首页 > 最新文献

Tissue engineering. Part C, Methods最新文献

英文 中文
Ozone Improved Bone Dynamic of Female Rats Using Zoledronate. 臭氧使用唑来膦酸酯改善雌性大鼠的骨动力。
IF 3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-01-01 Epub Date: 2024-01-02 DOI: 10.1089/ten.TEC.2023.0159
Tiburtino J de Lima Neto, Leonardo Alan Delanora, Maria Eloise de Sá Simon, Kim Henderson Carmo Ribeiro, Mariza Akie Matsumoto, Mario Jefferson Quírino Louzada, Jamil Awad Shibli, Edilson Ervolino, Leonardo P Faverani

The aim of this study was to analyze the effect of ozone (OZN) therapy on the dynamics of bone tissue in ovariectomized rats treated with zoledronic acid (ZOL). Female Wistar rats aged 6 months (n = 110) were subjected to bilateral ovariectomy (OVX). At month 3 post-OVX, 10 animals were euthanized to characterize the bone tissue architecture using microtomography (micro-CT). The remaining animals were divided into two groups: ZOL group, administered with ZOL (100 μg/kg body weight); saline (SAL) group (0.45 mL of SAL solution), both for 28 days. At month 3 post-treatment, 10 animals from each group were euthanized to characterize the bone architecture using micro-CT. The remaining animals were divided into the following groups: ZOL (n = 20), ZOL + OZN (n = 20); SAL (n = 20), and SAL + OZN (n = 20). The animals in ZOL + OZN and SAL + OZN groups were intraperitoneally administered with OZN (0.7 mg/kg body weight) once every 2 days. On days 30 and 60, six animals from each group were euthanized for analysis and structural characterization of bones in the femoral head and spine. Some samples of the femoral neck were subjected to biomechanical tests, while some samples were analyzed under a laser confocal microscope. The other samples collected from the femoral neck and spine were analyzed for area of neoformed bone and used for performing inflammatory cell and osteocyte counts. Data were submitted to statistical analysis considering a significance level of p < 0.05. Bone volume percentage and osteocyte and inflammatory cell counts were upregulated in the femoral head region of the ZOL + OZN group. Biomechanical analysis of the femoral neck revealed that the modulus of elasticity was similar between the ZOL and ZOL + OZN groups but differed significantly between the SAL and SAL + OZN groups. The positive areas for calcein and alizarin in the ZOL and ZOL + OZN groups were higher than those in the SAL and SAL + OZN groups. This suggested a positive synergistic effect of OZN and ZOL on the maintenance of bone mass and restoration of bone tissue vitality in ovariectomized rats.

本研究的目的是分析臭氧(OZN)治疗对唑来膦酸(ZOL)治疗去卵巢大鼠骨组织动力学的影响。对6个月大的雌性Wistar大鼠(n=110)进行双侧卵巢切除术(OVX)。在OVX后第3个月,对10只动物实施安乐死,以使用显微CT(micro-CT)表征骨组织结构。其余动物分为两组:ZOL组,给予ZOL(100µg/kg体重);生理盐水(SAL)组(0.45mL SAL溶液)。在治疗后第3个月,每组10只动物被安乐死,以使用显微CT表征骨骼结构。其余动物分为以下组:ZOL(n=20)、ZOL+OZN(n=20;SAL(n=20)和SAL+OZN(n+20)。ZOL+OZON和SAL+OZO组的动物每两天腹膜内给药一次OZON(0.7mg/kg体重)。在第30天和第60天,对每组6只动物实施安乐死,以分析股骨头和脊椎中的骨骼并进行结构表征。一些股骨颈样本进行生物力学测试,而一些样本在激光共聚焦显微镜下进行分析。对从股骨颈和脊椎采集的其他样本进行新生骨面积分析,并用于进行炎性细胞和骨细胞计数。将数据提交给统计分析,考虑p的显著性水平
{"title":"Ozone Improved Bone Dynamic of Female Rats Using Zoledronate.","authors":"Tiburtino J de Lima Neto, Leonardo Alan Delanora, Maria Eloise de Sá Simon, Kim Henderson Carmo Ribeiro, Mariza Akie Matsumoto, Mario Jefferson Quírino Louzada, Jamil Awad Shibli, Edilson Ervolino, Leonardo P Faverani","doi":"10.1089/ten.TEC.2023.0159","DOIUrl":"10.1089/ten.TEC.2023.0159","url":null,"abstract":"<p><p>The aim of this study was to analyze the effect of ozone (OZN) therapy on the dynamics of bone tissue in ovariectomized rats treated with zoledronic acid (ZOL). Female Wistar rats aged 6 months (<i>n</i> = 110) were subjected to bilateral ovariectomy (OVX). At month 3 post-OVX, 10 animals were euthanized to characterize the bone tissue architecture using microtomography (micro-CT). The remaining animals were divided into two groups: ZOL group, administered with ZOL (100 μg/kg body weight); saline (SAL) group (0.45 mL of SAL solution), both for 28 days. At month 3 post-treatment, 10 animals from each group were euthanized to characterize the bone architecture using micro-CT. The remaining animals were divided into the following groups: ZOL (<i>n</i> = 20), ZOL + OZN (<i>n</i> = 20); SAL (<i>n</i> = 20), and SAL + OZN (<i>n</i> = 20). The animals in ZOL + OZN and SAL + OZN groups were intraperitoneally administered with OZN (0.7 mg/kg body weight) once every 2 days. On days 30 and 60, six animals from each group were euthanized for analysis and structural characterization of bones in the femoral head and spine. Some samples of the femoral neck were subjected to biomechanical tests, while some samples were analyzed under a laser confocal microscope. The other samples collected from the femoral neck and spine were analyzed for area of neoformed bone and used for performing inflammatory cell and osteocyte counts. Data were submitted to statistical analysis considering a significance level of <i>p</i> < 0.05. Bone volume percentage and osteocyte and inflammatory cell counts were upregulated in the femoral head region of the ZOL + OZN group. Biomechanical analysis of the femoral neck revealed that the modulus of elasticity was similar between the ZOL and ZOL + OZN groups but differed significantly between the SAL and SAL + OZN groups. The positive areas for calcein and alizarin in the ZOL and ZOL + OZN groups were higher than those in the SAL and SAL + OZN groups. This suggested a positive synergistic effect of OZN and ZOL on the maintenance of bone mass and restoration of bone tissue vitality in ovariectomized rats.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"1-14"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71486442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autologous Endothelial Progenitor Cells and Bioactive Factors Improve Bladder Regeneration. 自体内皮祖细胞和生物活性因子改善膀胱再生。
IF 3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-01-01 Epub Date: 2023-10-23 DOI: 10.1089/ten.TEC.2023.0079
Bin Yang, Guanjie Yang, Feng Zhao, Xudong Yao, Luwei Xu, Liuhua Zhou

