首页 > 最新文献

Trends in Plant Science最新文献

英文 中文
Plant species with extremely small populations conservation program: achieving Kunming-Montreal global biodiversity targets. 极小种群植物物种保护计划:实现昆明-蒙特利尔全球生物多样性目标。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-08-01 Epub Date: 2024-06-10 DOI: 10.1016/j.tplants.2024.05.007
Weibang Sun, Yongpeng Ma, Richard T Corlett

Conservation programs for plant species with extremely small populations (PSESP) have been successfully implemented for several decades in China. Here we highlight how their inclusion in several national conservation policies helps meet targets of the Kunming-Montreal Global Biodiversity Framework (KMGBF) and show how lessons from these programs can be applied more widely.

中国已成功实施了数十年的极小种群植物物种保护计划(PSESP)。在此,我们将重点介绍如何将其纳入多项国家保护政策,以帮助实现昆明-蒙特利尔全球生物多样性框架(KMGBF)的目标,并说明如何更广泛地应用这些项目的经验教训。
{"title":"Plant species with extremely small populations conservation program: achieving Kunming-Montreal global biodiversity targets.","authors":"Weibang Sun, Yongpeng Ma, Richard T Corlett","doi":"10.1016/j.tplants.2024.05.007","DOIUrl":"10.1016/j.tplants.2024.05.007","url":null,"abstract":"<p><p>Conservation programs for plant species with extremely small populations (PSESP) have been successfully implemented for several decades in China. Here we highlight how their inclusion in several national conservation policies helps meet targets of the Kunming-Montreal Global Biodiversity Framework (KMGBF) and show how lessons from these programs can be applied more widely.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The BAHD and the bold: the mitochondria’s role in alkaloid artistry BAHD与胆识:线粒体在生物碱艺术中的作用
IF 20.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-31 DOI: 10.1016/j.tplants.2024.07.012

In a recent study, Zeng et al. uncovered 3β-tigloyloxytropane synthase (TS) in Atropa belladonna, characterizing its mitochondrial localization and substrate specificity. The discovery of this enzyme opens up new bioengineering possibilities for tropane alkaloids (TAs), enhancing the potential for sustainable agriculture and expanding our knowledge of TA biosynthesis.

在最近的一项研究中,Zeng 等人发现了颠茄中的 3β-tigloyloxytropane合成酶(TS),确定了其线粒体定位和底物特异性。这种酶的发现为托烷生物碱(TAs)的生物工程开辟了新的可能性,提高了可持续农业的潜力,并扩展了我们对托烷生物合成的认识。
{"title":"The BAHD and the bold: the mitochondria’s role in alkaloid artistry","authors":"","doi":"10.1016/j.tplants.2024.07.012","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.07.012","url":null,"abstract":"<p>In a recent study, <span><span>Zeng <em>et al.</em></span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> uncovered 3β-tigloyloxytropane synthase (TS) in <em>Atropa belladonna</em>, characterizing its mitochondrial localization and substrate specificity. The discovery of this enzyme opens up new bioengineering possibilities for tropane alkaloids (TAs), enhancing the potential for sustainable agriculture and expanding our knowledge of TA biosynthesis.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BiAux, a newly discovered compound triggering auxin signaling. BiAux,一种新发现的触发植物生长素信号的化合物。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-29 DOI: 10.1016/j.tplants.2024.07.008
Barbara Wójcikowska, Jiří Friml, Ewa Mazur

Lateral root (LR) formation, that is vital for plant development, is one of many auxin-modulated processes, but the underlying regulatory mechanism is not yet fully known. Recently, González-García et al. discovered the BiAux compound and showed that it is involved in LR development via regulating specific auxin coreceptors.

