首页 > 最新文献

Tissue engineering. Part C, Methods最新文献

英文 中文
Revolutionizing Dental Implant Research: A Systematic Review on Three-Dimensional In Vitro Models. 口腔种植研究的革命性变革:三维体外模型系统综述
IF 3 4区 医学 Q2 Medicine Pub Date : 2024-04-08 DOI: 10.1089/ten.tec.2023.0380
Ghannaa Shayya, Clémentine Benedetti, Lise Chagot, Marie-Laure Stachowicz, Olivier Chassande, Sylvain Catros
Dental implants have been clinically used for almost five decades with high success rates. In vitro research models used in implant dentistry are limited to two-dimensional experiments, which are reproducible and well adapted to evaluate a single parameter but do not reproduce the complexity of clinical settings. On the contrary, the in vivo research models using animals offer similar histological and anatomical features to humans, and tissue healing can be close to a clinical situation, but those models are usually accompanied with ethical concerns, and their outcomes could not be extrapolated to humans because of interspecies variabilities. This makes the development of novel in vitro models that recapitulate physiological events occurring during dental implant placement of particular interest for current research in dentistry. Also, such models could be challenged by setting a pathological environment (peri-implantitis) to better understand the disease and eventually serve as a platform to evaluate novel treatment modalities. The aim of this systematic literature review was to cover all the in vitro three-dimensional (3D) complex models available for research in implant dentistry. To accomplish this, a comprehensive search of the literature present on Scopus and PubMed databases was done using specific keywords, as well as inclusion/exclusion criteria. Out of 1334 articles found, we have finally included 27 articles in this review with publication dates between 2001 and 2022. In those articles, the 3D models were designed to study tissue-implant interface behavior in bone or gingival tissue. The articles focused on simulating implant integration, evaluating the effect of different conditions on implant integration, or developing an infection model for the implant integration process. The methods used involved implant material and cells organized in a specific 3D structure. The 3D models developed were able to simulate the process of dental implant osseo- and soft tissue integration and lead to results comparable with conventional in vitro and in vivo models. A relatively limited number of articles were obtained, which indicates that this is an emerging field, highly dependent on progresses made in biotechnologies and tissue engineering, and that further investigation is needed to enhance these 3D in vitro models.
种植牙已在临床上应用了近五十年,成功率很高。用于种植牙的体外研究模型仅限于二维实验,这种实验具有可重复性,能很好地评估单一参数,但不能再现临床环境的复杂性。相反,使用动物的体内研究模型具有与人类相似的组织学和解剖学特征,组织愈合可以接近临床情况,但这些模型通常伴随着伦理问题,而且由于物种间的差异,其结果不能推断到人类身上。因此,开发新型体外模型来再现牙科种植体植入过程中发生的生理事件对目前的牙科研究具有特别重要的意义。此外,还可以通过设置病理环境(种植体周围炎)来挑战这些模型,从而更好地了解疾病,并最终将其作为评估新型治疗模式的平台。本系统性文献综述旨在涵盖所有可用于种植牙研究的体外三维(3D)复杂模型。为此,我们使用特定的关键词以及纳入/排除标准对 Scopus 和 PubMed 数据库中的文献进行了全面检索。在找到的 1334 篇文章中,我们最终将 27 篇发表于 2001 年至 2022 年之间的文章纳入了本综述。在这些文章中,三维模型旨在研究骨或牙龈组织中的组织-种植体界面行为。这些文章的重点是模拟种植体的整合、评估不同条件对种植体整合的影响或开发种植体整合过程的感染模型。所使用的方法涉及种植体材料和以特定三维结构组织的细胞。所开发的三维模型能够模拟牙科种植体骨与软组织的整合过程,其结果可与传统的体外和体内模型相媲美。获得的文章数量相对有限,这表明这是一个新兴领域,高度依赖于生物技术和组织工程学的进步,还需要进一步研究,以改进这些三维体外模型。
{"title":"Revolutionizing Dental Implant Research: A Systematic Review on Three-Dimensional In Vitro Models.","authors":"Ghannaa Shayya, Clémentine Benedetti, Lise Chagot, Marie-Laure Stachowicz, Olivier Chassande, Sylvain Catros","doi":"10.1089/ten.tec.2023.0380","DOIUrl":"https://doi.org/10.1089/ten.tec.2023.0380","url":null,"abstract":"Dental implants have been clinically used for almost five decades with high success rates. In vitro research models used in implant dentistry are limited to two-dimensional experiments, which are reproducible and well adapted to evaluate a single parameter but do not reproduce the complexity of clinical settings. On the contrary, the in vivo research models using animals offer similar histological and anatomical features to humans, and tissue healing can be close to a clinical situation, but those models are usually accompanied with ethical concerns, and their outcomes could not be extrapolated to humans because of interspecies variabilities. This makes the development of novel in vitro models that recapitulate physiological events occurring during dental implant placement of particular interest for current research in dentistry. Also, such models could be challenged by setting a pathological environment (peri-implantitis) to better understand the disease and eventually serve as a platform to evaluate novel treatment modalities. The aim of this systematic literature review was to cover all the in vitro three-dimensional (3D) complex models available for research in implant dentistry. To accomplish this, a comprehensive search of the literature present on Scopus and PubMed databases was done using specific keywords, as well as inclusion/exclusion criteria. Out of 1334 articles found, we have finally included 27 articles in this review with publication dates between 2001 and 2022. In those articles, the 3D models were designed to study tissue-implant interface behavior in bone or gingival tissue. The articles focused on simulating implant integration, evaluating the effect of different conditions on implant integration, or developing an infection model for the implant integration process. The methods used involved implant material and cells organized in a specific 3D structure. The 3D models developed were able to simulate the process of dental implant osseo- and soft tissue integration and lead to results comparable with conventional in vitro and in vivo models. A relatively limited number of articles were obtained, which indicates that this is an emerging field, highly dependent on progresses made in biotechnologies and tissue engineering, and that further investigation is needed to enhance these 3D in vitro models.","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140731768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embedded printing of hydrogels and watery suspensions of cells in patterned granular baths. 水凝胶和细胞水悬浮液在图案化颗粒浴中的嵌入式打印。
IF 3 4区 医学 Q2 Medicine Pub Date : 2024-04-03 DOI: 10.1089/ten.TEC.2024.0015
Vasileios D Trikalitis, Julia Perea Paizal, Vincent Rangel, Fabian Stein, Jeroen Rouwkema
Bioprinting within support media has emerged as the superior alternative to conventional extrusion printing. Not only because it allows for more freedom over the shapes that can be printed, but also because it allows for the printing of inks that would not retain shape fidelity in freeform deposition such as watery liquids. Apart from functioning as mechanical support during embedded printing, hydrogel microparticle support media can provide the unique advantage of offering distinct chemotactic cues to cells printed in the baths by varying the composition of the hydrogel microparticles. There is great potential in compartmentalized granular baths consisting of different hydrogel particle materials in the field of tissue engineering, as these allow for the local inclusion of properties or cues to guide tissue development. In this work, we present a method to create compartmentalized embedding baths by printing multiple granular hydrogel materials that are widely used in tissue engineering. After adapting the volume fraction (φp) of the particles in the bath, we print within them using both inks composed of hydrogel or of cells and other particles suspended in watery liquid. Our process consists of three steps: First the hydrogel microparticles are packed at a φp that allows them to be extruded while being reversibly jammed, facilitating the localized deposition of the granular media to form a compartmentalized bath. Then, each granular media is deposited in succession to create a packed suspension compartment, and by adding liquid post deposition, φp is reduced to allow for embedded printing. Finally, we demonstrate the printing of multiple inks within the compartmentalized embedding bath, and highlight the distinct differences between using inks composed of hydrogels or inks composed of particles suspended in watery liquid. This approach combines the advantages of embedded printing through the use of granular media with the added ability to pattern multiple bioactive granular materials to locally affect the behaviour of cells printed within the bath. We expect that this workflow will allow researchers to create spatially compartmentalized, customized bioactive embedding baths, that allow for the embedded printing of inks composed of hydrogels, cells and other particles adapted to their need.
在支撑介质中进行生物打印已成为传统挤压打印的最佳替代方法。这不仅是因为它可以让打印的形状更加自由,还因为它可以打印在自由沉积过程中无法保持形状真实性的油墨,如含水液体。水凝胶微颗粒支撑介质除了在嵌入式打印过程中起到机械支撑作用外,还能通过改变水凝胶微颗粒的成分,为浴槽中打印的细胞提供独特的趋化线索。在组织工程领域,由不同水凝胶微粒材料组成的分区颗粒浴具有巨大的潜力,因为它们允许在局部加入特性或线索来引导组织发育。在这项工作中,我们介绍了一种通过打印多种广泛应用于组织工程的颗粒状水凝胶材料来创建分区包埋浴的方法。在调整浴槽中颗粒的体积分数(φp)后,我们使用由水凝胶或悬浮在含水液体中的细胞和其他颗粒组成的油墨在其中进行打印。我们的工艺包括三个步骤:首先,将水凝胶微颗粒以一定的 φp 值进行包装,使其能够在挤出的同时被可逆地卡住,从而促进颗粒介质的局部沉积,形成一个分隔的浴槽。然后,每种颗粒介质依次沉积,形成一个挤满悬浮液的小室,并在沉积后添加液体,从而降低φp,实现嵌入式打印。最后,我们演示了在分格嵌入浴中打印多种油墨的过程,并强调了使用由水凝胶组成的油墨与使用由悬浮在含水液体中的颗粒组成的油墨之间的明显区别。这种方法结合了通过使用颗粒介质进行嵌入式打印的优势,并增加了将多种生物活性颗粒材料图案化的能力,以局部影响浴槽中打印细胞的行为。我们希望这种工作流程能让研究人员创建空间分隔的定制生物活性嵌入浴,从而嵌入打印由水凝胶、细胞和其他颗粒组成的墨水,以适应他们的需要。
{"title":"Embedded printing of hydrogels and watery suspensions of cells in patterned granular baths.","authors":"Vasileios D Trikalitis, Julia Perea Paizal, Vincent Rangel, Fabian Stein, Jeroen Rouwkema","doi":"10.1089/ten.TEC.2024.0015","DOIUrl":"https://doi.org/10.1089/ten.TEC.2024.0015","url":null,"abstract":"Bioprinting within support media has emerged as the superior alternative to conventional extrusion printing. Not only because it allows for more freedom over the shapes that can be printed, but also because it allows for the printing of inks that would not retain shape fidelity in freeform deposition such as watery liquids. Apart from functioning as mechanical support during embedded printing, hydrogel microparticle support media can provide the unique advantage of offering distinct chemotactic cues to cells printed in the baths by varying the composition of the hydrogel microparticles. There is great potential in compartmentalized granular baths consisting of different hydrogel particle materials in the field of tissue engineering, as these allow for the local inclusion of properties or cues to guide tissue development. In this work, we present a method to create compartmentalized embedding baths by printing multiple granular hydrogel materials that are widely used in tissue engineering. After adapting the volume fraction (φp) of the particles in the bath, we print within them using both inks composed of hydrogel or of cells and other particles suspended in watery liquid. Our process consists of three steps: First the hydrogel microparticles are packed at a φp that allows them to be extruded while being reversibly jammed, facilitating the localized deposition of the granular media to form a compartmentalized bath. Then, each granular media is deposited in succession to create a packed suspension compartment, and by adding liquid post deposition, φp is reduced to allow for embedded printing. Finally, we demonstrate the printing of multiple inks within the compartmentalized embedding bath, and highlight the distinct differences between using inks composed of hydrogels or inks composed of particles suspended in watery liquid. This approach combines the advantages of embedded printing through the use of granular media with the added ability to pattern multiple bioactive granular materials to locally affect the behaviour of cells printed within the bath. We expect that this workflow will allow researchers to create spatially compartmentalized, customized bioactive embedding baths, that allow for the embedded printing of inks composed of hydrogels, cells and other particles adapted to their need.","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140750106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Evolution and Future Trends of Stromal Vascular Fraction: A Bibliometric Analysis. 基质血管分数的演变与未来趋势:文献计量分析》(The Evolution and Future Trends of Stromal Vascular Fraction: a Bibliometric Analysis)。
IF 3 4区 医学 Q2 Medicine Pub Date : 2024-04-01 Epub Date: 2024-02-26 DOI: 10.1089/ten.TEC.2023.0310
Yang Liu, Hai Huang, Hang Zhou, Yifeng Yuan, Xiaolin Shi