Insufficient vascularization is still a challenge that impedes bladder tissue engineering and results in unsatisfied smooth muscle regeneration. Since bladder regeneration is a complex articulated process, the aim of this study is to investigate whether combining multiple pathways by exploiting a combination of biomaterials, cells, and bioactive factors, contributes to the improvements of smooth muscle regeneration and vascularization in tissue-engineered bladder. Autologous endothelial progenitor cells (EPCs) and bladder smooth muscle cells (BSMCs) are cultured and incorporated into our previously prepared porcine bladder acellular matrix (BAM) for bladder augmentation in rabbits. Simultaneously, exogenous vascular endothelial growth factor (VEGF) and platelet-derived growth factor BB (PDGF-BB) mixed with Matrigel were injected around the implanted cells-BAM complex. In the results, compared with control rabbits received bladder augmentation with porcine BAM seeded with BSMCs, the experimental animals showed significantly improved smooth muscle regeneration and vascularization, along with more excellent functional recovery of tissue-engineered bladder, due to the additional combination of autologous EPCs and bioactive factors, including VEGF and PDGF-BB. Furthermore, cell tracking suggested that the seeded EPCs could be directly involved in neovascularization. Therefore, it may be an effective method to combine multiple pathways for tissue-engineering urinary bladder.

血管化不足仍然是阻碍膀胱组织工程并导致平滑肌再生不满意的挑战。由于膀胱再生是一个复杂的关节过程,本研究的目的是通过利用生物材料、细胞和生物活性因子的组合来研究多种途径是否有助于改善组织工程膀胱的平滑肌再生和血管形成。培养自体内皮祖细胞(EPC)和膀胱平滑肌细胞(BSMC),并将其掺入我们先前制备的猪膀胱脱细胞基质(BAM)中,用于兔膀胱扩增。同时,将与基质胶混合的外源性血管内皮生长因子(VEGF)和血小板衍生生长因子BB(PDGF-BB)注射到植入的细胞BAM复合物周围。在结果中,与用接种了BSMC的猪BAM进行膀胱扩增的对照兔相比,由于自体EPCs和包括VEGF和PDGF-BB在内的生物活性因子的额外组合,实验动物显示出平滑肌再生和血管形成的显著改善,以及组织工程膀胱的更优异的功能恢复。此外,细胞追踪表明,接种的内皮祖细胞可能直接参与新血管形成。因此,将多种途径联合应用于膀胱组织工程可能是一种有效的方法。
{"title":"Autologous Endothelial Progenitor Cells and Bioactive Factors Improve Bladder Regeneration.","authors":"Bin Yang, Guanjie Yang, Feng Zhao, Xudong Yao, Luwei Xu, Liuhua Zhou","doi":"10.1089/ten.TEC.2023.0079","DOIUrl":"10.1089/ten.TEC.2023.0079","url":null,"abstract":"<p><p>Insufficient vascularization is still a challenge that impedes bladder tissue engineering and results in unsatisfied smooth muscle regeneration. Since bladder regeneration is a complex articulated process, the aim of this study is to investigate whether combining multiple pathways by exploiting a combination of biomaterials, cells, and bioactive factors, contributes to the improvements of smooth muscle regeneration and vascularization in tissue-engineered bladder. Autologous endothelial progenitor cells (EPCs) and bladder smooth muscle cells (BSMCs) are cultured and incorporated into our previously prepared porcine bladder acellular matrix (BAM) for bladder augmentation in rabbits. Simultaneously, exogenous vascular endothelial growth factor (VEGF) and platelet-derived growth factor BB (PDGF-BB) mixed with Matrigel were injected around the implanted cells-BAM complex. In the results, compared with control rabbits received bladder augmentation with porcine BAM seeded with BSMCs, the experimental animals showed significantly improved smooth muscle regeneration and vascularization, along with more excellent functional recovery of tissue-engineered bladder, due to the additional combination of autologous EPCs and bioactive factors, including VEGF and PDGF-BB. Furthermore, cell tracking suggested that the seeded EPCs could be directly involved in neovascularization. Therefore, it may be an effective method to combine multiple pathways for tissue-engineering urinary bladder.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"15-26"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41149418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patient-Derived Lung Cancer "Sandwich Cultures" with a Preserved Tumor Microenvironment. 保留肿瘤微环境的肺癌 "三明治培养物"。
IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-01-01 DOI: 10.1089/ten.TEC.2023.0199
Hailong Wang, Thorsten Walles, Cornelia Wiese-Rischke

In the past, different spheroid-, organotypic-, and three-dimensional (3D) bioprinting lung cancer models were established for in vitro drug testing and personalized medicine. These tissue models cannot depict the tumor microenvironment (TME) and, therefore, research addressing tumor cell-TME interactions is limited. To overcome this hurdle, we applied patient-derived lung tumor samples to establish new in vitro models. To analyze the tissue model properties, we established two-dimensional (2D) and 3D coculture tissue models exposed to static and dynamic culture conditions that afforded tissue culture for up to 28 days. Our tissue models were characterized by hematoxylin eosin staining, M30 enzyme-linked immunosorbent assay, and immunofluorescence staining against specific lung cancer markers (TTF-1 and p40/p63), cancer-associated fibroblast (CAF) markers (α-SMA and MCT4), and fibronectin (FN). The 3D models were generated with higher success rate than the corresponding 2D model. The cell density of the static 3D model increased from 21 to 28 days, whereas the apoptosis decreased. The dynamic 3D model possessed an even higher cell density than the static 3D model. We identified lung cancer cells, CAFs, and FN. Therefore, a novel in vitro 3D lung cancer model was established, which simulated the TME for 28 days and possessed a structural complexity.

