleles of the same gene.

在加拿大西部,三种源自大麦(Hordeum spontaneum)的抗性(分别称为 145L2、41T1 和 40Y5)已被证明对由大麦赤霉病菌(Rhynchosporium commune)引起的大麦灼伤病长期有效。在三个种群中对这些抗性进行遗传测绘,并利用五个大麦基因组组装,发现它们共同位于染色体 6HS 上一个狭义的 0.58-1.2 Mbp 区域,该区域含有 Rrs13 烫伤抗性基因。三种抗性和 Rrs13 基因载体(AB6)对 24 种烫伤分离物的不同病害反应表明,这四种抗性互不相同。在包括 H. vulgare、H. spontaneum 和 H. bulbosum 品系在内的大麦种质中筛选出了针对 6HS 烫伤基因座的标记。该标记对已知携带 6HS 烫伤抗性的 H. vulgare 品系和两个起源于约旦的 H. spontaneum 品系具有特异性。在 0.58-1.2 Mbp 的区域内,有 2-7 个串联重复的富亮氨酸重复受体样蛋白(LRR-RLP)和一个凝集素受体样激酶(Lec-RLK)基因,它们之间的序列差异很大。RLP 和 RLK 基因在植物防御反应中所起的作用已被明确定义,因此它们是合乎逻辑的候选抗性基因,一种可能的假设是,每种独特的抗烫伤基因都可能是由不同的 RLP 与共同的 RLK 相互作用而编码的。建议将这三种抗烫性暂时命名为 Rrs13145L2、Rrs1341T1 和 Rrs1340Y5,以识别它们在 Rrs13 基因座上的共同位置,直到确定这些抗烫性是代表独特的基因还是同一基因的等位基因。
{"title":"An island of receptor-like genes at the Rrs13 locus on barley chromosome 6HS co-locate with three novel sources of scald resistance.","authors":"Peter E Eckstein, Lindsay J Griffith, Xiang M Zhang, T Kelly Turkington, Mark G Colin, Samuel Holden, Sean Walkowiak, Gurcharn S Brar, Aaron D Beattie","doi":"10.1007/s00122-024-04746-2","DOIUrl":"10.1007/s00122-024-04746-2","url":null,"abstract":"<p><p>Three Hordeum spontaneum-derived resistances (referred to as 145L2, 41T1 and 40Y5) have demonstrated long-term effectiveness against barley scald, caused by Rhynchosporium commune, in western Canada. Genetic mapping of these resistances in three populations, and the use of five barley genome assemblies, revealed they co-located to a narrowly defined 0.58-1.2 Mbp region of chromosome 6HS containing the Rrs13 scald resistance gene. Differential disease reactions among the three resistances and a Rrs13 carrier (AB6) to a panel of 24 scald isolates indicated that the four resistances were unique from one another. A marker created to target the 6HS scald locus was screened across a panel of barley germplasm that included H. vulgare, H. spontaneum and H. bulbosum lines. The marker showed specificity to H. vulgare lines known to carry the 6HS scald resistances and to two H. spontaneum lines that trace their origins to Jordan. Within the 0.58-1.2 Mbp region were 2-7 tandemly repeated leucine-rich repeat receptor-like proteins (LRR-RLP) and one lectin receptor-like kinase (Lec-RLK) genes with abundant sequence variation between them. The well-defined role that RLP and RLK genes play in plant defense responses make them logical candidate resistance genes, with one possible hypothesis being that each unique scald resistance may be encoded by a different RLP that interacts with a common RLK. It is suggested the three scald resistances be temporarily named Rrs13<sup>145L2</sup>, Rrs13<sup>41T1</sup> and Rrs13<sup>40Y5</sup> to recognize their co-location to the Rrs13 locus until it is determined whether these resistances represent unique genes or alleles of the same gene.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 11","pages":"249"},"PeriodicalIF":4.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-localization of quantitative trait loci for pod and kernel traits and development of molecular marker for kernel weight on chromosome Arahy05 in peanut (Arachis hypogaea L.). 花生(Arachis hypogaea L.)荚果和果仁性状数量性状位点的共定位以及染色体 Arahy05 上果仁重量分子标记的开发。
IF 4.4 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-10-09 DOI: 10.1007/s00122-024-04749-z
Yuanjin Fang, Hua Liu, Ziqi Sun, Li Qin, Zheng Zheng, Feiyan Qi, Jihua Wu, Wenzhao Dong, Bingyan Huang, Xinyou Zhang

Key message: Stable QTL for pod and kernel traits were co-localized on chromosome Arahy05, and an INDEL marker at 106,411,957 on Arahy05 was developed and validated to be useful for marker-assisted selection of kernel weight. Pod and kernel traits, such as hundred pod weight (HPW), and hundred kernel weight (HKW), along with pod and kernel sizes, are pivotal determinants of yield in peanut breeding programs. This study sought to identify quantitative trait loci (QTL) that are associated with these pod and kernel traits in peanuts. To achieve this, a recombinant inbred line (RIL) population, was derived from a cross between Yuhua15, a