侧根(LR)的形成对植物的生长发育至关重要,它是多种辅助素调控过程之一,但其潜在的调控机制尚未完全清楚。最近,González-García 等人发现了 BiAux 复合物,并证明它通过调节特定的辅助素核心受体参与了侧根的发育。
{"title":"BiAux, a newly discovered compound triggering auxin signaling.","authors":"Barbara Wójcikowska, Jiří Friml, Ewa Mazur","doi":"10.1016/j.tplants.2024.07.008","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.07.008","url":null,"abstract":"<p><p>Lateral root (LR) formation, that is vital for plant development, is one of many auxin-modulated processes, but the underlying regulatory mechanism is not yet fully known. Recently, González-García et al. discovered the BiAux compound and showed that it is involved in LR development via regulating specific auxin coreceptors.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-emitting probes for in situ sensing of plant information 用于现场感知植物信息的发光探针
IF 20.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-26 DOI: 10.1016/j.tplants.2024.06.010

Monitoring plant physiological information for gaining a comprehensive understanding of plant growth and stress responses contributes to safeguarding plant health. Light-emitting probes – in terms of small-molecule, nanomaterials-based, and genetically protein-based probes – can be introduced into plants through foliar and root treatment or genetic transformation. These probes offer exciting opportunities for sensitive and in situ monitoring of dynamic plant chemical information – for example, reactive oxygen species (ROS), calcium ions, phytohormones – with spatiotemporal resolution. In this review we explore the sensing mechanisms of these light-emitting probes and their applications in monitoring various chemical information in plants in situ. These probes can be used as part of a sentinel plant approach to provide stress warning in the field or to explore plant signaling pathways.

监测植物生理信息以全面了解植物生长和应激反应有助于保障植物健康。发光探针--包括小分子探针、纳米材料探针和基因蛋白质探针--可以通过叶面和根部处理或基因转化引入植物。这些探针为灵敏地原位监测动态植物化学信息(如活性氧、钙离子和植物激素)提供了令人兴奋的时空分辨率。在本综述中,我们将探讨这些发光探针的传感机制及其在原位监测植物各种化学信息方面的应用。这些探针可作为哨兵植物方法的一部分,在田间提供胁迫预警或探索植物信号通路。
{"title":"Light-emitting probes for in situ sensing of plant information","authors":"","doi":"10.1016/j.tplants.2024.06.010","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.06.010","url":null,"abstract":"<p>Monitoring plant physiological information for gaining a comprehensive understanding of plant growth and stress responses contributes to safeguarding plant health. Light-emitting probes – in terms of small-molecule, nanomaterials-based, and genetically protein-based probes – can be introduced into plants through foliar and root treatment or genetic transformation. These probes offer exciting opportunities for sensitive and in situ monitoring of dynamic plant chemical information – for example, reactive oxygen species (ROS), calcium ions, phytohormones – with spatiotemporal resolution. In this review we explore the sensing mechanisms of these light-emitting probes and their applications in monitoring various chemical information in plants in situ. These probes can be used as part of a sentinel plant approach to provide stress warning in the field or to explore plant signaling pathways.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-to-growth: photoperiod and photosynthesis make the call 生长时间:光周期和光合作用说了算
IF 20.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-17 DOI: 10.1016/j.tplants.2024.07.003

The intricate regulation of flowering time in response to day length has been extensively shown. A recent study has now revealed a similar mechanism for regulating vegetative growth. Wang et al. observed that plants measure daylength as the duration of photosynthesis and metabolite production to modulate vegetative growth.

开花时间随昼夜长短而变化的复杂调节机制已被广泛证实。最近的一项研究也揭示了类似的无性生长调节机制。Wang 等人观察到,植物以光合作用和代谢产物产生的持续时间来衡量昼长,从而调节无性生长。
{"title":"Time-to-growth: photoperiod and photosynthesis make the call","authors":"","doi":"10.1016/j.tplants.2024.07.003","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.07.003","url":null,"abstract":"<p>The intricate regulation of flowering time in response to day length has been extensively shown. A recent study has now revealed a similar mechanism for regulating vegetative growth. <span><span>Wang <em>et al</em>.</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> observed that plants measure daylength as the duration of photosynthesis and metabolite production to modulate vegetative growth.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rice rhizobiome engineering for climate change mitigation. 缓解气候变化的水稻根瘤生物工程学。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-16 DOI: 10.1016/j.tplants.2024.06.006
Youngho Kwon, Yunkai Jin, Jong-Hee Lee, Chuanxin Sun, Choong-Min Ryu