The heterogeneous population of cells obtained from processed adipose tissue, known as stromal vascular fraction (SVF), exhibits immunomodulatory and angiogenic properties. The therapeutic efficacy of SVF has been substantiated in numerous diseases, instilling hope for its clinical application as a cellular therapy. This study aims to provide a comprehensive analysis of the scholarly literature on SVF, including its worldwide progression, highlighting significant literatures, temporal development, research clusters, current active topics, and emerging trends. The combination of CiteSpace, HistCite Pro, and VOS Viewer tools was used to analyze the SVF literature. The overall panorama of the field is elucidated in terms of publication count, timeline, institutional distribution, journal coverage, and authors' contributions. In addition, this analysis explores the literature and keywords through the lens of co-occurrence, citation, and co-citation frequencies. Clustering algorithms are used to track the trajectory of the literature further, providing insight into its development. The findings offer a comprehensive overview of the progress made in the SVF field, highlighting distinct phases of development: the "Seedling period" from 1980 to 2010, the "Panicle period" from 2011 to 2016, and the "Flowering period" from 2017 to 2023. Within these periods, the evolution of 10 clusters is unraveled, encompassing topics such as vascular disease, CD34 expression, adipose tissue macrophage in 2013, cell-assisted lipotransfer, and knee osteoarthritis. In summary, this bibliometric study, conducting a quantitative analysis of publications in SVF research, encompasses a global overview of research, an analysis of pivotal literature in the field, research hotspots, and emerging frontiers.