过去,人们建立了不同的球形、器官型和三维(3D)生物打印肺癌模型,用于体外药物测试和个性化医疗。这些组织模型无法描述肿瘤微环境(TME),因此针对肿瘤细胞-TME 相互作用的研究十分有限。为了克服这一障碍,我们应用患者肺部肿瘤样本建立了新的体外模型。为了分析组织模型的特性,我们建立了二维(2D)和三维共培养组织模型,暴露在静态和动态培养条件下,可进行长达 28 天的组织培养。我们通过苏木精伊红染色、M30 酶联免疫吸附和针对特定肺癌标志物(TTF-1 和 p40/p63)、癌相关成纤维细胞(CAF)标志物(α-SMA 和 MCT4)和纤维粘连蛋白(FN)的免疫荧光染色对组织模型进行了表征。生成三维模型的成功率高于相应的二维模型。从 21 天到 28 天,静态三维模型的细胞密度增加,而细胞凋亡减少。动态三维模型的细胞密度甚至高于静态三维模型。我们发现了肺癌细胞、CAFs 和 FN。因此,我们建立了一种新型体外三维肺癌模型,该模型模拟了28天的TME,并具有复杂的结构。
{"title":"Patient-Derived Lung Cancer \"Sandwich Cultures\" with a Preserved Tumor Microenvironment.","authors":"Hailong Wang, Thorsten Walles, Cornelia Wiese-Rischke","doi":"10.1089/ten.TEC.2023.0199","DOIUrl":"10.1089/ten.TEC.2023.0199","url":null,"abstract":"<p><p>In the past, different spheroid-, organotypic-, and three-dimensional (3D) bioprinting lung cancer models were established for <i>in vitro</i> drug testing and personalized medicine. These tissue models cannot depict the tumor microenvironment (TME) and, therefore, research addressing tumor cell-TME interactions is limited. To overcome this hurdle, we applied patient-derived lung tumor samples to establish new <i>in vitro</i> models. To analyze the tissue model properties, we established two-dimensional (2D) and 3D coculture tissue models exposed to static and dynamic culture conditions that afforded tissue culture for up to 28 days. Our tissue models were characterized by hematoxylin eosin staining, M30 enzyme-linked immunosorbent assay, and immunofluorescence staining against specific lung cancer markers (TTF-1 and p40/p63), cancer-associated fibroblast (CAF) markers (α-SMA and MCT4), and fibronectin (FN). The 3D models were generated with higher success rate than the corresponding 2D model. The cell density of the static 3D model increased from 21 to 28 days, whereas the apoptosis decreased. The dynamic 3D model possessed an even higher cell density than the static 3D model. We identified lung cancer cells, CAFs, and FN. Therefore, a novel <i>in vitro</i> 3D lung cancer model was established, which simulated the TME for 28 days and possessed a structural complexity.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"27-37"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138806034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kidney Mesenchymal Stem Cell Differentiation: Effect of Scaffold and Basic Fibroblast Growth Factor. 肾间质干细胞分化:支架和碱性成纤维细胞生长因子的影响
IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-01-01 Epub Date: 2024-04-19 DOI: 10.1089/ten.TEC.2024.0066
Amirhesam Keshavarz Zarjani, Darioush Bijan Nejad, Niloofar Neisi, Mahin Taheri Moghadam, Esrafil Mansouri

Background: Chronic kidney disease (CKD) poses a global health challenge, and it needs alternative therapeutic approaches for patients with end-stage renal disease (ESRD). Although organ transplantation is effective, it faces challenges such as declining quality of life, immunological responses, transplant rejection, and donor shortages. Tissue engineering, by using suitable scaffolds, cells, and growth factors, emerges as a promising treatment option for kidney regeneration. Experiment: We precisely decellularized scaffold, derived from rat kidneys while maintaining its native three-dimensional (3D) architecture. The efficiency of decellularization was evaluated through histological examinations, including hematoxylin and eosin, periodic acid-Schiff, and DAPI staining, as well as scanning electron microscopy. The scaffolds were then recellularized with kidney mesenchymal stem cells (kMSCs), and their adhesion, proliferation, and differentiation were assessed over 1, 2, and 3 weeks. The expression of specific renal markers, including Wt-1, ZO-1, AQP-1, and ANG-1, was examined through quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in monolayer and 3D cultures. Results: The infiltration rate of cells into the scaffold increased in a time-dependent manner, and the expression of specific renal markers significantly increased, demonstrating successful differentiation of kMSCs within the scaffold. The application of basic fibroblast growth factor (bFGF) could intensify the expression of kidney-specific genes. Conclusions: The study highlighted the importance of preserving the 3D architecture of the scaffold during decellularization to achieve optimal cellular responses. Moreover, the capacity of mesenchymal stem cells in recellularized scaffolds facilitated tissue regeneration.

