Pub Date : 2023-08-01DOI: 10.1089/ten.TEB.2023.0005
Junyi Ji, Hongju Xu, Chen Li, Jiesi Luo
Small-caliber tissue-engineered vascular grafts (TEVGs, luminal diameter <6 mm) are promising therapies for coronary or peripheral artery bypassing surgeries or emergency treatments of vascular trauma, and a robust seed cell source is required for scalable manufacturing of small-caliber TEVGs with robust mechanical strength and bioactive endothelium in future. Human-induced pluripotent stem cells (hiPSCs) could serve as a robust cell source to derive functional vascular seed cells and potentially lead to generation of immunocompatible engineered vascular tissues. Up to date, this rising field of small-caliber hiPSC-derived TEVG (hiPSC-TEVG) research has received increasing attention and achieved significant progress. Implantable, small-caliber, hiPSC-TEVGs have been generated. These hiPSC-TEVGs displayed rupture pressure and suture retention strength approaching to those of human native saphenous veins, with vessel wall decellularized and luminal surface endothelialized with monolayer of hiPSC-endothelial cells. Meanwhile, a series of challenges remain in this field, including functional maturity of hiPSC-derived vascular cells, poor elastogenesis, suboptimal efficiency of obtaining hiPSC-derived seed cells, and relative low ready availability of hiPSC-TEVGs, which are waiting to be addressed. This review is conceived to introduce representative achievements and challenges in small-caliber TEVG generation using hiPSCs, and encapsulate the potential solution and future directions.
小口径组织工程血管移植物(tevg),管腔直径
{"title":"Small-Caliber Tissue-Engineered Vascular Grafts Based on Human-Induced Pluripotent Stem Cells: Progress and Challenges.","authors":"Junyi Ji, Hongju Xu, Chen Li, Jiesi Luo","doi":"10.1089/ten.TEB.2023.0005","DOIUrl":"https://doi.org/10.1089/ten.TEB.2023.0005","url":null,"abstract":"<p><p>Small-caliber tissue-engineered vascular grafts (TEVGs, luminal diameter <6 mm) are promising therapies for coronary or peripheral artery bypassing surgeries or emergency treatments of vascular trauma, and a robust seed cell source is required for scalable manufacturing of small-caliber TEVGs with robust mechanical strength and bioactive endothelium in future. Human-induced pluripotent stem cells (hiPSCs) could serve as a robust cell source to derive functional vascular seed cells and potentially lead to generation of immunocompatible engineered vascular tissues. Up to date, this rising field of small-caliber hiPSC-derived TEVG (hiPSC-TEVG) research has received increasing attention and achieved significant progress. Implantable, small-caliber, hiPSC-TEVGs have been generated. These hiPSC-TEVGs displayed rupture pressure and suture retention strength approaching to those of human native saphenous veins, with vessel wall decellularized and luminal surface endothelialized with monolayer of hiPSC-endothelial cells. Meanwhile, a series of challenges remain in this field, including functional maturity of hiPSC-derived vascular cells, poor elastogenesis, suboptimal efficiency of obtaining hiPSC-derived seed cells, and relative low ready availability of hiPSC-TEVGs, which are waiting to be addressed. This review is conceived to introduce representative achievements and challenges in small-caliber TEVG generation using hiPSCs, and encapsulate the potential solution and future directions.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"29 4","pages":"441-455"},"PeriodicalIF":6.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9971929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1089/ten.TEB.2022.0178
Dijun Li, Guishan Wang, Jiarong Li, Lei Yan, Haifeng Liu, Jingwei Jiu, Xiaoke Li, Jiao Jiao Li, Bin Wang
To conduct a systematic review of studies reporting the treatment of tendon injury using biomaterials in animal models. A systematic search was conducted to retrieve studies involving animal models of tendon repair using biomaterials, in PubMed (database construction to August 2022) and Ovid-Embase (1946 to August 2022). Data related to tendon repair with biomaterials were extracted by two researchers, respectively. Risk of bias was assessed following the Cochrane Handbook for Systematic Reviews of Interventions. A statistical analysis was performed based on the classification of tendon repair biomaterials included in our study. A total of 8413 articles were retrieved, with 78 studies included in our analysis. For tendon repair in animal models using biomaterials, the most commonly seen characteristics were as follows: naturally derived biomaterials, rabbits and rats as animal models, surgery as the injury model, and the Achilles tendon as the injury site. The histology and biomechanical recovery of tendon injury following repair are affected by different biomaterials. Studies of tendon repair in animal models indicate that biomaterials can significantly improve repair outcomes, including tendon structure and biomechanics. Among effective biomaterial strategies are the use of new composites and incorporation of cells or growth factors into the material, both of which provide obvious benefits for tendon healing. More high-quality preclinical studies are required to encourage the translation of biomaterials into clinical practice for tendon repair.