从处理过的脂肪组织中获得的异质细胞群被称为基质血管成分(SVF),具有免疫调节和血管生成特性。SVF 对多种疾病的疗效已得到证实,为其作为细胞疗法的临床应用带来了希望。本研究旨在全面分析有关 SVF 的学术文献,包括其在世界范围内的进展情况,突出重要文献、时间发展、研究集群、当前活跃的主题和新兴趋势。我们结合使用了 CiteSpace、HistCite Pro 和 VOS Viewer 工具来分析 SVF 文献。从发表数量、时间轴、机构分布、期刊覆盖面和作者贡献等方面阐明了该领域的整体全景。此外,该分析还通过共现、被引和共引频率的视角对文献和关键词进行了探讨。采用聚类算法进一步追踪文献的轨迹,深入了解文献的发展。研究结果全面概述了 SVF 领域所取得的进展,突出了不同的发展阶段:1980 年至 2010 年的 "幼苗期"、2011 年至 2016 年的 "花序期 "以及 2017 年至 2023 年的 "开花期"。在这些时期内,十个集群的演变过程被揭开,其中包括血管疾病、CD34表达、2013年脂肪组织巨噬细胞、细胞辅助脂质转移和膝关节骨关节炎等主题。总之,这项文献计量学研究对SVF研究的出版物进行了定量分析,包括全球研究概况、该领域关键文献分析、研究热点和新兴前沿。
{"title":"The Evolution and Future Trends of Stromal Vascular Fraction: A Bibliometric Analysis.","authors":"Yang Liu, Hai Huang, Hang Zhou, Yifeng Yuan, Xiaolin Shi","doi":"10.1089/ten.TEC.2023.0310","DOIUrl":"10.1089/ten.TEC.2023.0310","url":null,"abstract":"<p><p>The heterogeneous population of cells obtained from processed adipose tissue, known as stromal vascular fraction (SVF), exhibits immunomodulatory and angiogenic properties. The therapeutic efficacy of SVF has been substantiated in numerous diseases, instilling hope for its clinical application as a cellular therapy. This study aims to provide a comprehensive analysis of the scholarly literature on SVF, including its worldwide progression, highlighting significant literatures, temporal development, research clusters, current active topics, and emerging trends. The combination of CiteSpace, HistCite Pro, and VOS Viewer tools was used to analyze the SVF literature. The overall panorama of the field is elucidated in terms of publication count, timeline, institutional distribution, journal coverage, and authors' contributions. In addition, this analysis explores the literature and keywords through the lens of co-occurrence, citation, and co-citation frequencies. Clustering algorithms are used to track the trajectory of the literature further, providing insight into its development. The findings offer a comprehensive overview of the progress made in the SVF field, highlighting distinct phases of development: the \"Seedling period\" from 1980 to 2010, the \"Panicle period\" from 2011 to 2016, and the \"Flowering period\" from 2017 to 2023. Within these periods, the evolution of 10 clusters is unraveled, encompassing topics such as vascular disease, CD34 expression, adipose tissue macrophage in 2013, cell-assisted lipotransfer, and knee osteoarthritis. In summary, this bibliometric study, conducting a quantitative analysis of publications in SVF research, encompasses a global overview of research, an analysis of pivotal literature in the field, research hotspots, and emerging frontiers.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Fluorescent Labeling Techniques for Tracking Canine Amniotic Stem Cells. 用于追踪犬羊膜干细胞的荧光标记技术比较分析
IF 3 4区 医学 Q2 Medicine Pub Date : 2024-04-01 Epub Date: 2024-03-20 DOI: 10.1089/ten.TEC.2023.0286
Andressa Valim Parca, Naira Caroline Godoy Pieri, Paulo Fantinato Neto, Fabiana Fernandes Bressan, Carlos Eduardo Ambrósio, Daniele Dos Santos Martins

The utmost aim of regenerative medicine is to promote the regeneration of injured tissues using stem cells. Amniotic mesenchymal stem cells (AmMSCs) have been used in several studies mainly because of their easy isolation from amniotic tissue postpartum and immunomodulatory and angiogenic properties and the low level of rejection. These cells share characteristics of both embryonic/fetal and adult stem cells and are particularly advantageous because they do not trigger tumorigenic activity when injected into immunocompromised animals. The large-scale use of AmMSCs for cellular therapies would greatly benefit from fluorescence labeling studies to validate their tracking in future therapies. This study evaluated the fluorophore positivity, fluorescence intensity, and longevity of canine AmMSCs. For this purpose, canine AmMSCs from the GDTI/USP biobank were submitted to three labeling conditions, two commercial fluorophores [CellTrace CFSE Cell Proliferation kit - CTrace, and CellTracker Green CMFDA - CTracker (CellTracker Green CMFDA, CT, #C2925, Molecular Probes®; Life Technologies)] and green fluorescent protein (GFP) expression after lentiviral transduction, to select the most suitable tracer in terms of adequate persistence and easy handling and analysis that could be used in studies of domestic animals. Fluorescence was detected in all groups; however, the patterns were different. Specifically, CTrace and CTracker fluorescence was detected 6 h after labeling, while GFP was visualized no earlier than 48 h after transduction. Flow cytometry analysis revealed more than 70% of positive cells on day 7 in the CTrace and CTracker groups, while fluorescence decreased significantly to 10% or less on day 20. Variations between repetitions were observed in the GFP group under the present conditions. Our results showed earlier fluorescence detection and more uniform results across repetitions for the commercial fluorophores. In contrast, fluorescence persisted for more extended periods in the GFP group. These results indicate a promising direction for assessing the roles of canine AmMSCs in regenerative medicine without genomic integration.