背景:慢性肾脏病(CKD)是一项全球性健康挑战,终末期肾脏病(ESRD)患者需要其他治疗方法。器官移植虽然有效,但也面临着生活质量下降、免疫反应、移植排斥和供体短缺等挑战。组织工程利用合适的支架、细胞和生长因子,成为肾脏再生的一种前景广阔的治疗方案:实验:我们对取自大鼠肾脏的支架进行了精确的脱细胞处理,同时保持了其原生的三维结构。通过组织学检查,包括苏木精和伊红(H&E)、周期性酸-希夫(PAS)和 DAPI 染色以及扫描电子显微镜(SEM),评估了脱细胞的效率。然后用肾间质干细胞(kMSCs)对支架进行再细胞化,并在一周、两周和三周内对其粘附、增殖和分化情况进行评估。在单层和三维培养物中,通过反转录聚合酶链反应(qRT-PCR)定量检测了特定肾脏标记物(包括Wt-1、ZO-1、AQP-1和ANG-1)的表达:结果:细胞对支架的浸润率呈时间依赖性增加,特定肾脏标志物的表达也显著增加,这表明支架内的 kMSCs 成功分化。应用碱性成纤维细胞生长因子(bFGF)可增强肾脏特异性基因的表达:该研究强调了在脱细胞过程中保留支架三维结构以获得最佳细胞反应的重要性。此外,间充质干细胞在再细胞化支架中的能力促进了组织再生。
{"title":"Kidney Mesenchymal Stem Cell Differentiation: Effect of Scaffold and Basic Fibroblast Growth Factor.","authors":"Amirhesam Keshavarz Zarjani, Darioush Bijan Nejad, Niloofar Neisi, Mahin Taheri Moghadam, Esrafil Mansouri","doi":"10.1089/ten.TEC.2024.0066","DOIUrl":"10.1089/ten.TEC.2024.0066","url":null,"abstract":"<p><p><b><i>Background:</i></b> Chronic kidney disease (CKD) poses a global health challenge, and it needs alternative therapeutic approaches for patients with end-stage renal disease (ESRD). Although organ transplantation is effective, it faces challenges such as declining quality of life, immunological responses, transplant rejection, and donor shortages. Tissue engineering, by using suitable scaffolds, cells, and growth factors, emerges as a promising treatment option for kidney regeneration. <b><i>Experiment:</i></b> We precisely decellularized scaffold, derived from rat kidneys while maintaining its native three-dimensional (3D) architecture. The efficiency of decellularization was evaluated through histological examinations, including hematoxylin and eosin, periodic acid-Schiff, and DAPI staining, as well as scanning electron microscopy. The scaffolds were then recellularized with kidney mesenchymal stem cells (kMSCs), and their adhesion, proliferation, and differentiation were assessed over 1, 2, and 3 weeks. The expression of specific renal markers, including <i>Wt-1</i>, <i>ZO-1</i>, <i>AQP-1</i>, and <i>ANG-1</i>, was examined through quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in monolayer and 3D cultures. <b><i>Results:</i></b> The infiltration rate of cells into the scaffold increased in a time-dependent manner, and the expression of specific renal markers significantly increased, demonstrating successful differentiation of kMSCs within the scaffold. The application of basic fibroblast growth factor (bFGF) could intensify the expression of kidney-specific genes. <b><i>Conclusions:</i></b> The study highlighted the importance of preserving the 3D architecture of the scaffold during decellularization to achieve optimal cellular responses. Moreover, the capacity of mesenchymal stem cells in recellularized scaffolds facilitated tissue regeneration.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"239-247"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Young TSPC-Derived Exosomal circPVT1 Ameliorates Aging-Impaired Cell Function via SIRT1/NF-κB. 来源于年轻 TSPC 的外泌体 circPVT1 可通过 SIRT1/NF-κB 改善衰老受损的细胞功能。
IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-01-01 DOI: 10.1089/ten.TEC.2024.0057
Weifeng Han, Dongqiang Gu, Xiaoya Li, Hongguang Chen, Xu Tao, Lei Chen

Tendon stem/progenitor cell (TSPC) senescence is often associated with age-dependent tendon diseases and greatly reduces the capacities for tendon repair and replacement. Exosomes contain bioactive molecules and have been increasingly used in regenerative medicine. In the present study, we demonstrated the antiaging effects of young exosomes from circPVT1-overexpressing TSPCs at early passages (circPVT1-exo). These exosomes attenuated the phenotypes of aged TSPCs at late passages (L-TSPCs) by enhancing self-renewal and proliferation abilities, suppressing cell senescence, maintaining their tenogenic capacity, and weakening their osteogenic differentiation. Mechanistically, circPVT1-exo inhibited the NF-κB pathway and increased SIRT1 expression in L-TSPCs. Knockdown of SIRT1 reversed these effects as evidenced by increased senescence, decreased proliferation, and tenogenic differentiation. These results suggest that circPVT1-exo may ameliorate aging-impaired TSPC function by modulating the SIRT1/NF-κB pathway, suggesting that circPVT1-exo has therapeutic potential for age-related diseases.

肌腱干/祖细胞(TSPC)衰老通常与年龄依赖性肌腱疾病有关,并大大降低了肌腱修复和替代能力。外泌体含有生物活性分子,已越来越多地被用于再生医学。在本研究中,我们证实了来自早期表达 circPVT1 的 TSPCs 的年轻外泌体(circPVT1-exo)的抗衰老作用。这些外泌体通过增强细胞自我更新和增殖能力、抑制细胞衰老、维持细胞成腱能力和削弱成骨分化能力,减轻了晚期老化TPSCs(L-TSPCs)的表型。从机制上讲,circPVT1-exo抑制了NF-κB通路,并增加了SIRT1在L-TSPCs中的表达。抑制 SIRT1 可逆转这些影响,表现为衰老增加、增殖减少和成骨分化。这些结果表明,circPVT1-exo 可通过调节 SIRT1/NF-κB 通路改善衰老受损的 TSPC 功能,这表明 circPVT1-exo 具有治疗老年相关疾病的潜力。
{"title":"Young TSPC-Derived Exosomal circPVT1 Ameliorates Aging-Impaired Cell Function via SIRT1/NF-κB.","authors":"Weifeng Han, Dongqiang Gu, Xiaoya Li, Hongguang Chen, Xu Tao, Lei Chen","doi":"10.1089/ten.TEC.2024.0057","DOIUrl":"10.1089/ten.TEC.2024.0057","url":null,"abstract":"<p><p>Tendon stem/progenitor cell (TSPC) senescence is often associated with age-dependent tendon diseases and greatly reduces the capacities for tendon repair and replacement. Exosomes contain bioactive molecules and have been increasingly used in regenerative medicine. In the present study, we demonstrated the antiaging effects of young exosomes from circPVT1-overexpressing TSPCs at early passages (circPVT1-exo). These exosomes attenuated the phenotypes of aged TSPCs at late passages (L-TSPCs) by enhancing self-renewal and proliferation abilities, suppressing cell senescence, maintaining their tenogenic capacity, and weakening their osteogenic differentiation. Mechanistically, circPVT1-exo inhibited the NF-κB pathway and increased SIRT1 expression in L-TSPCs. Knockdown of SIRT1 reversed these effects as evidenced by increased senescence, decreased proliferation, and tenogenic differentiation. These results suggest that circPVT1-exo may ameliorate aging-impaired TSPC function by modulating the SIRT1/NF-κB pathway, suggesting that circPVT1-exo has therapeutic potential for age-related diseases.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"248-254"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141260487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphoton Imaging of Maturation in Tissue Engineering. 组织工程中的成熟多光子成像。
IF 3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-01-01 DOI: 10.1089/ten.TEC.2023.0141
Maximilian P Werner, Vytautas Kučikas, Kirsten Voß, Dirk Abel, Stefan Jockenhoevel, Marc A M J van Zandvoort, Thomas Schmitz-Rode