cultivar known for its high yield, and a germplasm accession W1202. The investigation uncovered stable and major QTL that are significantly associated with both pod and kernel weight and were consistently co-localized on chromosomes Arahy05 and Arahy08. Furthermore, an INDEL marker was identified and characterized in the QTL interval on Arahy05. An extensive re-sequencing analysis comprising 395 germplasm accessions led to the discovery of two principal haplotypes within a 500-kb window flanking the aforementioned INDEL marker. The haplotypes exhibited a significant correlation with the HKW in our diverse panel of germplasm accessions. Notably, the 170 accessions harboring the haplotype associated with an increased HKW primarily represented botanical varieties, specifically Arachis hypogaea var. hypogaea and A. hypogaea var. hirsuta. On the other hand, the 137 accessions associated with the alternative haplotype, which corresponded to a reduced HKW, were predominately identified as belonging to botanical varieties within A. hypogaea subsp. fastigiata. The INDEL marker located on Arahy05, which demonstrates close linkage to the pod and kernel traits, would be an efficient approach for marker-assisted selection (MAS) of pod and kernel weight in breeding programs.

关键信息:荚果和果仁性状的稳定 QTL 共同定位在染色体 Arahy05 上,Arahy05 上 106,411,957 处的 INDEL 标记经开发和验证可用于果仁重量的标记辅助选择。在花生育种计划中,百荚重(HPW)和百仁重(HKW)等荚果和果仁性状以及荚果和果仁大小是决定产量的关键因素。本研究试图找出与花生这些豆荚和果仁性状相关的数量性状位点(QTL)。为此,研究人员从以高产著称的栽培品种 "裕华15 "和种质登录W1202杂交得到了一个重组近交系(RIL)群体。研究发现了与豆荚和果仁重量显著相关的稳定的主要 QTL,这些 QTL 始终共定位在染色体 Arahy05 和 Arahy08 上。此外,在 Arahy05 上的 QTL 区间还发现了一个 INDEL 标记,并对其进行了表征。通过对 395 份种质材料进行广泛的重测序分析,在上述 INDEL 标记侧翼的 500-kb 窗口内发现了两个主要单倍型。这些单倍型与我们不同种质组中的 HKW 有显著的相关性。值得注意的是,170 份含有与 HKW 增加相关的单倍型的种质主要代表植物品种,特别是 Arachis hypogaea var.另一方面,与另一种单倍型相关的 137 个登录品系则主要属于 A. hypogaea 亚种 fastigiata 中的植物品种。位于 Arahy05 上的 INDEL 标记与豆荚和果仁的性状有密切联系,是育种计划中对豆荚和果仁重量进行标记辅助选择(MAS)的有效方法。
{"title":"Co-localization of quantitative trait loci for pod and kernel traits and development of molecular marker for kernel weight on chromosome Arahy05 in peanut (Arachis hypogaea L.).","authors":"Yuanjin Fang, Hua Liu, Ziqi Sun, Li Qin, Zheng Zheng, Feiyan Qi, Jihua Wu, Wenzhao Dong, Bingyan Huang, Xinyou Zhang","doi":"10.1007/s00122-024-04749-z","DOIUrl":"10.1007/s00122-024-04749-z","url":null,"abstract":"<p><strong>Key message: </strong>Stable QTL for pod and kernel traits were co-localized on chromosome Arahy05, and an INDEL marker at 106,411,957 on Arahy05 was developed and validated to be useful for marker-assisted selection of kernel weight. Pod and kernel traits, such as hundred pod weight (HPW), and hundred kernel weight (HKW), along with pod and kernel sizes, are pivotal determinants of yield in peanut breeding programs. This study sought to identify quantitative trait loci (QTL) that are associated with these pod and kernel traits in peanuts. To achieve this, a recombinant inbred line (RIL) population, was derived from a cross between Yuhua15, a cultivar known for its high yield, and a germplasm accession W1202. The investigation uncovered stable and major QTL that are significantly associated with both pod and kernel weight and were consistently co-localized on chromosomes Arahy05 and Arahy08. Furthermore, an INDEL marker was identified and characterized in the QTL interval on Arahy05. An extensive re-sequencing analysis comprising 395 germplasm accessions led to the discovery of two principal haplotypes within a 500-kb window flanking the aforementioned INDEL marker. The haplotypes exhibited a significant correlation with the HKW in our diverse panel of germplasm accessions. Notably, the 170 accessions harboring the haplotype associated with an increased HKW primarily represented botanical varieties, specifically Arachis hypogaea var. hypogaea and A. hypogaea var. hirsuta. On the other hand, the 137 accessions associated with the alternative haplotype, which corresponded to a reduced HKW, were predominately identified as belonging to botanical varieties within A. hypogaea subsp. fastigiata. The INDEL marker located on Arahy05, which demonstrates close linkage to the pod and kernel traits, would be an efficient approach for marker-assisted selection (MAS) of pod and kernel weight in breeding programs.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 11","pages":"250"},"PeriodicalIF":4.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic estimated selection criteria and parental contributions in parent selection increase genetic gain of maternal haploid inducers in maize. 基因组估计选择标准和亲本选择中的亲本贡献可提高玉米母本单倍体诱导体的遗传增益。