再生医学的最高目标是利用干细胞促进受伤组织的再生。羊膜间充质干细胞(AmMSCs)已被用于多项研究,主要是因为它们易于从产后羊膜组织中分离出来,具有免疫调节和血管生成特性,而且排斥反应小。这些细胞具有胚胎/胎儿干细胞和成体干细胞的共同特点,尤其是在注射到免疫功能低下的动物体内时不会引发肿瘤活性。大规模使用AmMSCs进行细胞疗法将大大受益于荧光标记研究,以验证其在未来疗法中的追踪。本研究评估了犬 AmMSCs 的荧光团阳性度、荧光强度和寿命。为此,对来自 GDTI/USP 生物库的犬 AmMSCs 采用了三种标记条件、两种商用荧光团 [CellTrace CFSE 细胞增殖试剂盒 - CTrace 和 CellTracker Green CMFDA - CTracker(CellTracker Green CMFDA, CT, #C2925、Molecular Probes®, Life Technologies)]和慢病毒转导后的绿色荧光蛋白(GFP)表达,以选择最适合家养动物研究的、具有足够持久性且易于处理和分析的示踪剂。所有组别都检测到了荧光,但荧光模式不同。具体来说,CTrace 和 CTracker 荧光是在标记后 6 小时检测到的,而 GFP 是在转导后 48 小时内检测到的。流式细胞术分析表明,在第 7 天,CTrace 和 CTracker 组有超过 70% 的阳性细胞,而在第 20 天,荧光显著减少到 10% 或更少。在目前的条件下,GFP 组的重复次数出现了变化。我们的结果显示,商用荧光团的荧光检测时间更早,重复检测的结果也更一致。另一方面,GFP 组的荧光持续时间更长。这些结果为评估犬AmMSCs在再生医学中的作用指明了方向,而无需进行基因组整合。
{"title":"Comparative Analysis of Fluorescent Labeling Techniques for Tracking Canine Amniotic Stem Cells.","authors":"Andressa Valim Parca, Naira Caroline Godoy Pieri, Paulo Fantinato Neto, Fabiana Fernandes Bressan, Carlos Eduardo Ambrósio, Daniele Dos Santos Martins","doi":"10.1089/ten.TEC.2023.0286","DOIUrl":"10.1089/ten.TEC.2023.0286","url":null,"abstract":"<p><p>The utmost aim of regenerative medicine is to promote the regeneration of injured tissues using stem cells. Amniotic mesenchymal stem cells (AmMSCs) have been used in several studies mainly because of their easy isolation from amniotic tissue postpartum and immunomodulatory and angiogenic properties and the low level of rejection. These cells share characteristics of both embryonic/fetal and adult stem cells and are particularly advantageous because they do not trigger tumorigenic activity when injected into immunocompromised animals. The large-scale use of AmMSCs for cellular therapies would greatly benefit from fluorescence labeling studies to validate their tracking in future therapies. This study evaluated the fluorophore positivity, fluorescence intensity, and longevity of canine AmMSCs. For this purpose, canine AmMSCs from the GDTI/USP biobank were submitted to three labeling conditions, two commercial fluorophores [CellTrace CFSE Cell Proliferation kit - CTrace, and CellTracker Green CMFDA - CTracker (CellTracker Green CMFDA, CT, #C2925, Molecular Probes<sup>®</sup>; Life Technologies)] and green fluorescent protein (GFP) expression after lentiviral transduction, to select the most suitable tracer in terms of adequate persistence and easy handling and analysis that could be used in studies of domestic animals. Fluorescence was detected in all groups; however, the patterns were different. Specifically, CTrace and CTracker fluorescence was detected 6 h after labeling, while GFP was visualized no earlier than 48 h after transduction. Flow cytometry analysis revealed more than 70% of positive cells on day 7 in the CTrace and CTracker groups, while fluorescence decreased significantly to 10% or less on day 20. Variations between repetitions were observed in the GFP group under the present conditions. Our results showed earlier fluorescence detection and more uniform results across repetitions for the commercial fluorophores. In contrast, fluorescence persisted for more extended periods in the GFP group. These results indicate a promising direction for assessing the roles of canine AmMSCs in regenerative medicine without genomic integration.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Acellular Cartilage Matrix-Sodium Alginate Scaffolds in Various Proportions. 各种比例的细胞软骨基质-海藻酸钠支架的特性分析
IF 3 4区 医学 Q2 Medicine Pub Date : 2024-04-01 Epub Date: 2024-03-20 DOI: 10.1089/ten.TEC.2023.0348
Wang Lu, Mengchu Yang, Yanan Zhang, Baoxi Meng, Fulian Ma, Wanjun Wang, Teng Guo

The development of three-dimensional (3D) bioprinting technology has provided a new solution to address the shortage of donors, multiple surgeries, and aesthetic concerns in microtia reconstruction surgery. The production of bioinks is the most critical aspect of 3D bioprinting. Acellular cartilage matrix (ACM) and sodium alginate (SA) are commonly used 3D bioprinting materials, and there have been reports of their combined use. However, there is a lack of comprehensive evaluations on ACM-SA scaffolds with different proportions. In this study, bioinks were prepared by mixing different proportions of decellularized rabbit ear cartilage powder and SA and then printed using 3D bioprinting technology and crosslinked with calcium ions to fabricate scaffolds. The physical properties, biocompatibility, and toxicity of ACM-SA scaffolds with different proportions were compared. The adhesion and proliferation of rabbit adipose-derived stem cells on ACM-SA scaffolds of different proportions, as well as the secretion of Collagen Type II, were evaluated under an adipose-derived stem cell chondrogenic induction medium. The following conclusions were drawn: when the proportion of SA in the ACM-SA scaffolds was <30%, the printed structure failed to form. The ACM-SA scaffolds in proportions from 1:9 to 6:4 showed no significant cytotoxicity, among which the 5:5 proportion of ACM-SA scaffold was superior in terms of adhesiveness and promoting cell proliferation and differentiation. Although a higher proportion of SA can provide greater mechanical strength, it also significantly increases the swelling ratio and reduces cell proliferation capabilities. Overall, the 5:5 proportion of ACM-SA scaffold demonstrated a more desirable biological and physical performance.

三维生物打印技术的发展为解决小耳畸形重建手术中供体短缺、多次手术和美学问题提供了一种新的解决方案。生物墨水的生产是三维生物打印技术最关键的环节。细胞软骨基质(ACM)和海藻酸钠(SA)是常用的三维生物打印材料,也有报道称它们可以联合使用。然而,目前还缺乏对不同比例的 ACM-SA 支架的全面评估。本研究将不同比例的脱细胞兔耳软骨粉末与 SA 混合制备成生物墨水,然后使用三维生物打印技术打印,并与钙离子交联制成支架。比较了不同比例 ACM-SA 支架的物理性质、生物相容性和毒性。在脂肪来源干细胞软骨诱导培养基下,评估了不同比例的 ACM-SA 支架上 rADSCs 的粘附和增殖情况,以及 COL-Ⅱ 的分泌情况。得出以下结论:比例为 5:5 的 ACM-SA 支架具有更好的整体生物和物理性能。
{"title":"Characterization of Acellular Cartilage Matrix-Sodium Alginate Scaffolds in Various Proportions.","authors":"Wang Lu, Mengchu Yang, Yanan Zhang, Baoxi Meng, Fulian Ma, Wanjun Wang, Teng Guo","doi":"10.1089/ten.TEC.2023.0348","DOIUrl":"10.1089/ten.TEC.2023.0348","url":null,"abstract":"<p><p>The development of three-dimensional (3D) bioprinting technology has provided a new solution to address the shortage of donors, multiple surgeries, and aesthetic concerns in microtia reconstruction surgery. The production of bioinks is the most critical aspect of 3D bioprinting. Acellular cartilage matrix (ACM) and sodium alginate (SA) are commonly used 3D bioprinting materials, and there have been reports of their combined use. However, there is a lack of comprehensive evaluations on ACM-SA scaffolds with different proportions. In this study, bioinks were prepared by mixing different proportions of decellularized rabbit ear cartilage powder and SA and then printed using 3D bioprinting technology and crosslinked with calcium ions to fabricate scaffolds. The physical properties, biocompatibility, and toxicity of ACM-SA scaffolds with different proportions were compared. The adhesion and proliferation of rabbit adipose-derived stem cells on ACM-SA scaffolds of different proportions, as well as the secretion of Collagen Type II, were evaluated under an adipose-derived stem cell chondrogenic induction medium. The following conclusions were drawn: when the proportion of SA in the ACM-SA scaffolds was <30%, the printed structure failed to form. The ACM-SA scaffolds in proportions from 1:9 to 6:4 showed no significant cytotoxicity, among which the 5:5 proportion of ACM-SA scaffold was superior in terms of adhesiveness and promoting cell proliferation and differentiation. Although a higher proportion of SA can provide greater mechanical strength, it also significantly increases the swelling ratio and reduces cell proliferation capabilities. Overall, the 5:5 proportion of ACM-SA scaffold demonstrated a more desirable biological and physical performance.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Sheep Model to Assess Critical-Sized Bone Regeneration with Periosteum for In Vivo Bioreactors. 用骨膜评估体内生物反应器临界骨再生的新型绵羊模型。
IF 3 4区 医学 Q2 Medicine Pub Date : 2024-04-01 Epub Date: 2024-03-14 DOI: 10.1089/ten.TEC.2023.0345
Yohaann A Ghosh, Hai Xin, D S Abdullah Al Maruf, Kai Cheng, Innes Wise, Chris Burrows, Ruta Gupta, Veronica Ka-Yan Cheung, James Wykes, David Leinkram, Catriona Froggatt, Will Lewin, Hedi V Kruse, Eva Tomaskovic-Crook, David R McKenzie, Jeremy Crook, Jonathan R Clark