Donor cell-specific tissue-engineered (TE) implants are a promising therapy for personalized treatment of cardiovascular diseases, but current development protocols lack a stable longitudinal assessment of tissue development at subcellular resolution. As a first step toward such an assessment approach, in this study we establish a generalized labeling and imaging protocol to obtain quantified maturation parameters of TE constructs in three dimensions (3D) without the need of histological slicing, thus leaving the tissue intact. Focusing on intracellular matrix (ICM) and extracellular matrix (ECM) networks, multiphoton laser scanning microscopy (MPLSM) was used to investigate TE patches of different conditioning durations of up to 21 days. We show here that with a straightforward labeling procedure of whole-mount samples (so without slicing into thin histological sections), followed by an easy-to-use multiphoton imaging process, we obtained high-quality images of the tissue in 3D at various time points during development. The stacks of images could then be further analyzed to visualize and quantify the volume of cell coverage as well as the volume fraction and network of structural proteins. We showed that collagen and alpha-smooth muscle actin (α-SMA) volume fractions increased as normalized to full tissue volume and proportional to the cell count, with a converging trend to the final density of (4.0% ± 0.6%) and (7.6% ± 0.7%), respectively. The image analysis of ICM and ECM revealed a developing and widely branched interconnected matrix. We are currently working on the second step, that is, to integrate MPLSM endoscopy into a dynamic bioreactor system to monitor the maturation of intact TE constructs over time, thus without the need to take them out.

供体细胞特异性组织工程(TE)植入物是一种很有前景的心血管疾病个性化治疗方法,但目前的开发方案缺乏亚细胞分辨率的组织发育稳定纵向评估。作为实现这种评估方法的第一步,我们在本研究中建立了一种通用的标记和成像方案,无需进行组织学切片,即可获得三维(3D)TE 构建物的量化成熟参数,从而使组织保持完整。以细胞内基质(ICM)和细胞外基质(ECM)网络为重点,多光子激光扫描显微镜(MPLSM)被用于研究长达 21 天的不同调理持续时间的 TE 补丁。我们在此表明,通过对整个装片样本进行直接标记(因此无需切成薄的组织学切片),然后使用简单易用的多光子成像过程,我们获得了发育过程中不同时间点组织的高质量三维图像。然后,我们可以对图像堆叠进行进一步分析,以可视化和量化细胞覆盖体积以及结构蛋白的体积分数和网络。我们发现,胶原蛋白和α-平滑肌肌动蛋白(α-SMA)的体积分数增加了,与全组织体积归一化,并与细胞数成正比,最终密度分别为(4.0 ± 0.6)%和(7.6 ± 0.7)%,呈收敛趋势。对 ICM 和 ECM 的图像分析表明,基质正在形成并广泛分枝。我们目前正在进行第二步工作,即把 MPLSM 内窥镜集成到动态生物反应器系统中,以监测完整的 TE 构建物随着时间推移的成熟情况,从而无需将其取出。
{"title":"Multiphoton Imaging of Maturation in Tissue Engineering.","authors":"Maximilian P Werner, Vytautas Kučikas, Kirsten Voß, Dirk Abel, Stefan Jockenhoevel, Marc A M J van Zandvoort, Thomas Schmitz-Rode","doi":"10.1089/ten.TEC.2023.0141","DOIUrl":"10.1089/ten.TEC.2023.0141","url":null,"abstract":"<p><p>Donor cell-specific tissue-engineered (TE) implants are a promising therapy for personalized treatment of cardiovascular diseases, but current development protocols lack a stable longitudinal assessment of tissue development at subcellular resolution. As a first step toward such an assessment approach, in this study we establish a generalized labeling and imaging protocol to obtain quantified maturation parameters of TE constructs in three dimensions (3D) without the need of histological slicing, thus leaving the tissue intact. Focusing on intracellular matrix (ICM) and extracellular matrix (ECM) networks, multiphoton laser scanning microscopy (MPLSM) was used to investigate TE patches of different conditioning durations of up to 21 days. We show here that with a straightforward labeling procedure of whole-mount samples (so without slicing into thin histological sections), followed by an easy-to-use multiphoton imaging process, we obtained high-quality images of the tissue in 3D at various time points during development. The stacks of images could then be further analyzed to visualize and quantify the volume of cell coverage as well as the volume fraction and network of structural proteins. We showed that collagen and alpha-smooth muscle actin (α-SMA) volume fractions increased as normalized to full tissue volume and proportional to the cell count, with a converging trend to the final density of (4.0% ± 0.6%) and (7.6% ± 0.7%), respectively. The image analysis of ICM and ECM revealed a developing and widely branched interconnected matrix. We are currently working on the second step, that is, to integrate MPLSM endoscopy into a dynamic bioreactor system to monitor the maturation of intact TE constructs over time, thus without the need to take them out.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"38-48"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138805975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Biocompatible Nanofibers Modified by Plasma for Osteoblast Growth Differentiation. 一种经血浆改性的生物相容性纳米纤维,可用于成骨细胞的生长分化。
IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2024-01-01 DOI: 10.1089/ten.TEC.2024.0099
Quan Liu, Zhongyao Hu, Wendan Cheng, Qinghua Xu, Zhengwei Wu

This work employs nitrogen plasma immersion ion implantation (PIII) to modify electrospinning polylactic acid membranes and immobilizes basic fibroblast growth factors (bFGF) by forming crosslinking bonds. The study investigates the modified membranes' surface characteristics and the stimulatory effects of crosslinked bFGF polylactic acid membranes on osteoblast and fibroblast proliferation. The PIII process occurs under low vacuum conditions and is controlled by processing time and power pulse width. The experimental results indicate that, within a 400-second N2-PIII treatment, the spun fibers remain undamaged, demonstrating an increase in hydrophilicity (from 117° to 38°/36°) and nitrogen content (from 0% to 7.54%/8.05%). X-ray photoelectron spectroscopy analysis suggests the formation of a C-N-C=O crosslinked bond. Cell culture and activity assessments indicate that the PIII-treated and crosslinked bFGF film exhibits significantly higher cell growth activity (p < 0.05) than the untreated group. These intergroup differences are attributed to the surface crosslinking bond content. In osteogenic induction, the results for each day show that the treated group performs better. However, the intergroup disparities within the crosslinked bFGF group disappear with prolonged culture time due to the rapid osteogenesis prompted by bFGF. The findings suggest that PIII treatment of electrospinning polylactic acid membranes holds promise in promoting osteogenesis in bone tissue scaffolds.