IF 4.4 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-10-06 DOI: 10.1007/s00122-024-04744-4
Yu-Ru Chen, Ursula K Frei, Thomas Lübberstedt

Key message: Parental combinations determined by genomic estimated usefulness and parental contributions of the lines in bridging population can enhance the genetic gain of traits of interest in maternal haploid inducer breeding. Parent selection in crosses aligns well with the quantitative trait performance in the progenies. We herein take advantage of estimated genetic values (EGV) and usefulness criteria (UC) of bi-parental combinations by genomic prediction (GP) to compare the empirical performance of doubled haploid inducer (DHI) progenies of eight elite inducers crosses in a half-diallel. We used parental contribution and discovery of superiors from elite-by-historical bridging populations to enhance genetic gain for long-term selection. In this empirical study, the narrow-sense heritabilities of four traits of interest (Days to flowering, DTF; haploid induction rate, HIR; plant height, PHT; Total primary branch length, PBL) in DHI population were 0.81, 0.71, 0.45 and 0.46, respectively. The genomic estimated EGV_Mid/Mean and EGV/UC_Inferior was significantly correlated with the sample mean of progenies and inferiors in four traits in the breeding and bridging population. EGV/UC_Superior were significantly correlated with the mean of superiors in DTF, PHT, and PBL in breeding and bridging populations. The genomic estimated parent contributions in DH progenies of bridging populations enabled discovery of favorable genome region from historical inducers to improve the genetic gain of HIR for long-term selection.

关键信息:在母本单倍体诱导育种中,根据基因组估计有用性和桥接群体中品系的亲本贡献确定的亲本组合可提高相关性状的遗传增益。杂交中的亲本选择与后代的数量性状表现非常吻合。在此,我们通过基因组预测(GP),利用双亲组合的估计遗传值(EGV)和有用性标准(UC),比较了八个精英单倍体诱导体杂交后代的经验表现。我们利用亲本贡献和从精英-历史桥接种群中发现上级种群来提高长期选择的遗传增益。在这项实证研究中,DHI群体中四个相关性状(开花日数,DTF;单倍体诱导率,HIR;株高,PHT;主枝总长度,PBL)的狭义遗传力分别为0.81、0.71、0.45和0.46。基因组估算的 EGV_Mid/Mean 和 EGV/UC_Inferior 与育种群体和桥接群体四个性状的亲本和劣种的样本平均值显著相关。EGV/UC_Superior与育种群体和衔接群体中DTF、PHT和PBL的父本平均值呈显著相关。通过对桥接种群中DH后代的亲本贡献率进行基因组估算,可以从历史诱导因子中发现有利的基因组区域,从而提高HIR的遗传增益,以利于长期选育。
{"title":"Genomic estimated selection criteria and parental contributions in parent selection increase genetic gain of maternal haploid inducers in maize.","authors":"Yu-Ru Chen, Ursula K Frei, Thomas Lübberstedt","doi":"10.1007/s00122-024-04744-4","DOIUrl":"10.1007/s00122-024-04744-4","url":null,"abstract":"<p><strong>Key message: </strong>Parental combinations determined by genomic estimated usefulness and parental contributions of the lines in bridging population can enhance the genetic gain of traits of interest in maternal haploid inducer breeding. Parent selection in crosses aligns well with the quantitative trait performance in the progenies. We herein take advantage of estimated genetic values (EGV) and usefulness criteria (UC) of bi-parental combinations by genomic prediction (GP) to compare the empirical performance of doubled haploid inducer (DHI) progenies of eight elite inducers crosses in a half-diallel. We used parental contribution and discovery of superiors from elite-by-historical bridging populations to enhance genetic gain for long-term selection. In this empirical study, the narrow-sense heritabilities of four traits of interest (Days to flowering, DTF; haploid induction rate, HIR; plant height, PHT; Total primary branch length, PBL) in DHI population were 0.81, 0.71, 0.45 and 0.46, respectively. The genomic estimated EGV_Mid/Mean and EGV/UC_Inferior was significantly correlated with the sample mean of progenies and inferiors in four traits in the breeding and bridging population. EGV/UC_Superior were significantly correlated with the mean of superiors in DTF, PHT, and PBL in breeding and bridging populations. The genomic estimated parent contributions in DH progenies of bridging populations enabled discovery of favorable genome region from historical inducers to improve the genetic gain of HIR for long-term selection.