Considerable research is being undertaken to develop novel biomaterials-based approaches for surgical reconstruction of bone defects. This extends to three-dimensional (3D) printed materials that provide stable, structural, and functional support in vivo. However, few preclinical models can simulate in vivo human biological conditions for clinically relevant testing. In this study we describe a novel ovine model that allows evaluation of in vivo osteogenesis via contact with bone and/or periosteum interfaced with printed polymer bioreactors loaded with biomaterial bone substitutes. The infraspinous scapular region of 14 Dorset cross sheep was exposed. Vascularized periosteum was elevated either attached to the infraspinatus muscle or separately. In both cases, the periosteum was supplied by the periosteal branch of the circumflex scapular vessels. In eight sheep, a 3D printed 4-chambered polyetheretherketone bioreactor was wrapped circumferentially in vascularized periosteum. In 6 sheep, 12 double-sided 3D printed 2-chambered polyetherketone bioreactors were secured to the underlying bone allowing direct contact with the bone on one side and periosteum on the other. Our model enabled simultaneous testing of up to 24 (12 double-sided) 10 × 10 × 5 mm bioreactors per scapula in the flat contact approach or a single 40 × 10 mm four-chambered bioreactor per scapula using the periosteal wrap. De novo bone growth was evaluated using histological and radiological analysis. Of importance, the experimental model was well tolerated by the animals and provides a versatile approach for comparing the osteogenic potential of cambium on the bone surface and elevated with periosteum. Furthermore, the periosteal flaps were sufficiently large for encasing bioreactors containing biomaterial bone substitutes for applications such as segmental mandibular reconstruction.

目前正在进行大量研究,以开发基于生物材料的新型骨缺损手术重建方法。这延伸到可在体内提供稳定、结构和功能支持的 3D 打印材料。然而,很少有临床前模型能模拟体内人体生物条件进行临床相关测试。在这里,我们描述了一种新型绵羊模型,该模型可通过与装有生物材料骨替代物的打印聚合物生物反应器接口的骨和/或骨膜接触来评估体内成骨情况。14 只多塞特杂交绵羊的肩胛下区被暴露出来。将血管化骨膜与冈下肌相连或单独抬高。在这两种情况下,骨膜都由肩胛周血管的骨膜支供应。在八只绵羊身上,用血管化的骨膜环绕包裹一个 3D 打印的四腔聚醚醚酮(PEEK)生物反应器。在六只绵羊身上,12 个双面 3D 打印的 2 腔聚醚醚酮(PEK)生物反应器被固定在下层骨骼上,一侧与骨骼直接接触,另一侧与骨膜直接接触。我们的模型可同时测试每个肩胛骨上多达 24 个(12 个双面)10 x 10 x 5 毫米的生物反应器(采用平面接触法),或每个肩胛骨上一个 40 x 10 毫米的四腔生物反应器(采用骨膜包裹法)。通过组织学和放射学分析评估了新生骨的生长情况。重要的是,该实验模型对动物的耐受性良好,为比较骨表面的骨膜和骨膜隆起的骨生成潜力提供了一种通用方法。此外,骨膜瓣足够大,可以包裹含有生物材料骨替代物的生物反应器,用于下颌骨节段重建等应用。
{"title":"Novel Sheep Model to Assess Critical-Sized Bone Regeneration with Periosteum for <i>In Vivo</i> Bioreactors.","authors":"Yohaann A Ghosh, Hai Xin, D S Abdullah Al Maruf, Kai Cheng, Innes Wise, Chris Burrows, Ruta Gupta, Veronica Ka-Yan Cheung, James Wykes, David Leinkram, Catriona Froggatt, Will Lewin, Hedi V Kruse, Eva Tomaskovic-Crook, David R McKenzie, Jeremy Crook, Jonathan R Clark","doi":"10.1089/ten.TEC.2023.0345","DOIUrl":"10.1089/ten.TEC.2023.0345","url":null,"abstract":"<p><p>Considerable research is being undertaken to develop novel biomaterials-based approaches for surgical reconstruction of bone defects. This extends to three-dimensional (3D) printed materials that provide stable, structural, and functional support <i>in vivo</i>. However, few preclinical models can simulate <i>in vivo</i> human biological conditions for clinically relevant testing. In this study we describe a novel ovine model that allows evaluation of <i>in vivo</i> osteogenesis via contact with bone and/or periosteum interfaced with printed polymer bioreactors loaded with biomaterial bone substitutes. The infraspinous scapular region of 14 Dorset cross sheep was exposed. Vascularized periosteum was elevated either attached to the infraspinatus muscle or separately. In both cases, the periosteum was supplied by the periosteal branch of the circumflex scapular vessels. In eight sheep, a 3D printed 4-chambered polyetheretherketone bioreactor was wrapped circumferentially in vascularized periosteum. In 6 sheep, 12 double-sided 3D printed 2-chambered polyetherketone bioreactors were secured to the underlying bone allowing direct contact with the bone on one side and periosteum on the other. Our model enabled simultaneous testing of up to 24 (12 double-sided) 10 × 10 × 5 mm bioreactors per scapula in the flat contact approach or a single 40 × 10 mm four-chambered bioreactor per scapula using the periosteal wrap. <i>De novo</i> bone growth was evaluated using histological and radiological analysis. Of importance, the experimental model was well tolerated by the animals and provides a versatile approach for comparing the osteogenic potential of cambium on the bone surface and elevated with periosteum. Furthermore, the periosteal flaps were sufficiently large for encasing bioreactors containing biomaterial bone substitutes for applications such as segmental mandibular reconstruction.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trends and Future Research in Skeletal Muscle Tissue Engineering in the Past Decade (2012-2022). 过去十年(2012-2022 年)骨骼肌组织工程的趋势和未来研究。
IF 3 4区 医学 Q2 Medicine Pub Date : 2024-03-01 DOI: 10.1089/ten.TEC.2023.0216
Yichun Dou, Ling Zhang, Jiaqi Wang, Yun Xue, You Zhou, Yajun Liu, Liqun Zhang, Rui Shi

To learn about advances in skeletal muscle tissue engineering (SMTE) in recent years, we used VOSviewer and Citespace software to quantitatively analyze and visualize relevant literature in the Web of Science database during the period 2012-2022. By mapping high-frequency keyword relationship networks, keyword time zones, and journal article cocitations, we clarified the areas of great interest, evolutionary paths, and developmental trends in research on SMTE. We conducted an in-depth analysis of highly cited and representative articles at various stages to summarize the mainstream research areas of great interest in SMTE and discussed the future development and challenges in this field, intending to provide a reference for the clinical treatment of skeletal muscle injury repair. We found that a collaborative network of authors has formed in this field; the journals publishing SMTE articles belong to the fields of biomaterials and tissue engineering, and open-access journals have played a key role in the promotion of the development of SMTE; and in the past decade, there has been rapid progress in SMTE research in terms of both depth and breadth. Impact statement Compared with the literature review method, bibliometrics can provide a comprehensive knowledge of a knowledge area based on a huge amount of literature. In this article, based on the Web of Science database, CiteSpace, and Vosviewer visualization tools were used to measure and analyze the literature reports in the field of skeletal muscle tissue engineering (SMTE). The research hotspots and cutting-edge information on SMTE were mined in terms of the number of publications, the number of citations, the keywords, the authors, and the publishing institutions to understand the current status of the research on SMTE in the world, to provide a reference for related researchers, engineering research in the field of SMTE, to comprehensively understand the current status of global research in the field of SMTE, and to provide a reference for related researchers.