这项研究采用氮等离子体浸入离子注入法(PIII)对电纺聚乳酸膜进行改性,并通过形成交联键固定必需成纤维细胞生长因子(bFGF)。该研究探讨了改性膜的表面特性以及交联的 bFGF 聚乳酸膜对成骨细胞和成纤维细胞增殖的刺激作用。PIII 过程在低真空条件下进行,由处理时间和功率脉冲宽度控制。实验结果表明,在 400 秒的 N2-PIII 处理过程中,纺出的纤维仍未受损,亲水性(从 117° 到 38°/36°)和氮含量(从 0% 到 7.54%/8.05%)均有所提高。XPS 分析表明形成了 C-N-C=O 交联键。细胞培养和活性评估表明,经 PIII 处理和交联的 bFGF 膜的细胞生长活性明显更高(P
{"title":"A Biocompatible Nanofibers Modified by Plasma for Osteoblast Growth Differentiation.","authors":"Quan Liu, Zhongyao Hu, Wendan Cheng, Qinghua Xu, Zhengwei Wu","doi":"10.1089/ten.TEC.2024.0099","DOIUrl":"10.1089/ten.TEC.2024.0099","url":null,"abstract":"<p><p>This work employs nitrogen plasma immersion ion implantation (PIII) to modify electrospinning polylactic acid membranes and immobilizes basic fibroblast growth factors (bFGF) by forming crosslinking bonds. The study investigates the modified membranes' surface characteristics and the stimulatory effects of crosslinked bFGF polylactic acid membranes on osteoblast and fibroblast proliferation. The PIII process occurs under low vacuum conditions and is controlled by processing time and power pulse width. The experimental results indicate that, within a 400-second N<sub>2</sub>-PIII treatment, the spun fibers remain undamaged, demonstrating an increase in hydrophilicity (from 117° to 38°/36°) and nitrogen content (from 0% to 7.54%/8.05%). X-ray photoelectron spectroscopy analysis suggests the formation of a C-N-C=O crosslinked bond. Cell culture and activity assessments indicate that the PIII-treated and crosslinked bFGF film exhibits significantly higher cell growth activity (<i>p</i> < 0.05) than the untreated group. These intergroup differences are attributed to the surface crosslinking bond content. In osteogenic induction, the results for each day show that the treated group performs better. However, the intergroup disparities within the crosslinked bFGF group disappear with prolonged culture time due to the rapid osteogenesis prompted by bFGF. The findings suggest that PIII treatment of electrospinning polylactic acid membranes holds promise in promoting osteogenesis in bone tissue scaffolds.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"268-278"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141260383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a Cell-Microcarrier Tissue-Engineered Product for Muscle Repair Using a Bioreactor System. 使用生物反应器系统开发用于肌肉修复的细胞微载体组织工程产品。
IF 3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-12-01 Epub Date: 2023-11-21 DOI: 10.1089/ten.TEC.2023.0122
Ana Luísa Cartaxo, Ana Fernandes-Platzgummer, Carlos A V Rodrigues, Ana M Melo, Katja Tecklenburg, Eva Margreiter, Richard M Day, Cláudia L da Silva, Joaquim M S Cabral

Fecal incontinence, although not life-threatening, has a high impact on the economy and patient quality of life. So far, available treatments are based on both surgical and nonsurgical approaches. These can range from changes in diet, to bowel training, or sacral nerve stimulation, but none of which provides a long-term solution. New regenerative medicine-based therapies are emerging, which aim at regenerating the sphincter muscle and restoring continence. Usually, these consist of the administration of a suspension of expanded skeletal-derived muscle cells (SkMDCs) to the damaged site. However, this strategy often results in a reduced cell viability due to the need for cell harvesting from the expansion platform, as well as the non-native use of a cell suspension to deliver the anchorage-dependent cells. In this study, we propose the proof-of-concept for the bioprocessing of a new cell delivery method for the treatment of fecal incontinence, obtained by a scalable two-step process. First, patient-isolated SkMDCs were expanded using planar static culture systems. Second, by using a single-use PBS-MINI Vertical-Wheel® bioreactor, the expanded SkMDCs were combined with biocompatible and biodegradable (i.e., directly implantable) poly(lactic-co-glycolic acid) microcarriers prepared by thermally induced phase separation. This process allowed for up to 80% efficiency of SkMDCs to attach to the microcarriers. Importantly, SkMDCs were viable during all the process and maintained their myogenic features (e.g., expression of the CD56 marker) after adhesion and culture on the microcarriers. When SkMDC-containing microcarriers were placed on a culture dish, cells were able to migrate from the microcarriers onto the culture surface and differentiate into multinucleated myotubes, which highlights their potential to regenerate the damaged sphincter muscle after administration into the patient. Overall, this study proposes an innovative method to attach SkMDCs to biodegradable microcarriers, which can provide a new treatment for fecal incontinence.