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 11","pages":"248"},"PeriodicalIF":4.4,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL. 开发具有条锈病抗性基因 Yr4EL 的小麦四倍体 Thinopyrum elongatum 4EL 小片段易位系。
IF 4.4 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-10-04 DOI: 10.1007/s00122-024-04756-0
Biran Gong, Jing Gao, Yangqiu Xie, Hao Zhang, Wei Zhu, Lili Xu, Yiran Cheng, Yi Wang, Jian Zeng, Xing Fan, Lina Sha, Haiqin Zhang, Yonghong Zhou, Dandan Wu, Yinghui Li, Houyang Kang

Key message: Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici, is a devastating wheat disease worldwide. Deployment of disease resistance (R) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL, Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76-612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.

关键信息:两个小片段易位系(T4DS-4DL-4EL和T5AS-5AL-4EL)对条锈病表现出高度抗性,抗性基因Yr4EL定位在chr臂4EL末端约35 Mb的区域。由条锈病真菌 Puccinia striiformis f. sp. tritici 引起的条锈病是一种全球性的毁灭性小麦病害。在小麦栽培品种中部署抗病(R)基因是控制该病害的最有效方法。此前,四倍体 Thinopyrum elongatum 的全阶段条锈病 R 基因 Yr4EL 以 4E(4D) 替代系和 T4DS-4EL 易位系的形式被引入普通小麦。为了进一步绘制和利用 Yr4EL,在杂交中使用了中国春(CS)突变体配对同源基因 ph1b,以诱导染色体(chr)4EL 与小麦染色体之间的重组。利用分子标记筛选出了两个具有抗Yr4EL能力的小片段易位系T4DS-4DL-4EL和T5AS-5AL-4EL,并通过基因组原位杂交(GISH)、荧光原位杂交(FISH)和小麦660 K SNP阵列分析进行了确认。我们将 Yr4EL 映射到 chr 4EL 末端约 35 Mb 的区域,根据二倍体 Th. elongatum 的参考基因组,该区域对应于 577.76-612.97 Mb。此外,还开发了两个与 Yr4EL 共分离的竞争性等位基因特异性 PCR(KASP)标记,以促进育种中的分子标记辅助选择。T4DS-4DL-4EL 株系与小麦栽培品种 SM482 和 CM42 进行了杂交和回交,育成的预育种株系表现出较高的条锈病抗性和良好的农艺性状,具有进行小麦育种的潜力。这些品系代表了小麦抗条锈病育种的新种质,同时也为 Yr4EL 的精细作图和克隆奠定了坚实的基础。
{"title":"Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL.","authors":"Biran Gong, Jing Gao, Yangqiu Xie, Hao Zhang, Wei Zhu, Lili Xu, Yiran Cheng, Yi Wang, Jian Zeng, Xing Fan, Lina Sha, Haiqin Zhang, Yonghong Zhou, Dandan Wu, Yinghui Li, Houyang Kang","doi":"10.1007/s00122-024-04756-0","DOIUrl":"10.1007/s00122-024-04756-0","url":null,"abstract":"<p><strong>Key message: </strong>Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici, is a devastating wheat disease worldwide. Deployment of disease resistance (R) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL, Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76-612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 10","pages":"246"},"PeriodicalIF":4.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unambiguous chromosome identification reveals the factors impacting irregular chromosome behaviors in allotriploid AAC Brassica. 明确的染色体鉴定揭示了影响异源三倍体芸薹属植物不规则染色体行为的因素。
IF 4.4 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-10-04 DOI: 10.1007/s00122-024-04734-6
Yao Cao, Junxiong Xu, Minhang Wang, Jing Gao, Zhen Zhao, Kexin Li, Lu Yang, Kanglu Zhao, Meiping Sun, Jing Dong, Getu Chao, Hong Zhang, Yaqingqing Niu, Chunxia Yan, Xiufeng Gong, Lei Wu, Zhiyong Xiong

Key message: The major irregular chromosome pairing and mis-segregation were detected during meiosis through unambiguous chromosome identification and found that allotriploid Brassica can undergo meiosis successfully and produce mostly viable aneuploid gametes. Triploids have played a crucial role in the evolution of species by forming polyploids and facilitating interploidy gene transfer. It is widely accepted that triploids cannot undergo meiosis normally and predominantly produce nonfunctional aneuploid gametes, which restricts their role in species evolution. In this study, we demonstrated that natural and synthetic allotriploid Brassica (AAC), produced by crossing natural and synthetic Brassica