{"title":"Biomaterials for Tissue-Engineered Treatment of Tendinopathy in Animal Models: A Systematic Review.","authors":"Dijun Li, Guishan Wang, Jiarong Li, Lei Yan, Haifeng Liu, Jingwei Jiu, Xiaoke Li, Jiao Jiao Li, Bin Wang","doi":"10.1089/ten.TEB.2022.0178","DOIUrl":"https://doi.org/10.1089/ten.TEB.2022.0178","url":null,"abstract":"<p><p>To conduct a systematic review of studies reporting the treatment of tendon injury using biomaterials in animal models. A systematic search was conducted to retrieve studies involving animal models of tendon repair using biomaterials, in PubMed (database construction to August 2022) and Ovid-Embase (1946 to August 2022). Data related to tendon repair with biomaterials were extracted by two researchers, respectively. Risk of bias was assessed following the Cochrane Handbook for Systematic Reviews of Interventions. A statistical analysis was performed based on the classification of tendon repair biomaterials included in our study. A total of 8413 articles were retrieved, with 78 studies included in our analysis. For tendon repair in animal models using biomaterials, the most commonly seen characteristics were as follows: naturally derived biomaterials, rabbits and rats as animal models, surgery as the injury model, and the Achilles tendon as the injury site. The histology and biomechanical recovery of tendon injury following repair are affected by different biomaterials. Studies of tendon repair in animal models indicate that biomaterials can significantly improve repair outcomes, including tendon structure and biomechanics. Among effective biomaterial strategies are the use of new composites and incorporation of cells or growth factors into the material, both of which provide obvious benefits for tendon healing. More high-quality preclinical studies are required to encourage the translation of biomaterials into clinical practice for tendon repair.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"29 4","pages":"387-413"},"PeriodicalIF":6.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9968938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01Epub Date: 2023-06-06DOI: 10.1089/ten.TEB.2022.0225
Melissa J J van Velthoven, Aksel N Gudde, Frederique Struijs, Egbert Oosterwijk, Jan-Paul Roovers, Zeliha Guler, Carlijn R Hooijmans, Paul H J Kouwer
Surgical outcomes of pelvic organ prolapse (POP) surgery are poor, resulting in a 20% recurrence risk. Following the hypothesis that impaired wound healing is the main determinant of recurrent POP, growth factors have the potential to promote wound healing and may improve surgical outcomes. In this study, we systematically reviewed the effect of growth factors on vaginal wound healing in both in vitro and animal studies. For each independent comparison, the standardized mean difference and 95% CI were calculated using the Hedges' g correction. Of the 3858 retrieved studies, seven studies were included, of which six were included in meta-analysis (three in vitro studies and four in vivo studies). In vitro, basic fibroblast growth factor (bFGF) promotes proliferation, differentiation, and collagen types I and III production. Epidermal growth factor stimulates proliferation and connective tissue growth factor promotes Tenascin-C expression. These effects, however, are less pronounced in vivo; only bFGF slightly promotes collagen production. The review shows that growth factors, particularly bFGF, are able to promote vaginal wound healing in vitro. The uncertain in vivo findings suggest that preclinical models should be improved. The ultimate goal is to develop effective growth factor-supplemented therapies that improve surgical outcomes for POP.