The year 2023 was the warmest year since 1850. Greenhouse gases, including CO2 and methane, played a significant role in increasing global warming. Among these gases, methane has a 25-fold greater impact on global warming than CO2. Methane is emitted during rice cultivation by a group of rice rhizosphere microbes, termed methanogens, in low oxygen (hypoxic) conditions. To reduce methane emissions, it is crucial to decrease the methane production capacity of methanogens through water and fertilizer management, breeding of new rice cultivars, regulating root exudation, and manipulating rhizosphere microbiota. In this opinion article we review the recent developments in hypoxia ecology and methane emission mitigation and propose potential solutions based on the manipulation of microbiota and methanogens for the mitigation of methane emissions.

2023 年是自 1850 年以来最温暖的一年。包括二氧化碳和甲烷在内的温室气体在加剧全球变暖方面发挥了重要作用。在这些气体中,甲烷对全球变暖的影响是二氧化碳的 25 倍。在水稻种植过程中,一组被称为甲烷菌的水稻根瘤微生物会在低氧(缺氧)条件下排放甲烷。要减少甲烷排放,关键是要通过水肥管理、培育新的水稻品种、调节根系渗出和控制根瘤微生物群来降低甲烷菌的甲烷生产能力。在这篇观点文章中,我们回顾了缺氧生态学和甲烷排放减缓方面的最新进展,并提出了基于微生物群和甲烷菌的潜在解决方案,以减缓甲烷排放。
{"title":"Rice rhizobiome engineering for climate change mitigation.","authors":"Youngho Kwon, Yunkai Jin, Jong-Hee Lee, Chuanxin Sun, Choong-Min Ryu","doi":"10.1016/j.tplants.2024.06.006","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.06.006","url":null,"abstract":"<p><p>The year 2023 was the warmest year since 1850. Greenhouse gases, including CO<sub>2</sub> and methane, played a significant role in increasing global warming. Among these gases, methane has a 25-fold greater impact on global warming than CO<sub>2</sub>. Methane is emitted during rice cultivation by a group of rice rhizosphere microbes, termed methanogens, in low oxygen (hypoxic) conditions. To reduce methane emissions, it is crucial to decrease the methane production capacity of methanogens through water and fertilizer management, breeding of new rice cultivars, regulating root exudation, and manipulating rhizosphere microbiota. In this opinion article we review the recent developments in hypoxia ecology and methane emission mitigation and propose potential solutions based on the manipulation of microbiota and methanogens for the mitigation of methane emissions.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling plant-microbe symbioses using single-cell and spatial transcriptomics. 利用单细胞和空间转录组学揭示植物与微生物的共生关系。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-10 DOI: 10.1016/j.tplants.2024.06.008
Karen Serrano, Francesca Tedeschi, Stig U Andersen, Henrik V Scheller

Plant-microbe symbioses require intense interaction and genetic coordination to successfully establish in specific cell types of the host and symbiont. Traditional RNA-seq methodologies lack the cellular resolution to fully capture these complexities, but single-cell and spatial transcriptomics (ST) are now allowing scientists to probe symbiotic interactions at an unprecedented level of detail. Here, we discuss the advantages that novel spatial and single-cell transcriptomic technologies provide in studying plant-microbe endosymbioses and highlight key recent studies. Finally, we consider the remaining limitations of applying these approaches to symbiosis research, which are mainly related to the simultaneous capture of both plant and microbial transcripts within the same cells.