大便失禁虽然不会危及生命,但对经济和患者生活质量有很大影响。到目前为止,可用的治疗方法是基于手术和非手术方法。这些可能包括饮食的改变、肠道训练或骶神经刺激,但都不能提供长期的解决方案。以再生医学为基础的新疗法正在出现,旨在再生括约肌和恢复自制力。通常,这些包括向受损部位施用膨胀的骨骼肌细胞(SkMDCs)的悬浮液。然而,由于需要从扩增平台收获细胞,以及非天然使用细胞悬浮液来递送锚定依赖性细胞,这种策略通常导致细胞活力降低。在这里,我们提出了一种新的细胞递送方法的生物处理概念验证,该方法通过可扩展的两步过程获得,用于治疗大便失禁。首先,使用平面静态培养系统扩增患者分离的SkMDCs。其次,通过使用一次性PBS迷你垂直轮®生物反应器,将膨胀的SkMDCs与生物相容性和可生物降解(即直接植入)的聚乳酸-乙醇酸(PLGA)微载体相结合,该微载体先前通过热诱导相分离(TIPS)制备。该工艺允许SkMDCs附着到微载体上的效率高达80%。重要的是,SkMDCs在所有过程中都是可行的,并在微载体上粘附和培养后保持其肌源性特征(例如CD56标记物的表达)。当将含有微载体的SKMDCs放置在培养皿上时,细胞能够从微载体迁移到培养表面并分化为多核肌管,这突出了它们在给药到患者体内后再生受损括约肌的潜力。总的来说,这项研究提出了一种将SkMDCs连接到可生物降解微载体上的创新方法,这可以为大便失禁提供一种新的治疗方法。
{"title":"Developing a Cell-Microcarrier Tissue-Engineered Product for Muscle Repair Using a Bioreactor System.","authors":"Ana Luísa Cartaxo, Ana Fernandes-Platzgummer, Carlos A V Rodrigues, Ana M Melo, Katja Tecklenburg, Eva Margreiter, Richard M Day, Cláudia L da Silva, Joaquim M S Cabral","doi":"10.1089/ten.TEC.2023.0122","DOIUrl":"10.1089/ten.TEC.2023.0122","url":null,"abstract":"<p><p>Fecal incontinence, although not life-threatening, has a high impact on the economy and patient quality of life. So far, available treatments are based on both surgical and nonsurgical approaches. These can range from changes in diet, to bowel training, or sacral nerve stimulation, but none of which provides a long-term solution. New regenerative medicine-based therapies are emerging, which aim at regenerating the sphincter muscle and restoring continence. Usually, these consist of the administration of a suspension of expanded skeletal-derived muscle cells (SkMDCs) to the damaged site. However, this strategy often results in a reduced cell viability due to the need for cell harvesting from the expansion platform, as well as the non-native use of a cell suspension to deliver the anchorage-dependent cells. In this study, we propose the proof-of-concept for the bioprocessing of a new cell delivery method for the treatment of fecal incontinence, obtained by a scalable two-step process. First, patient-isolated SkMDCs were expanded using planar static culture systems. Second, by using a single-use PBS-MINI Vertical-Wheel<sup>®</sup> bioreactor, the expanded SkMDCs were combined with biocompatible and biodegradable (i.e., directly implantable) poly(lactic-<i>co</i>-glycolic acid) microcarriers prepared by thermally induced phase separation. This process allowed for up to 80% efficiency of SkMDCs to attach to the microcarriers. Importantly, SkMDCs were viable during all the process and maintained their myogenic features (e.g., expression of the CD56 marker) after adhesion and culture on the microcarriers. When SkMDC-containing microcarriers were placed on a culture dish, cells were able to migrate from the microcarriers onto the culture surface and differentiate into multinucleated myotubes, which highlights their potential to regenerate the damaged sphincter muscle after administration into the patient. Overall, this study proposes an innovative method to attach SkMDCs to biodegradable microcarriers, which can provide a new treatment for fecal incontinence.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"583-595"},"PeriodicalIF":3.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10714258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41238727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Nerve Damage After an Injury to the Adjacent Soft Tissue: A Pilot Animal Study. 邻近软组织损伤后神经损伤的特征:一项先导动物研究。
IF 3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-12-01 Epub Date: 2023-10-19 DOI: 10.1089/ten.TEC.2023.0151
Nesreen Zoghoul Alsmadi, Curt Deister, Nik Agrawal, Lan Tran, Rasa Zhukauskas, Debbie Neubauer Fischer, Deana Mercer

Traumatic injuries may result in the formation of soft tissue adhesions between peripheral nerves and surrounding soft tissue. These soft tissue adhesions lead to compression and ischemic stress within fascicles due to nonpliability of adhered scar tissue, and nerve tension due to loss of nerve gliding from scar tethering. These changes in the soft tissue bed surrounding the nerve may result in axon degeneration and neuroma-in-continuity. Preclinical models that simulate clinically relevant levels of scar in the nerve environment may be impactful to the development of surgical techniques and treatments to prevent adhesions. This study presents the results of a rodent model with an induced indirect nerve injury by (1) thermal insult to the soft tissue bed surrounding the nerve and (2) air-drying the surrounding soft tissue bed of the nerve. Our findings suggest that inducing an injury of the soft tissue bed results in increased intraneural scar and extraneural adhesions to the nerve compared to a sham procedure. Thermal induced injuries showed more macrophages and changes in nerve health compared to air-dried induced injuries. The changes in the nerves of the induced injury groups, specifically the thermal injury group, may be meaningful for evaluating treatments for nontransected nerve injuries.

创伤可能导致周围神经和周围软组织之间形成软组织粘连。由于粘附的瘢痕组织的不易弯曲,这些软组织粘附导致束内的压缩和缺血性应力,以及由于瘢痕栓系导致的神经滑动损失而导致的神经紧张。神经周围软组织床的这些变化可能导致轴突变性和神经瘤的连续性。模拟神经环境中临床相关疤痕水平的临床前模型可能会对预防粘连的外科技术和治疗方法的发展产生影响。本研究介绍了一种啮齿动物模型的结果,该模型通过1)对神经周围的软组织床的热损伤和2)对神经的周围软组织床进行空气干燥来诱导间接神经损伤。我们的研究结果表明,与假手术相比,诱导软组织床损伤会导致神经内瘢痕和神经外粘连增加。与空气干燥诱导的损伤相比,热诱导的损伤显示出更多的巨噬细胞和神经健康的变化。诱导损伤组,特别是热损伤组的神经变化可能对评估非横断神经损伤的治疗有意义。影响声明本研究对大鼠模型中的粘连、疤痕和相关神经损伤进行了定量和定性评估。这些动物模型的开发可以提供用于评估旨在防止外周神经中粘连和瘢痕组织形成的治疗的方法。
{"title":"Characterization of Nerve Damage After an Injury to the Adjacent Soft Tissue: A Pilot Animal Study.","authors":"Nesreen Zoghoul Alsmadi, Curt Deister, Nik Agrawal, Lan Tran, Rasa Zhukauskas, Debbie Neubauer Fischer, Deana Mercer","doi":"10.1089/ten.TEC.2023.0151","DOIUrl":"10.1089/ten.TEC.2023.0151","url":null,"abstract":"<p><p>Traumatic injuries may result in the formation of soft tissue adhesions between peripheral nerves and surrounding soft tissue. These soft tissue adhesions lead to compression and ischemic stress within fascicles due to nonpliability of adhered scar tissue, and nerve tension due to loss of nerve gliding from scar tethering. These changes in the soft tissue bed surrounding the nerve may result in axon degeneration and neuroma-in-continuity. Preclinical models that simulate clinically relevant levels of scar in the nerve environment may be impactful to the development of surgical techniques and treatments to prevent adhesions. This study presents the results of a rodent model with an induced indirect nerve injury by (1) thermal insult to the soft tissue bed surrounding the nerve and (2) air-drying the surrounding soft tissue bed of the nerve. Our findings suggest that inducing an injury of the soft tissue bed results in increased intraneural scar and extraneural adhesions to the nerve compared to a sham procedure. Thermal induced injuries showed more macrophages and changes in nerve health compared to air-dried induced injuries. The changes in the nerves of the induced injury groups, specifically the thermal injury group, may be meaningful for evaluating treatments for nontransected nerve injuries.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"547-557"},"PeriodicalIF":3.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10714259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41141417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Cardiac Fibrotic Model for Antifibrotic Drug Screening. 用于抗纤维药物筛选的仿生心脏纤维化模型。
IF 3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-12-01 Epub Date: 2023-11-06 DOI: 10.1089/ten.TEC.2023.0089
Haiyan Li, Yifan Zhu, Zhe Chen, Qiaolin Ma, Ahmed I Abd-Elhamid, Bei Feng, Binbin Sun, Jinglei Wu