盆腔器官脱垂(POP)手术的疗效不佳,导致 20% 的复发风险。根据伤口愈合受损是 POP 复发的主要决定因素这一假设,生长因子有可能促进伤口愈合,并改善手术效果。在本研究中,我们系统回顾了生长因子在体外和动物实验中对阴道伤口愈合的影响。对于每项独立比较,均采用 Hedges'g 校正法计算标准化平均差和 95% CI。在检索到的 3858 项研究中,共纳入了 7 项研究,其中 6 项纳入了荟萃分析(3 项体外研究和 4 项体内研究)。在体外,碱性成纤维细胞生长因子(bFGF)可促进增殖、分化以及 I 型和 III 型胶原蛋白的生成。表皮生长因子刺激增殖,结缔组织生长因子促进 Tenascin-C 的表达。但这些作用在体内并不明显,只有碱性生长因子能轻微促进胶原蛋白的生成。综述显示,生长因子,尤其是碱性成纤维细胞生长因子,能够在体外促进阴道伤口愈合。不确定的体内研究结果表明,临床前模型应加以改进。最终目标是开发出有效的生长因子辅助疗法,改善 POP 的手术效果。
{"title":"The Effect of Growth Factors on Vaginal Wound Healing: A Systematic Review and Meta-analysis.","authors":"Melissa J J van Velthoven, Aksel N Gudde, Frederique Struijs, Egbert Oosterwijk, Jan-Paul Roovers, Zeliha Guler, Carlijn R Hooijmans, Paul H J Kouwer","doi":"10.1089/ten.TEB.2022.0225","DOIUrl":"10.1089/ten.TEB.2022.0225","url":null,"abstract":"<p><p>Surgical outcomes of pelvic organ prolapse (POP) surgery are poor, resulting in a 20% recurrence risk. Following the hypothesis that impaired wound healing is the main determinant of recurrent POP, growth factors have the potential to promote wound healing and may improve surgical outcomes. In this study, we systematically reviewed the effect of growth factors on vaginal wound healing in both <i>in vitro</i> and animal studies. For each independent comparison, the standardized mean difference and 95% CI were calculated using the Hedges' g correction. Of the 3858 retrieved studies, seven studies were included, of which six were included in meta-analysis (three <i>in vitro</i> studies and four <i>in vivo</i> studies). <i>In vitro</i>, basic fibroblast growth factor (bFGF) promotes proliferation, differentiation, and collagen types I and III production. Epidermal growth factor stimulates proliferation and connective tissue growth factor promotes Tenascin-C expression. These effects, however, are less pronounced <i>in vivo</i>; only bFGF slightly promotes collagen production. The review shows that growth factors, particularly bFGF, are able to promote vaginal wound healing <i>in vitro</i>. The uncertain <i>in vivo</i> findings suggest that preclinical models should be improved. The ultimate goal is to develop effective growth factor-supplemented therapies that improve surgical outcomes for POP.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"29 4","pages":"429-440"},"PeriodicalIF":6.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9968988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1089/ten.teb.2023.29020.rfs2022
Jennifer L Robinson
{"title":"Rosalind Franklin Society Proudly Announces the 2022 Award Recipient for <i>Tissue Engineering Part B: Reviews</i>.","authors":"Jennifer L Robinson","doi":"10.1089/ten.teb.2023.29020.rfs2022","DOIUrl":"https://doi.org/10.1089/ten.teb.2023.29020.rfs2022","url":null,"abstract":"","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"29 4","pages":"331"},"PeriodicalIF":6.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9972530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1089/ten.TEB.2022.0168
Yanlin Zhu, Bei Chang, Yuxuan Pang, Huimin Wang, Yanmin Zhou
Deferoxamine (DFO) is an iron chelator with FDA approval for the clinical treatment of iron excess. As a well-established stabilizer of hypoxia-inducible factor-1α (HIF-1α), DFO can efficiently upregulate HIF-1α and relevant downstream angiogenic factors, leading to accelerated vascularization. Moreover, as increasing studies have focused on DFO as a hypoxia-mimetic agent in recent years, it has been shown that DFO exhibited multiple functions, including stem cell regulation, immunoregulation, provascularization, and pro-osteogenesis. On the contrary, DFO can bind excess iron ions in wounds of chronic inflammation, while serving as an antioxidant with the characteristic of removing reactive oxygen species. Collectively, these characteristics make DFO a potent modulator in tissue engineering for increasing tissue integration of biomaterials in vivo and facilitating wound healing. This review outlines the activity of DFO as a representative hypoxia-mimetic agent in cells as well as the evolution of its application in tissue engineering. It can be concluded that DFO is a medication with tremendous promise and application value in future trends, which can optimize biomaterials and existing tissue engineering techniques for tissue regeneration.