植物-微生物共生需要激烈的相互作用和遗传协调,才能在宿主和共生体的特定细胞类型中成功建立。传统的 RNA-seq 方法缺乏细胞分辨率,无法充分捕捉这些复杂性,但单细胞和空间转录组学(ST)现在可以让科学家以前所未有的详细程度探究共生相互作用。在此,我们将讨论新型空间和单细胞转录组学技术在研究植物-微生物共生过程中的优势,并重点介绍近期的主要研究。最后,我们探讨了将这些方法应用于共生研究的其余局限性,这些局限性主要与同时捕获同一细胞内的植物和微生物转录本有关。
{"title":"Unraveling plant-microbe symbioses using single-cell and spatial transcriptomics.","authors":"Karen Serrano, Francesca Tedeschi, Stig U Andersen, Henrik V Scheller","doi":"10.1016/j.tplants.2024.06.008","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.06.008","url":null,"abstract":"<p><p>Plant-microbe symbioses require intense interaction and genetic coordination to successfully establish in specific cell types of the host and symbiont. Traditional RNA-seq methodologies lack the cellular resolution to fully capture these complexities, but single-cell and spatial transcriptomics (ST) are now allowing scientists to probe symbiotic interactions at an unprecedented level of detail. Here, we discuss the advantages that novel spatial and single-cell transcriptomic technologies provide in studying plant-microbe endosymbioses and highlight key recent studies. Finally, we consider the remaining limitations of applying these approaches to symbiosis research, which are mainly related to the simultaneous capture of both plant and microbial transcripts within the same cells.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed floral structure for self-pollination in cultivated tomato 栽培番茄自花授粉的封闭花结构
IF 20.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-09 DOI: 10.1016/j.tplants.2024.06.012
Ruixue Xiao, Zongliang Chen, Yongfu Tao

Cultivated tomatoes exhibit cleistogamy – self-pollination within closed flowers. Wu et al. report that three HD-Zip IV genes and Style2.1 coordinately control anther trichome formation and style length to form closed anther cones that underpin the development of cleistogamy. Further exploration of causal variation and regulatory elements could provide targets for plant breeding.

栽培番茄表现出闭花自花授粉现象。Wu等人报告说,三个HD-Zip IV基因和Style2.1能协调控制花药毛状体的形成和花柱的长度,从而形成封闭的花药圆锥体,为裂殖授粉的发展奠定了基础。对因果变异和调控元件的进一步探索可为植物育种提供目标。
{"title":"Closed floral structure for self-pollination in cultivated tomato","authors":"Ruixue Xiao, Zongliang Chen, Yongfu Tao","doi":"10.1016/j.tplants.2024.06.012","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.06.012","url":null,"abstract":"<p>Cultivated tomatoes exhibit cleistogamy – self-pollination within closed flowers. <span>Wu <em>et al.</em></span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"8px\" viewbox=\"0 0 8 8\" width=\"8px\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg> report that three HD-Zip IV genes and <em>Style2.1</em> coordinately control anther trichome formation and style length to form closed anther cones that underpin the development of cleistogamy. Further exploration of causal variation and regulatory elements could provide targets for plant breeding.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole-cell visualization of plant organelles by electron tomography 利用电子断层扫描技术实现植物细胞器的全细胞可视化
IF 20.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-09 DOI: 10.1016/j.tplants.2024.06.003
Wenhan Cao, Liangpeng Gou, Baiying Li, Liwen Jiang, Jinbo Shen
No Abstract
无摘要
{"title":"Whole-cell visualization of plant organelles by electron tomography","authors":"Wenhan Cao, Liangpeng Gou, Baiying Li, Liwen Jiang, Jinbo Shen","doi":"10.1016/j.tplants.2024.06.003","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.06.003","url":null,"abstract":"No Abstract","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subscription and Copyright Information 订阅和版权信息
IF 20.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-03 DOI: 10.1016/s1360-1385(24)00161-4
No Abstract
无摘要
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/s1360-1385(24)00161-4","DOIUrl":"https://doi.org/10.1016/s1360-1385(24)00161-4","url":null,"abstract":"No Abstract","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Plant Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1