为了了解近年来骨骼肌组织工程(SMTE)的研究进展,我们使用 VOSviewer 和 Citespace 软件对 2012-2022 年期间 Web of Science(WoS)数据库中的相关文献进行了定量分析和可视化。通过绘制高频关键词关系网络图、关键词时区图和期刊论文共被引图,我们明确了SMTE研究的热点领域、演变路径和发展趋势。我们对不同阶段的高被引及代表性文章进行了深入分析,总结出了SMTE备受关注的主流研究领域,并探讨了该领域未来的发展和挑战,以期为骨骼肌损伤修复的临床治疗提供参考。我们发现,该领域已经形成了一个作者合作网络;发表 SMTE 文章的期刊属于生物材料和组织工程领域,开放获取期刊在促进 SMTE 发展方面发挥了关键作用;过去十年,SMTE 研究在深度和广度方面都取得了快速进展。
{"title":"Trends and Future Research in Skeletal Muscle Tissue Engineering in the Past Decade (2012-2022).","authors":"Yichun Dou, Ling Zhang, Jiaqi Wang, Yun Xue, You Zhou, Yajun Liu, Liqun Zhang, Rui Shi","doi":"10.1089/ten.TEC.2023.0216","DOIUrl":"10.1089/ten.TEC.2023.0216","url":null,"abstract":"<p><p>To learn about advances in skeletal muscle tissue engineering (SMTE) in recent years, we used VOSviewer and Citespace software to quantitatively analyze and visualize relevant literature in the Web of Science database during the period 2012-2022. By mapping high-frequency keyword relationship networks, keyword time zones, and journal article cocitations, we clarified the areas of great interest, evolutionary paths, and developmental trends in research on SMTE. We conducted an in-depth analysis of highly cited and representative articles at various stages to summarize the mainstream research areas of great interest in SMTE and discussed the future development and challenges in this field, intending to provide a reference for the clinical treatment of skeletal muscle injury repair. We found that a collaborative network of authors has formed in this field; the journals publishing SMTE articles belong to the fields of biomaterials and tissue engineering, and open-access journals have played a key role in the promotion of the development of SMTE; and in the past decade, there has been rapid progress in SMTE research in terms of both depth and breadth. Impact statement Compared with the literature review method, bibliometrics can provide a comprehensive knowledge of a knowledge area based on a huge amount of literature. In this article, based on the Web of Science database, CiteSpace, and Vosviewer visualization tools were used to measure and analyze the literature reports in the field of skeletal muscle tissue engineering (SMTE). The research hotspots and cutting-edge information on SMTE were mined in terms of the number of publications, the number of citations, the keywords, the authors, and the publishing institutions to understand the current status of the research on SMTE in the world, to provide a reference for related researchers, engineering research in the field of SMTE, to comprehensively understand the current status of global research in the field of SMTE, and to provide a reference for related researchers.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139540898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal Monitoring of Angiogenesis in a Murine Window Chamber Model In Vivo. 纵向监测小鼠体内窗腔模型的血管生成。
IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-03-01 Epub Date: 2024-02-23 DOI: 10.1089/ten.TEC.2023.0289
Zhanpeng Xu, Wei Zhang, Carole Quesada, Xueding Wang, Mario Fabiilli

Angiogenesis induced by growth factor administration, which can augment the blood supply in regenerative applications, has drawn wide attention in medical research. Longitudinal monitoring of vascular structure and development in vivo is important for understanding and evaluating the dynamics of involved biological processes. In this work, a dual-modality imaging system consisting of photoacoustic microscopy (PAM) and optical coherence tomography (OCT) was applied for noninvasive in vivo imaging of angiogenesis in a murine model. Fibrin scaffolds, with and without basic fibroblast growth factor (bFGF), were implanted in a flexible imaging window and longitudinally observed over 9 days. Imaging was conducted at 3, 5, 7, and 9 days after implantation to monitor vascularization in and around the scaffold. Several morphometric parameters were derived from the PAM images, including vessel area density (VAD), total vessel length (TVL), and vessel mean diameter (VMD). On days 7 and 9, mice receiving bFGF-laden fibrin gels exhibited significantly larger VAD and TVL compared to mice with fibrin-only gels. In addition, VMD significantly decreased in +bFGF mice versus fibrin-only mice on days 7 and 9. Blood vessel density, evaluated using immunohistochemical staining of explanted gels and underlying tissue on day 9, corroborated the findings from the PAM images. Overall, the experimental results highlight the utility of a dual-modality imaging system in longitudinally monitoring of vasculature in vivo with high resolution and sensitivity, thereby providing an effective tool to study angiogenesis.

在再生应用中,通过注射生长因子诱导的血管生成可增加血液供应,这已引起医学研究的广泛关注。对血管结构进行纵向眼内监测对于了解和评估相关生物过程的动态变化非常重要。在这项研究中,光声显微镜(PAM)和光学相干断层扫描(OCT)组成的双模态成像系统被用于对小鼠模型中的血管生成进行无创体内成像。将含有或不含碱性成纤维细胞生长因子(bFGF)的纤维蛋白支架植入柔性体内成像窗口,并进行为期 9 天的纵向观察。植入后 3、5、7 和 9 天分别进行成像,以监测支架内部和周围的血管化情况。根据 PAM 图像得出以下形态参数:血管面积密度 (VAD)、血管总长度 (TVL) 和血管平均直径 (VMD)。在第 7 天和第 9 天,与接受纯纤维蛋白凝胶治疗的小鼠相比,接受含 bFGF 的纤维蛋白凝胶治疗的小鼠表现出明显更大的 VAD 和 TVL。此外,在第 7 天和第 9 天,+bFGF 小鼠的 VMD 明显低于纯纤维蛋白小鼠。在第 9 天对取出的凝胶和下层组织进行免疫组化染色评估的血管密度证实了 PAM 图像的发现。总之,实验结果凸显了双模态成像系统在纵向监测血管生成方面的实用性,从而为高分辨率、高灵敏度地观察体内血管提供了有效工具。
{"title":"Longitudinal Monitoring of Angiogenesis in a Murine Window Chamber Model <i>In Vivo</i>.","authors":"Zhanpeng Xu, Wei Zhang, Carole Quesada, Xueding Wang, Mario Fabiilli","doi":"10.1089/ten.TEC.2023.0289","DOIUrl":"10.1089/ten.TEC.2023.0289","url":null,"abstract":"<p><p>Angiogenesis induced by growth factor administration, which can augment the blood supply in regenerative applications, has drawn wide attention in medical research. Longitudinal monitoring of vascular structure and development <i>in vivo</i> is important for understanding and evaluating the dynamics of involved biological processes. In this work, a dual-modality imaging system consisting of photoacoustic microscopy (PAM) and optical coherence tomography (OCT) was applied for noninvasive <i>in vivo</i> imaging of angiogenesis in a murine model. Fibrin scaffolds, with and without basic fibroblast growth factor (bFGF), were implanted in a flexible imaging window and longitudinally observed over 9 days. Imaging was conducted at 3, 5, 7, and 9 days after implantation to monitor vascularization in and around the scaffold. Several morphometric parameters were derived from the PAM images, including vessel area density (VAD), total vessel length (TVL), and vessel mean diameter (VMD). On days 7 and 9, mice receiving bFGF-laden fibrin gels exhibited significantly larger VAD and TVL compared to mice with fibrin-only gels. In addition, VMD significantly decreased in +bFGF mice versus fibrin-only mice on days 7 and 9. Blood vessel density, evaluated using immunohistochemical staining of explanted gels and underlying tissue on day 9, corroborated the findings from the PAM images. Overall, the experimental results highlight the utility of a dual-modality imaging system in longitudinally monitoring of vasculature <i>in vivo</i> with high resolution and sensitivity, thereby providing an effective tool to study angiogenesis.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138805997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polydioxanone Enhances Bone Regeneration After Resection and Reconstruction of Rat Femur with rhBMP2. 聚二氧杂蒽酮能增强大鼠股骨切除和使用 rhBMP2 重建后的骨再生。
IF 3 4区 医学 Q2 Medicine Pub Date : 2024-03-01 Epub Date: 2024-01-25 DOI: 10.1089/ten.tec.2023.0304
Barbara Ribeiro Rios, Stéfany Barbosa, William Phillip Pereira da Silva, Mario Jefferson Quirino Louzada, Edilson Ervolino, Eduardo C Kalil, Jamil Awad Shibli, Leonardo P Faverani