{"title":"Advances in Hypoxia-Inducible Factor-1<i>α</i> Stabilizer Deferoxamine in Tissue Engineering.","authors":"Yanlin Zhu, Bei Chang, Yuxuan Pang, Huimin Wang, Yanmin Zhou","doi":"10.1089/ten.TEB.2022.0168","DOIUrl":"https://doi.org/10.1089/ten.TEB.2022.0168","url":null,"abstract":"<p><p>Deferoxamine (DFO) is an iron chelator with FDA approval for the clinical treatment of iron excess. As a well-established stabilizer of hypoxia-inducible factor-1α (HIF-1α), DFO can efficiently upregulate HIF-1α and relevant downstream angiogenic factors, leading to accelerated vascularization. Moreover, as increasing studies have focused on DFO as a hypoxia-mimetic agent in recent years, it has been shown that DFO exhibited multiple functions, including stem cell regulation, immunoregulation, provascularization, and pro-osteogenesis. On the contrary, DFO can bind excess iron ions in wounds of chronic inflammation, while serving as an antioxidant with the characteristic of removing reactive oxygen species. Collectively, these characteristics make DFO a potent modulator in tissue engineering for increasing tissue integration of biomaterials <i>in vivo</i> and facilitating wound healing. This review outlines the activity of DFO as a representative hypoxia-mimetic agent in cells as well as the evolution of its application in tissue engineering. It can be concluded that DFO is a medication with tremendous promise and application value in future trends, which can optimize biomaterials and existing tissue engineering techniques for tissue regeneration.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"29 4","pages":"347-357"},"PeriodicalIF":6.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10022221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/ten.TEB.2022.0142
Ching Ann Tee, Jongyoon Han, Hoi Po James Hui, Eng Hin Lee, Zheng Yang
Articular cartilage is composed of superficial, medial, and deep zones, which endow the tissue with biphasic mechanical properties to withstand shearing force and compressional loading. The tissue has very limited self-healing capacity once it is damaged due to its avascular nature. To prevent the early onset of osteoarthritis, surgical intervention is often needed to repair the injured cartilage. Current noncell-based and cell-based treatments focus on the regeneration of homogeneous cartilage to achieve bulk compressional properties without recapitulating the zonal matrix and mechanical properties, and often oversight in aiding cartilage integration between host and repair cartilage. It is hypothesized that achieving zonal architecture in articular cartilage tissue repair could improve the structural and mechanical integrity and thus the life span of the regenerated tissue. Engineering stratified cartilage constructs using zonal chondrocytes have been hypothesized to improve the functionality and life span of the regenerated tissues. However, stratified articular cartilage repair has yet to be realized to date due to the lack of an efficient zonal chondrocyte isolation method and an expansion platform that would allow both cell propagation and phenotype maintenance. Various attempts and challenges in achieving stratified articular cartilage repair in a clinical setting are evaluated. In this review, different perspectives on achieving stratified articular cartilage repair using zonal chondrocytes are described. The effectiveness of different zonal chondrocyte isolation and zonal chondrocyte phenotype maintenance methodologies during expansion are compared, with the focus on recent advancements in zonal chondrocyte isolation and expansion that could present a possible strategy to overcome the limitation of applying zonal chondrocytes to facilitate zonal architecture development in articular cartilage regeneration. Impact Statement The zonal properties of articular cartilage contribute to the biphasic mechanical properties of the tissues. Recapitulation of the zonal architecture in regenerated articular cartilage has been hypothesized to improve the mechanical integrity and life span of the regenerated tissue. This review provides a comprehensive discussion on the current state of research relevant to achieving stratified articular cartilage repair using zonal chondrocytes from different perspectives. This review further elaborates on a zonal chondrocyte production pipeline that can potentially overcome the current clinical challenges and future work needed to realize stratified zonal chondrocyte implantation in a clinical setting.