Cardiac fibrosis is characterized by pathological proliferation and activation of cardiac fibroblasts to myofibroblasts. Inhibition and reverse of transdifferentiation of cardiac fibroblasts to myofibroblasts is a potential strategy for cardiac fibrosis. Despite substantial progress, more effort is needed to discover effective drugs to improve and reverse cardiac fibrosis. The main reason for the slow development of antifibrotic drugs is that the traditional polystyrene culture platform does not recapitulate the microenvironment where cells reside in tissues. In this study, we propose an in vitro cardiac fibrotic model by seeding electrospun yarn scaffolds with cardiac fibroblasts. Our results show that yarn scaffolds allow three-dimensional growth of cardiac fibroblasts, promote extracellular matrix (ECM) deposition, and induce the transdifferentiation of cardiac fibroblasts to myofibroblasts. Exogenous transforming growth factor-β1 further promotes cardiac fibroblast activation and ECM deposition, which makes it a suitable fibrotic model to predict the antifibrotic potential of drugs. By using this platform, we demonstrate that both Honokiol (HKL) and Pirfenidone (PFD) show potential in antifibrosis to some extent. HKL is more efficient in antifibrosis than PFD as revealed by biochemical composition, gene, and molecular analyses as well as histological and biomechanical analysis. The electrospun yarn scaffold provides a novel platform for constructing in vitro fibrotic models to study cardiac fibrosis and to predict the antifibrotic efficacy of novel drugs.

心脏纤维化的特征是心脏成纤维细胞向肌成纤维细胞的病理性增殖和活化。抑制和逆转心脏成纤维细胞向肌成纤维细胞的转分化是心脏纤维化的一种潜在策略。尽管取得了实质性进展,但仍需要更多的努力来发现改善和逆转心脏纤维化的有效药物。抗纤维化药物开发缓慢的主要原因是传统的聚苯乙烯培养平台不能概括细胞在组织中的微环境。在这项研究中,我们提出了一种体外心脏纤维化模型,通过用心脏成纤维细胞植入电纺纱线支架。我们的结果表明,纱线支架允许心脏成纤维细胞的三维生长,促进细胞外基质(ECM)沉积,并诱导心脏成纤维纤维细胞向肌成纤维细胞转分化。外源性转化生长因子-β1进一步促进心脏成纤维细胞活化和ECM沉积,使其成为预测药物抗纤维化潜力的合适纤维化模型。通过使用该平台,我们证明了厚朴酚(HKL)和吡非尼酮(PFD)在一定程度上都显示出抗纤维化的潜力。生化成分、基因和分子分析以及组织学和生物力学分析显示,HKL在抗纤维化方面比PFD更有效。电纺纱线支架为构建体外纤维化模型提供了一个新的平台,以研究心脏纤维化并预测新药的抗纤维化疗效。
{"title":"Biomimetic Cardiac Fibrotic Model for Antifibrotic Drug Screening.","authors":"Haiyan Li, Yifan Zhu, Zhe Chen, Qiaolin Ma, Ahmed I Abd-Elhamid, Bei Feng, Binbin Sun, Jinglei Wu","doi":"10.1089/ten.TEC.2023.0089","DOIUrl":"10.1089/ten.TEC.2023.0089","url":null,"abstract":"<p><p>Cardiac fibrosis is characterized by pathological proliferation and activation of cardiac fibroblasts to myofibroblasts. Inhibition and reverse of transdifferentiation of cardiac fibroblasts to myofibroblasts is a potential strategy for cardiac fibrosis. Despite substantial progress, more effort is needed to discover effective drugs to improve and reverse cardiac fibrosis. The main reason for the slow development of antifibrotic drugs is that the traditional polystyrene culture platform does not recapitulate the microenvironment where cells reside in tissues. In this study, we propose an <i>in vitro</i> cardiac fibrotic model by seeding electrospun yarn scaffolds with cardiac fibroblasts. Our results show that yarn scaffolds allow three-dimensional growth of cardiac fibroblasts, promote extracellular matrix (ECM) deposition, and induce the transdifferentiation of cardiac fibroblasts to myofibroblasts. Exogenous transforming growth factor-β1 further promotes cardiac fibroblast activation and ECM deposition, which makes it a suitable fibrotic model to predict the antifibrotic potential of drugs. By using this platform, we demonstrate that both Honokiol (HKL) and Pirfenidone (PFD) show potential in antifibrosis to some extent. HKL is more efficient in antifibrosis than PFD as revealed by biochemical composition, gene, and molecular analyses as well as histological and biomechanical analysis. The electrospun yarn scaffold provides a novel platform for constructing <i>in vitro</i> fibrotic models to study cardiac fibrosis and to predict the antifibrotic efficacy of novel drugs.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"558-571"},"PeriodicalIF":3.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10142939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tissue engineering. Part C, Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1