The aim of this study was to assess the bone regeneration potential of a polydioxanone (PDO) scaffold together with recombinant human bone morphogenetic protein-2 (rhBMP-2) for the reconstruction of large bone defect. In total, 24 male rats (6 months old) were subjected to bilateral femoral stabilization using titanium plates to create a 2 mm gap, and reconstruction using rhBMP-2 (Infuse®; 3.25 μg). The bone defects were covered with PDO (PDO group), or with titanium mesh (Ti group). Animals were euthanized on days 14 and 60. Simultaneously, 16 rats received PDO and Ti in their dorsum for the purpose of biocompatibility analysis at 3, 5, 7, and 10 days postoperatively. X-ray densitometry showed a higher density in the PDO group on day 14. On day 60, coverage of the bone defect with PDO showed a larger quantity of newly formed bone than that found for the Ti group, a lower inflammatory infiltrate value, and a more significant number of blood vessels on day 14. By immunohistochemical assessment, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) showed higher labeling on day 14 in the PDO group. On day 60, bone morphogenetic protein-2 (BMP-2) showed higher labeling in the PDO group, whereas Ti showed higher labeling for osteoprotegerin, nuclear factor kappa B ligand-activating receptor, RUNX2, and OCN. Furthermore, biocompatibility analysis showed a higher inflammatory response in the Ti group. The PDO scaffold enhanced bone regeneration when associated with rhBMP-2 in rat femur reconstruction. Impact statement Regeneration of segmental bone defects is a difficult task, and several techniques and materials have been used. Recent advances in the production of synthetic polymers, such as polydioxanone (PDO), produced by three-dimensional printing, have shown distinct characteristics that could improve tissue regeneration even in an important bone defect. The present preclinical study showed that PDO membranes used as scaffolds to carry recombinant human bone morphogenetic protein-2 (rhBMP-2) improved bone tissue regeneration by more than 8-fold when compared with titanium mesh, suggesting that PDO membranes could be a feasible and useful material for use in guided bone regeneration. (In English, viable is only used for living creatures capable of sustaining life.

本研究旨在评估聚二氧杂蒽酮(PDO)支架与重组人骨形态发生蛋白-2(rhBMP-2)在重建大面积骨缺损中的骨再生潜力。共对 24 只雄性大鼠(6 个月大)进行了双侧股骨稳定手术,使用钛板造成 2 毫米的间隙,并使用 rhBMP-2 (Infuse®;3.25 μg)进行重建。骨缺损用 PDO(PDO 组)或钛网(Ti 组)覆盖。动物在第 14 天和第 60 天安乐死。同时,16 只大鼠的背部接受了 PDO 和钛网,以便在术后 3、5、7 和 10 天进行生物相容性分析。X 射线密度测量显示,第 14 天时,PDO 组的密度更高。第 60 天,PDO 覆盖骨缺损的情况显示,与钛组相比,新形成的骨量更多,炎症浸润值更低,第 14 天的血管数量更多。通过免疫组化评估,PDO 组在第 14 天显示出更高的润相关转录因子 2(RUNX2)和骨钙素(OCN)标记。在第 60 天,PDO 组的骨形态发生蛋白-2(BMP-2)标记较高,而 Ti 组的骨保护素、核因子卡巴 B 配体激活受体、RUNX2 和 OCN 标记较高。此外,生物相容性分析表明,Ti 组的炎症反应更高。在大鼠股骨重建中,当与 rhBMP-2 结合使用时,PDO 支架可促进骨再生。
{"title":"Polydioxanone Enhances Bone Regeneration After Resection and Reconstruction of Rat Femur with rhBMP2.","authors":"Barbara Ribeiro Rios, Stéfany Barbosa, William Phillip Pereira da Silva, Mario Jefferson Quirino Louzada, Edilson Ervolino, Eduardo C Kalil, Jamil Awad Shibli, Leonardo P Faverani","doi":"10.1089/ten.tec.2023.0304","DOIUrl":"10.1089/ten.tec.2023.0304","url":null,"abstract":"<p><p>The aim of this study was to assess the bone regeneration potential of a polydioxanone (PDO) scaffold together with recombinant human bone morphogenetic protein-2 (rhBMP-2) for the reconstruction of large bone defect. In total, 24 male rats (6 months old) were subjected to bilateral femoral stabilization using titanium plates to create a 2 mm gap, and reconstruction using rhBMP-2 (Infuse<sup>®</sup>; 3.25 μg). The bone defects were covered with PDO (PDO group), or with titanium mesh (Ti group). Animals were euthanized on days 14 and 60. Simultaneously, 16 rats received PDO and Ti in their dorsum for the purpose of biocompatibility analysis at 3, 5, 7, and 10 days postoperatively. X-ray densitometry showed a higher density in the PDO group on day 14. On day 60, coverage of the bone defect with PDO showed a larger quantity of newly formed bone than that found for the Ti group, a lower inflammatory infiltrate value, and a more significant number of blood vessels on day 14. By immunohistochemical assessment, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) showed higher labeling on day 14 in the PDO group. On day 60, bone morphogenetic protein-2 (BMP-2) showed higher labeling in the PDO group, whereas Ti showed higher labeling for osteoprotegerin, nuclear factor kappa B ligand-activating receptor, RUNX2, and OCN. Furthermore, biocompatibility analysis showed a higher inflammatory response in the Ti group. The PDO scaffold enhanced bone regeneration when associated with rhBMP-2 in rat femur reconstruction. Impact statement Regeneration of segmental bone defects is a difficult task, and several techniques and materials have been used. Recent advances in the production of synthetic polymers, such as polydioxanone (PDO), produced by three-dimensional printing, have shown distinct characteristics that could improve tissue regeneration even in an important bone defect. The present preclinical study showed that PDO membranes used as scaffolds to carry recombinant human bone morphogenetic protein-2 (rhBMP-2) improved bone tissue regeneration by more than 8-fold when compared with titanium mesh, suggesting that PDO membranes could be a feasible and useful material for use in guided bone regeneration. (In English, viable is only used for living creatures capable of sustaining life.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of Integral Decellularized Cartilage Using a Novel Hydrostatic Pressure Bioreactor. 利用新型静水压生物反应器构建整体脱细胞软骨
IF 3 4区 医学 Q2 Medicine Pub Date : 2024-03-01 Epub Date: 2024-01-31 DOI: 10.1089/ten.TEC.2023.0265
Xiaoxiao Li, Weikang Zhao, Dandan Zhou, Pei Li, Chen Zhao, Qiang Zhou, Yiyang Wang