{"title":"Perspective in Achieving Stratified Articular Cartilage Repair Using Zonal Chondrocytes.","authors":"Ching Ann Tee, Jongyoon Han, Hoi Po James Hui, Eng Hin Lee, Zheng Yang","doi":"10.1089/ten.TEB.2022.0142","DOIUrl":"https://doi.org/10.1089/ten.TEB.2022.0142","url":null,"abstract":"<p><p>Articular cartilage is composed of superficial, medial, and deep zones, which endow the tissue with biphasic mechanical properties to withstand shearing force and compressional loading. The tissue has very limited self-healing capacity once it is damaged due to its avascular nature. To prevent the early onset of osteoarthritis, surgical intervention is often needed to repair the injured cartilage. Current noncell-based and cell-based treatments focus on the regeneration of homogeneous cartilage to achieve bulk compressional properties without recapitulating the zonal matrix and mechanical properties, and often oversight in aiding cartilage integration between host and repair cartilage. It is hypothesized that achieving zonal architecture in articular cartilage tissue repair could improve the structural and mechanical integrity and thus the life span of the regenerated tissue. Engineering stratified cartilage constructs using zonal chondrocytes have been hypothesized to improve the functionality and life span of the regenerated tissues. However, stratified articular cartilage repair has yet to be realized to date due to the lack of an efficient zonal chondrocyte isolation method and an expansion platform that would allow both cell propagation and phenotype maintenance. Various attempts and challenges in achieving stratified articular cartilage repair in a clinical setting are evaluated. In this review, different perspectives on achieving stratified articular cartilage repair using zonal chondrocytes are described. The effectiveness of different zonal chondrocyte isolation and zonal chondrocyte phenotype maintenance methodologies during expansion are compared, with the focus on recent advancements in zonal chondrocyte isolation and expansion that could present a possible strategy to overcome the limitation of applying zonal chondrocytes to facilitate zonal architecture development in articular cartilage regeneration. Impact Statement The zonal properties of articular cartilage contribute to the biphasic mechanical properties of the tissues. Recapitulation of the zonal architecture in regenerated articular cartilage has been hypothesized to improve the mechanical integrity and life span of the regenerated tissue. This review provides a comprehensive discussion on the current state of research relevant to achieving stratified articular cartilage repair using zonal chondrocytes from different perspectives. This review further elaborates on a zonal chondrocyte production pipeline that can potentially overcome the current clinical challenges and future work needed to realize stratified zonal chondrocyte implantation in a clinical setting.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"29 3","pages":"310-330"},"PeriodicalIF":6.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9601456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/ten.TEB.2022.0120
Maria J Hagelaars, Laura Rijns, Patricia Y W Dankers, Sandra Loerakker, Carlijn V C Bouten
Rebuilding the kidney in the context of tissue engineering offers a major challenge as the organ is structurally complex and has a high variety of specific functions. Recreation of kidney function is inherently connected to the formation of tubules since the functional subunit of the kidney, the nephron, is based on tubular structures. In vivo, tubulogenesis culminates in a perfectly shaped, patterned, and functional renal tubule via different morphogenic processes that depend on delicately orchestrated chemical, physical, and mechanical interactions between cells and between cells and their microenvironment. This review summarizes the current understanding of the role of the microenvironment in the morphogenic processes involved in in vivo renal tubulogenesis. We highlight the current state-of-the-art of renal tubular engineering and provide a view on the design elements that can be extracted from these studies. Next, we discuss how computational modeling can aid in specifying and identifying design parameters and provide directions on how these design parameters can be incorporated in biomaterials for the purpose of engineering renal tubulogenesis. Finally, we propose that a step-by-step reciprocal interaction between understanding and engineering is necessary to effectively guide renal tubulogenesis. Impact statement Tubular tissue engineering lies at the foundation of regenerating kidney tissue function, as the functional subunit of the kidney, the nephron, is based on tubular structures. Guiding renal tubulogenesis toward functional renal tubules requires in-depth knowledge of the developmental processes that lead to the formation of native tubules as well as engineering approaches to steer these processes. In this study, we review the role of the microenvironment in the developmental processes that lead to functional renal tubules and give directions how this knowledge can be harnessed for biomaterial-based tubular engineering using computational models.