napus (AACC) with Brassica rapa (AA), exhibits basically normal chromosome pairing and segregation during meiosis. Homologous A chromosomes paired faithfully and generally segregated equally. Monosomic C chromosomes were largely retained as univalents and randomly entered daughter cells. The primary irregular meiotic behaviors included associations of homoeologs and 45S rDNA loci at diakinesis, as well as homoeologous chromosome replacement and premature sister chromatid separation at anaphase I. Preexisting homoeologous arrangements altered meiotic behaviors in both chromosome irregular pairing and mis-segregation by increasing the formation of A-genomic univalents and A-C bivalents, as well as premature sister chromatid separation and homologous chromosome nondisjunction. Meiotic behaviors depended significantly on the genetic background and heterozygous homoeologous rearrangement. AAC triploids mainly generated aneuploid gametes, most of which were viable. These results demonstrate that allotriploid Brassica containing an intact karyotype can proceed through meiosis successfully, broadening our current understanding of the inheritance and role in species evolution of allotriploid.

关键信息:通过对染色体的明确识别,发现了减数分裂过程中主要的不规则染色体配对和错误分离现象,并发现异源三倍体甘蓝能够成功地进行减数分裂,并产生大部分有活力的非整倍体配子。三倍体通过形成多倍体和促进倍性间的基因转移,在物种进化过程中发挥了至关重要的作用。人们普遍认为,三倍体不能正常进行减数分裂,主要产生无功能的非整倍体配子,这限制了它们在物种进化中的作用。在这项研究中,我们证明了天然和人工合成的异源三倍体甘蓝(AAC),由天然和人工合成的甘蓝(AACC)与甘蓝(AA)杂交产生,在减数分裂过程中染色体配对和分离基本正常。同源的 A 染色体忠实地配对,一般都能平等地分离。单体 C 染色体基本上保留为单价体,并随机进入子细胞。主要的不规则减数分裂行为包括同源染色体和 45S rDNA 位点在二分裂期的结合,以及同源染色体的替换和无丝分裂期 I 的过早姐妹染色单体分离。减数分裂行为在很大程度上取决于遗传背景和杂合同源重排。AAC 三倍体主要产生非整倍体配子,其中大部分都能存活。这些结果表明,含有完整核型的甘蓝型异源三倍体可以成功地进行减数分裂,从而拓宽了我们目前对异源三倍体的遗传和在物种进化中的作用的认识。
{"title":"Unambiguous chromosome identification reveals the factors impacting irregular chromosome behaviors in allotriploid AAC Brassica.","authors":"Yao Cao, Junxiong Xu, Minhang Wang, Jing Gao, Zhen Zhao, Kexin Li, Lu Yang, Kanglu Zhao, Meiping Sun, Jing Dong, Getu Chao, Hong Zhang, Yaqingqing Niu, Chunxia Yan, Xiufeng Gong, Lei Wu, Zhiyong Xiong","doi":"10.1007/s00122-024-04734-6","DOIUrl":"10.1007/s00122-024-04734-6","url":null,"abstract":"<p><strong>Key message: </strong>The major irregular chromosome pairing and mis-segregation were detected during meiosis through unambiguous chromosome identification and found that allotriploid Brassica can undergo meiosis successfully and produce mostly viable aneuploid gametes. Triploids have played a crucial role in the evolution of species by forming polyploids and facilitating interploidy gene transfer. It is widely accepted that triploids cannot undergo meiosis normally and predominantly produce nonfunctional aneuploid gametes, which restricts their role in species evolution. In this study, we demonstrated that natural and synthetic allotriploid Brassica (AAC), produced by crossing natural and synthetic Brassica napus (AACC) with Brassica rapa (AA), exhibits basically normal chromosome pairing and segregation during meiosis. Homologous A chromosomes paired faithfully and generally segregated equally. Monosomic C chromosomes were largely retained as univalents and randomly entered daughter cells. The primary irregular meiotic behaviors included associations of homoeologs and 45S rDNA loci at diakinesis, as well as homoeologous chromosome replacement and premature sister chromatid separation at anaphase I. Preexisting homoeologous arrangements altered meiotic behaviors in both chromosome irregular pairing and mis-segregation by increasing the formation of A-genomic univalents and A-C bivalents, as well as premature sister chromatid separation and homologous chromosome nondisjunction. Meiotic behaviors depended significantly on the genetic background and heterozygous homoeologous rearrangement. AAC triploids mainly generated aneuploid gametes, most of which were viable. These results demonstrate that allotriploid Brassica containing an intact karyotype can proceed through meiosis successfully, broadening our current understanding of the inheritance and role in species evolution of allotriploid.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 10","pages":"245"},"PeriodicalIF":4.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating targeted genetic markers to genotyping-by-sequencing for an ultimate genotyping tool. 将靶向遗传标记与基因分型测序相结合,打造终极基因分型工具。