The decellularized extracellular matrix (ECM) of cartilage is a widely used natural bioscaffold for constructing tissue-engineered cartilage due to its good biocompatibility and regeneration properties. However, current decellularization methods for accessing decellularized cartilaginous tissues require multiple steps and a relatively long duration to produce decellularized cartilage. In addition, most decellularization strategies lead to damage of the microstructure and loss of functional components of the cartilaginous matrix. In this study, a novel decellularization strategy based on a hydrostatic pressure (HP) bioreactor was introduced, which aimed to improve the efficiency of producing integral decellularized cartilage pieces by combining physical and chemical decellularization methods in a perfusing manner. Two types of cartilaginous tissues, auricular cartilage (AC) and nucleus pulposus (NP) fibrocartilage, were selected for comparison of the effects of ordinary, positive, and negative HP-based decellularization according to the cell clearance ratio, microstructural changes, ECM components, and mechanical properties. The results indicated that applying positive HP improved the efficiency of producing decellularized AC, but no significant differences in decellularization efficiency were found between the ordinary and negative HP-treated groups. However, compared with the ordinary HP treatment, the application of the positive or negative HP did not affect the efficiency of decellularized NP productions. Moreover, neither positive nor negative HP influenced the preservation of the microstructure and components of the AC matrix. However, applying negative HP disarranged the fibril distribution of the NP matrix and reduced glycosaminoglycans and collagen type II contents, two essential ECM components. In addition, the positive HP was beneficial for maintaining the mechanical properties of decellularized cartilage. The recellularization experiments also verified the good biocompatibility of the decellularized cartilage produced by the present bioreactor-based decellularization method under positive HP. Overall, applying positive HP-based decellularization resulted in a superior effect on the production of close-to-natural scaffolds for cartilage tissue engineering. Impact statement In this study, we successfully constructed a novel hydrostatic pressure (HP) bioreactor and used this equipment to produce decellularized cartilage by combining physical and chemical decellularization methods in a perfusing manner. We found that positive HP-based decellularization could improve the production efficiency of integral decellularized cartilage pieces and promote the maintenance of matrix components and mechanical properties. This new decellularization strategy exhibited a superior effect in the production of close-to-natural scaffolds and positively impacts cartilage tissue engineering.

软骨的脱细胞细胞外基质(ECM)具有良好的生物相容性和再生特性,是一种广泛用于构建组织工程软骨的天然生物支架。然而,目前获取脱细胞软骨组织的脱细胞方法需要多个步骤和相对较长的时间才能产生脱细胞软骨。此外,大多数脱细胞策略会导致软骨基质微观结构的破坏和功能成分的丧失。本文介绍了一种基于静水压(HP)生物反应器的新型脱细胞策略,旨在通过灌注方式结合物理和化学脱细胞方法,提高生产整体脱细胞软骨块的效率。研究人员选择了耳软骨(AC)和髓核(NP)纤维软骨这两种软骨组织,根据细胞清除率、微观结构变化、ECM成分和机械性能,比较了普通、正压和负压脱细胞法的效果。结果表明,使用正向高压可提高脱细胞 AC 的生产效率,但普通高压组和负压高压组的脱细胞效率无显著差异。然而,与普通 HP 处理相比,使用正向或负向 HP 均不影响脱细胞 NP 的生产效率。此外,正向和负向高压都不影响交流基质微观结构和成分的保存。然而,使用负向高压会扰乱 NP 基质的纤维分布,并降低糖胺聚糖 (GAG) 和 II 型胶原蛋白 (Col II) 这两种 ECM 重要成分的含量。此外,正HP有利于保持脱细胞软骨的机械性能。再细胞化实验也验证了本生物反应器脱细胞法在正向高压下生产的脱细胞软骨具有良好的生物相容性。总之,基于正向高压的脱细胞方法在生产接近天然的软骨组织工程支架方面效果显著。
{"title":"Construction of Integral Decellularized Cartilage Using a Novel Hydrostatic Pressure Bioreactor.","authors":"Xiaoxiao Li, Weikang Zhao, Dandan Zhou, Pei Li, Chen Zhao, Qiang Zhou, Yiyang Wang","doi":"10.1089/ten.TEC.2023.0265","DOIUrl":"10.1089/ten.TEC.2023.0265","url":null,"abstract":"<p><p>The decellularized extracellular matrix (ECM) of cartilage is a widely used natural bioscaffold for constructing tissue-engineered cartilage due to its good biocompatibility and regeneration properties. However, current decellularization methods for accessing decellularized cartilaginous tissues require multiple steps and a relatively long duration to produce decellularized cartilage. In addition, most decellularization strategies lead to damage of the microstructure and loss of functional components of the cartilaginous matrix. In this study, a novel decellularization strategy based on a hydrostatic pressure (HP) bioreactor was introduced, which aimed to improve the efficiency of producing integral decellularized cartilage pieces by combining physical and chemical decellularization methods in a perfusing manner. Two types of cartilaginous tissues, auricular cartilage (AC) and nucleus pulposus (NP) fibrocartilage, were selected for comparison of the effects of ordinary, positive, and negative HP-based decellularization according to the cell clearance ratio, microstructural changes, ECM components, and mechanical properties. The results indicated that applying positive HP improved the efficiency of producing decellularized AC, but no significant differences in decellularization efficiency were found between the ordinary and negative HP-treated groups. However, compared with the ordinary HP treatment, the application of the positive or negative HP did not affect the efficiency of decellularized NP productions. Moreover, neither positive nor negative HP influenced the preservation of the microstructure and components of the AC matrix. However, applying negative HP disarranged the fibril distribution of the NP matrix and reduced glycosaminoglycans and collagen type II contents, two essential ECM components. In addition, the positive HP was beneficial for maintaining the mechanical properties of decellularized cartilage. The recellularization experiments also verified the good biocompatibility of the decellularized cartilage produced by the present bioreactor-based decellularization method under positive HP. Overall, applying positive HP-based decellularization resulted in a superior effect on the production of close-to-natural scaffolds for cartilage tissue engineering. Impact statement In this study, we successfully constructed a novel hydrostatic pressure (HP) bioreactor and used this equipment to produce decellularized cartilage by combining physical and chemical decellularization methods in a perfusing manner. We found that positive HP-based decellularization could improve the production efficiency of integral decellularized cartilage pieces and promote the maintenance of matrix components and mechanical properties. This new decellularization strategy exhibited a superior effect in the production of close-to-natural scaffolds and positively impacts cartilage tissue engineering.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139111162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tissue engineering. Part C, Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1