{"title":"Engineering Strategies to Move from Understanding to Steering Renal Tubulogenesis.","authors":"Maria J Hagelaars, Laura Rijns, Patricia Y W Dankers, Sandra Loerakker, Carlijn V C Bouten","doi":"10.1089/ten.TEB.2022.0120","DOIUrl":"https://doi.org/10.1089/ten.TEB.2022.0120","url":null,"abstract":"<p><p>Rebuilding the kidney in the context of tissue engineering offers a major challenge as the organ is structurally complex and has a high variety of specific functions. Recreation of kidney function is inherently connected to the formation of tubules since the functional subunit of the kidney, the nephron, is based on tubular structures. <i>In vivo</i>, tubulogenesis culminates in a perfectly shaped, patterned, and functional renal tubule via different morphogenic processes that depend on delicately orchestrated chemical, physical, and mechanical interactions between cells and between cells and their microenvironment. This review summarizes the current understanding of the role of the microenvironment in the morphogenic processes involved in <i>in vivo</i> renal tubulogenesis. We highlight the current state-of-the-art of renal tubular engineering and provide a view on the design elements that can be extracted from these studies. Next, we discuss how computational modeling can aid in specifying and identifying design parameters and provide directions on how these design parameters can be incorporated in biomaterials for the purpose of engineering renal tubulogenesis. Finally, we propose that a step-by-step reciprocal interaction between understanding and engineering is necessary to effectively guide renal tubulogenesis. Impact statement Tubular tissue engineering lies at the foundation of regenerating kidney tissue function, as the functional subunit of the kidney, the nephron, is based on tubular structures. Guiding renal tubulogenesis toward functional renal tubules requires in-depth knowledge of the developmental processes that lead to the formation of native tubules as well as engineering approaches to steer these processes. In this study, we review the role of the microenvironment in the developmental processes that lead to functional renal tubules and give directions how this knowledge can be harnessed for biomaterial-based tubular engineering using computational models.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"29 3","pages":"203-216"},"PeriodicalIF":6.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9603778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/ten.teb.2023.29018.cfp
Laura Bracaglia, Themis Kyriakides
{"title":"Call for Papers: Special Issue on Modulation of the Immune System to Improve Tissue Regeneration Strategies.","authors":"Laura Bracaglia, Themis Kyriakides","doi":"10.1089/ten.teb.2023.29018.cfp","DOIUrl":"https://doi.org/10.1089/ten.teb.2023.29018.cfp","url":null,"abstract":"","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"29 3","pages":"189"},"PeriodicalIF":6.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9965549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/ten.TEB.2022.0140
Fulong Li, Xiaohong Chen, Ping Liu
In recent years, tissue engineering scaffolds have turned into the preferred option for the clinical treatment of pathological and traumatic bone defects. In this field, silicate-based bioactive glasses (SBGs) and biodegradable medical synthetic polymers (BMSPs) have attracted a great deal of attention owing to their shared exceptional advantages, like excellent biocompatibility, good biodegradability, and outstanding osteogenesis. Three-dimensional (3D) printed SBG/BMSP scaffolds can not only replicate the mechanical properties and microstructure of natural bone but also degrade in situ after service and end up being replaced by regenerated bone tissue in vivo. This review first consolidates the research efforts in 3D printed SBG/BMSP scaffolds, and then focuses on their composite mechanism. This review may help to provide a fresh perspective for SBG/BMSP composite system in bone regeneration. Impact statement SBG/BMSP composites have great potential in bone tissue regeneration and repair. This article reviews the research progress of three-dimensional printed SBG/BMSP scaffolds in recent years and summarizes the composite mechanism of SBG/BMSP system in bone tissue engineering, which contributes to the development of tissue engineering scaffolds.