IF 4.4 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-10-04 DOI: 10.1007/s00122-024-04750-6
Maxime de Ronne, Amina Abed, Gaétan Légaré, Jérôme Laroche, Vincent-Thomas Boucher St-Amour, Éric Fortier, Aaron Beattie, Ana Badea, Raja Khanal, Louise O'Donoughue, Istvan Rajcan, François Belzile, Brian Boyle, Davoud Torkamaneh

New selection methods, using trait-specific markers (marker-assisted selection (MAS)) and/or genome-wide markers (genomic selection (GS)), are becoming increasingly widespread in breeding programs. This new era requires innovative and cost-efficient solutions for genotyping. Reduction in sequencing cost has enhanced the use of high-throughput low-cost genotyping methods such as genotyping-by-sequencing (GBS) for genome-wide single-nucleotide polymorphism (SNP) profiling in large breeding populations. However, the major weakness of GBS methodologies is their inability to genotype targeted markers. Conversely, targeted methods, such as amplicon sequencing (AmpSeq), often face cost constraints, hindering genome-wide genotyping across a large cohort. Although GBS and AmpSeq data can be generated from the same sample, an efficient method to achieve this is lacking. In this study, we present the Genome-wide & Targeted Amplicon (GTA) genotyping platform, an innovative way to integrate multiplex targeted amplicons into the GBS library preparation to provide an all-in-one cost-effective genotyping solution to breeders and research communities. Custom primers were designed to target 23 and 36 high-value markers associated with key agronomical traits in soybean and barley, respectively. The resulting multiplex amplicons were compatible with the GBS library preparation enabling both GBS and targeted genotyping data to be produced efficiently and cost-effectively. To facilitate data analysis, we have introduced Fast-GBS.v3, a user-friendly bioinformatic pipeline that generates comprehensive outputs from data obtained following sequencing of GTA libraries. This high-throughput low-cost approach will greatly facilitate the application of DNA markers as it provides required markers for both MAS and GS in a single assay.

在育种计划中,使用性状特异性标记(标记辅助选择(MAS))和/或全基因组标记(基因组选择(GS))的新选择方法正变得越来越广泛。在这个新时代,基因分型需要具有成本效益的创新解决方案。测序成本的降低促进了高通量、低成本基因分型方法的使用,如在大型育种群体中进行全基因组单核苷酸多态性(SNP)分析的基因分型测序法(GBS)。然而,GBS 方法的主要弱点是无法对目标标记进行基因分型。与此相反,扩增子测序(AmpSeq)等靶向方法往往面临成本限制,阻碍了对大型群体进行全基因组基因分型。虽然 GBS 和 AmpSeq 数据可以从同一样本中生成,但目前还缺乏实现这一目标的有效方法。在这项研究中,我们提出了全基因组和靶向扩增子(GTA)基因分型平台,这是一种将多重靶向扩增子整合到 GBS 文库制备中的创新方法,可为育种者和研究团体提供一体化的经济高效的基因分型解决方案。设计的定制引物分别针对与大豆和大麦关键农艺性状相关的 23 个和 36 个高价值标记。由此产生的多重扩增子与 GBS 文库制备兼容,从而能高效、经济地生成 GBS 和定向基因分型数据。为便于数据分析,我们推出了 Fast-GBS.v3,这是一个用户友好型生物信息学管道,可从 GTA 文库测序后获得的数据中生成全面的输出结果。这种高通量、低成本的方法将极大地促进 DNA 标记的应用,因为它能在一次检测中同时提供 MAS 和 GS 所需的标记。
{"title":"Integrating targeted genetic markers to genotyping-by-sequencing for an ultimate genotyping tool.","authors":"Maxime de Ronne, Amina Abed, Gaétan Légaré, Jérôme Laroche, Vincent-Thomas Boucher St-Amour, Éric Fortier, Aaron Beattie, Ana Badea, Raja Khanal, Louise O'Donoughue, Istvan Rajcan, François Belzile, Brian Boyle, Davoud Torkamaneh","doi":"10.1007/s00122-024-04750-6","DOIUrl":"10.1007/s00122-024-04750-6","url":null,"abstract":"<p><p>New selection methods, using trait-specific markers (marker-assisted selection (MAS)) and/or genome-wide markers (genomic selection (GS)), are becoming increasingly widespread in breeding programs. This new era requires innovative and cost-efficient solutions for genotyping. Reduction in sequencing cost has enhanced the use of high-throughput low-cost genotyping methods such as genotyping-by-sequencing (GBS) for genome-wide single-nucleotide polymorphism (SNP) profiling in large breeding populations. However, the major weakness of GBS methodologies is their inability to genotype targeted markers. Conversely, targeted methods, such as amplicon sequencing (AmpSeq), often face cost constraints, hindering genome-wide genotyping across a large cohort. Although GBS and AmpSeq data can be generated from the same sample, an efficient method to achieve this is lacking. In this study, we present the Genome-wide & Targeted Amplicon (GTA) genotyping platform, an innovative way to integrate multiplex targeted amplicons into the GBS library preparation to provide an all-in-one cost-effective genotyping solution to breeders and research communities. Custom primers were designed to target 23 and 36 high-value markers associated with key agronomical traits in soybean and barley, respectively. The resulting multiplex amplicons were compatible with the GBS library preparation enabling both GBS and targeted genotyping data to be produced efficiently and cost-effectively. To facilitate data analysis, we have introduced Fast-GBS.v3, a user-friendly bioinformatic pipeline that generates comprehensive outputs from data obtained following sequencing of GTA libraries. This high-throughput low-cost approach will greatly facilitate the application of DNA markers as it provides required markers for both MAS and GS in a single assay.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 10","pages":"247"},"PeriodicalIF":4.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of transcription factor BnHDG4-A08 as a novel candidate associated with the accumulation of oleic, linoleic, linolenic, and erucic acid in Brassica napus. 鉴定转录因子 BnHDG4-A08 为与甘蓝型油菜中油酸、亚油酸、亚麻酸和芥酸积累相关的新型候选因子。
IF 4.4 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-10-01 DOI: 10.1007/s00122-024-04733-7
Ying Fu, Min Yao, Ping Qiu, Maolin Song, Xiyuan Ni, Erli Niu, Jianghua Shi, Tanliu Wang, Yaofeng Zhang, Huasheng Yu, Lunwen Qian

Key message: We screened 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits. A novel candidate of transcription factor BnHDG4 A08 influencing oleic, linoleic, linolenic, and erucic acid was identified, by a joint strategy of haplotype-based genome-wide association study, genomic resequencing, gene cloning, and co-expression network Fatty acid (FA) composition determines the quality and economic value of rapeseed oil (Brassica napus). However, the molecular network of FAs is unclear. In the current study, multi-strategies of haplotype-based genome-wide association study (GWAS), genomic resequencing, gene cloning, and co-expression network were joint to reveal novel genetic factors influencing FA accumulation in rapeseed. We identified 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits, using a haplotype-based GWAS with phenotype data from 203 Chinese semi-winter accessions. A total of 61 rapeseed orthologs involved in acyl-lipid metabolism, carbohydrate metabolism, or photosynthesis were identified in these 17 blocks. Among these genes, BnHDG4-A08, encoding a class IV homeodomain leucine-zipper transcription factor, exhibited two single-nucleotide polymorphisms (SNPs) in the exon and intron, with significant associations with oleic, linoleic, linolenic, and erucic acid. Gene cloning further validated two SNPs in the exon of BnHDG4-A08 in a population with 75 accessions, leading to two amino acid changes (T372A and P366L) and significant variation of oleic, linoleic, linolenic, and erucic acid. A competitive allele-specific PCR (KASP) marker based on the SNPs was successfully developed and validated. Moreover, 98 genes exhibiting direct interconnections and high weight values with BnHDG4-A08 were identified through co-expression network analysis using transcriptome data from 13 accessions. Our study identified a novel FA candidate of transcription factor BnHDG4-A08 influencing oleic, linoleic, linolenic, and erucic acid. This gene provides a potential promising gene resource for the novel mechanistic understanding of transcription factors regulating FA accumulation.