{"title":"A Review on Three-Dimensional Printed Silicate-Based Bioactive Glass/Biodegradable Medical Synthetic Polymer Composite Scaffolds.","authors":"Fulong Li, Xiaohong Chen, Ping Liu","doi":"10.1089/ten.TEB.2022.0140","DOIUrl":"https://doi.org/10.1089/ten.TEB.2022.0140","url":null,"abstract":"<p><p>In recent years, tissue engineering scaffolds have turned into the preferred option for the clinical treatment of pathological and traumatic bone defects. In this field, silicate-based bioactive glasses (SBGs) and biodegradable medical synthetic polymers (BMSPs) have attracted a great deal of attention owing to their shared exceptional advantages, like excellent biocompatibility, good biodegradability, and outstanding osteogenesis. Three-dimensional (3D) printed SBG/BMSP scaffolds can not only replicate the mechanical properties and microstructure of natural bone but also degrade <i>in situ</i> after service and end up being replaced by regenerated bone tissue <i>in vivo</i>. This review first consolidates the research efforts in 3D printed SBG/BMSP scaffolds, and then focuses on their composite mechanism. This review may help to provide a fresh perspective for SBG/BMSP composite system in bone regeneration. Impact statement SBG/BMSP composites have great potential in bone tissue regeneration and repair. This article reviews the research progress of three-dimensional printed SBG/BMSP scaffolds in recent years and summarizes the composite mechanism of SBG/BMSP system in bone tissue engineering, which contributes to the development of tissue engineering scaffolds.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"29 3","pages":"244-259"},"PeriodicalIF":6.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9602967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/ten.TEB.2022.0171
Gustavo Henrique Doná Rodrigues Almeida, Rebeca Piatniczka Iglesia, Jaqueline de Carvalho Rinaldi, Mikaelly Kiemy Murai, Celso Vitor Alves Queiroz Calomeno, Leandro Norberto da Silva Junior, Bianca de Oliveira Horvath-Pereira, Letícia Beatriz Mazo Pinho, Maria Angélica Miglino, Ana Claudia Oliveira Carreira
Ovarian tissue has a unique microarchitecture and a complex cellular and molecular dynamics that are essential for follicular survival and development. Due to this great complexity, several factors may lead to ovarian insufficiency, and therefore to systemic metabolic disorders and female infertility. Techniques currently used in the reproductive clinic such as oocyte cryopreservation or even ovarian tissue transplant, although effective, have several limitations, which impair their wide application. In this scenario, mimetic ovarian tissue reconstruction comes as an innovative alternative to develop new methodologies for germ cells preservation and ovarian functions restoration. The ovarian extracellular matrix (ECM) is crucial for oocyte viability maintenance, once it acts actively in folliculogenesis. One of the key components of ovarian bioengineering is biomaterials application that mimics ECM and provides conditions for cell anchorage, proliferation, and differentiation. Therefore, this review aims at describing ovarian tissue engineering approaches and listing the main limitations of current methods for preservation and reestablishment of ovarian fertility. In addition, we describe the main elements that structure this study field, highlighting the main advances and the challenges to overcome to develop innovative methodologies to be applied in reproductive medicine. Impact Statement This review presents the main advances in the application of tissue bioengineering in the ovarian tissue reconstruction to develop innovative solutions for ovarian fertility reestablishment.
{"title":"Current Trends on Bioengineering Approaches for Ovarian Microenvironment Reconstruction.","authors":"Gustavo Henrique Doná Rodrigues Almeida, Rebeca Piatniczka Iglesia, Jaqueline de Carvalho Rinaldi, Mikaelly Kiemy Murai, Celso Vitor Alves Queiroz Calomeno, Leandro Norberto da Silva Junior, Bianca de Oliveira Horvath-Pereira, Letícia Beatriz Mazo Pinho, Maria Angélica Miglino, Ana Claudia Oliveira Carreira","doi":"10.1089/ten.TEB.2022.0171","DOIUrl":"https://doi.org/10.1089/ten.TEB.2022.0171","url":null,"abstract":"<p><p>Ovarian tissue has a unique microarchitecture and a complex cellular and molecular dynamics that are essential for follicular survival and development. Due to this great complexity, several factors may lead to ovarian insufficiency, and therefore to systemic metabolic disorders and female infertility. Techniques currently used in the reproductive clinic such as oocyte cryopreservation or even ovarian tissue transplant, although effective, have several limitations, which impair their wide application. In this scenario, mimetic ovarian tissue reconstruction comes as an innovative alternative to develop new methodologies for germ cells preservation and ovarian functions restoration. The ovarian extracellular matrix (ECM) is crucial for oocyte viability maintenance, once it acts actively in folliculogenesis. One of the key components of ovarian bioengineering is biomaterials application that mimics ECM and provides conditions for cell anchorage, proliferation, and differentiation. Therefore, this review aims at describing ovarian tissue engineering approaches and listing the main limitations of current methods for preservation and reestablishment of ovarian fertility. In addition, we describe the main elements that structure this study field, highlighting the main advances and the challenges to overcome to develop innovative methodologies to be applied in reproductive medicine. Impact Statement This review presents the main advances in the application of tissue bioengineering in the ovarian tissue reconstruction to develop innovative solutions for ovarian fertility reestablishment.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"29 3","pages":"260-298"},"PeriodicalIF":6.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9601016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}