关键信息:我们筛选了47个与油酸、亚油酸、亚麻酸和芥酸明显相关的单倍型区块,其中17个区块影响多个性状。通过基于单倍型的全基因组关联研究、基因组重测序、基因克隆和共表达网络的联合策略,发现了影响油酸、亚油酸、亚麻酸和芥酸的转录因子 BnHDG4 A08 的新候选基因 脂肪酸(FA)组成决定了菜籽油的品质和经济价值。然而,脂肪酸的分子网络尚不清楚。本研究采用基于单倍型的全基因组关联研究(GWAS)、基因组重测序、基因克隆和共表达网络等多种策略,揭示了影响油菜籽脂肪酸积累的新的遗传因素。利用基于单倍型的 GWAS 和 203 个中国半冬性品种的表型数据,我们发现了油酸、亚油酸、亚麻酸和芥酸的 47 个明显相关的单倍型区块,其中 17 个区块影响多个性状。在这 17 个区块中,共鉴定出 61 个涉及酰脂代谢、碳水化合物代谢或光合作用的油菜籽直向同源基因。在这些基因中,BnHDG4-A08(编码一种第四类同源结构域亮氨酸-拉链转录因子)的外显子和内含子中出现了两个单核苷酸多态性(SNPs),与油酸、亚油酸、亚麻酸和芥酸有显著关联。基因克隆进一步验证了在一个有 75 个品种的群体中 BnHDG4-A08 外显子上的两个 SNPs,这两个 SNPs 导致了两个氨基酸的变化(T372A 和 P366L)以及油酸、亚油酸、亚麻酸和芥酸的显著变化。成功开发并验证了基于 SNPs 的竞争性等位基因特异性 PCR(KASP)标记。此外,通过使用 13 个品种的转录组数据进行共表达网络分析,发现了 98 个与 BnHDG4-A08 有直接关联且权重值较高的基因。我们的研究发现了一个影响油酸、亚油酸、亚麻酸和芥酸的转录因子BnHDG4-A08的新型FA候选基因。该基因为从新的机制角度理解转录因子调控脂肪酸积累提供了潜在的基因资源。
{"title":"Identification of transcription factor BnHDG4-A08 as a novel candidate associated with the accumulation of oleic, linoleic, linolenic, and erucic acid in Brassica napus.","authors":"Ying Fu, Min Yao, Ping Qiu, Maolin Song, Xiyuan Ni, Erli Niu, Jianghua Shi, Tanliu Wang, Yaofeng Zhang, Huasheng Yu, Lunwen Qian","doi":"10.1007/s00122-024-04733-7","DOIUrl":"10.1007/s00122-024-04733-7","url":null,"abstract":"<p><strong>Key message: </strong>We screened 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits. A novel candidate of transcription factor BnHDG4 A08 influencing oleic, linoleic, linolenic, and erucic acid was identified, by a joint strategy of haplotype-based genome-wide association study, genomic resequencing, gene cloning, and co-expression network Fatty acid (FA) composition determines the quality and economic value of rapeseed oil (Brassica napus). However, the molecular network of FAs is unclear. In the current study, multi-strategies of haplotype-based genome-wide association study (GWAS), genomic resequencing, gene cloning, and co-expression network were joint to reveal novel genetic factors influencing FA accumulation in rapeseed. We identified 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits, using a haplotype-based GWAS with phenotype data from 203 Chinese semi-winter accessions. A total of 61 rapeseed orthologs involved in acyl-lipid metabolism, carbohydrate metabolism, or photosynthesis were identified in these 17 blocks. Among these genes, BnHDG4-A08, encoding a class IV homeodomain leucine-zipper transcription factor, exhibited two single-nucleotide polymorphisms (SNPs) in the exon and intron, with significant associations with oleic, linoleic, linolenic, and erucic acid. Gene cloning further validated two SNPs in the exon of BnHDG4-A08 in a population with 75 accessions, leading to two amino acid changes (T372A and P366L) and significant variation of oleic, linoleic, linolenic, and erucic acid. A competitive allele-specific PCR (KASP) marker based on the SNPs was successfully developed and validated. Moreover, 98 genes exhibiting direct interconnections and high weight values with BnHDG4-A08 were identified through co-expression network analysis using transcriptome data from 13 accessions. Our study identified a novel FA candidate of transcription factor BnHDG4-A08 influencing oleic, linoleic, linolenic, and erucic acid. This gene provides a potential promising gene resource for the novel mechanistic understanding of transcription factors regulating FA accumulation.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 10","pages":"243"},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Theoretical and Applied Genetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1