Pub Date : 2024-08-01Epub Date: 2024-06-10DOI: 10.1016/j.tplants.2024.05.007
Weibang Sun, Yongpeng Ma, Richard T Corlett
Conservation programs for plant species with extremely small populations (PSESP) have been successfully implemented for several decades in China. Here we highlight how their inclusion in several national conservation policies helps meet targets of the Kunming-Montreal Global Biodiversity Framework (KMGBF) and show how lessons from these programs can be applied more widely.
{"title":"Plant species with extremely small populations conservation program: achieving Kunming-Montreal global biodiversity targets.","authors":"Weibang Sun, Yongpeng Ma, Richard T Corlett","doi":"10.1016/j.tplants.2024.05.007","DOIUrl":"10.1016/j.tplants.2024.05.007","url":null,"abstract":"<p><p>Conservation programs for plant species with extremely small populations (PSESP) have been successfully implemented for several decades in China. Here we highlight how their inclusion in several national conservation policies helps meet targets of the Kunming-Montreal Global Biodiversity Framework (KMGBF) and show how lessons from these programs can be applied more widely.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.tplants.2024.07.012
In a recent study, Zeng et al. uncovered 3β-tigloyloxytropane synthase (TS) in Atropa belladonna, characterizing its mitochondrial localization and substrate specificity. The discovery of this enzyme opens up new bioengineering possibilities for tropane alkaloids (TAs), enhancing the potential for sustainable agriculture and expanding our knowledge of TA biosynthesis.
{"title":"The BAHD and the bold: the mitochondria’s role in alkaloid artistry","authors":"","doi":"10.1016/j.tplants.2024.07.012","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.07.012","url":null,"abstract":"<p>In a recent study, <span><span>Zeng <em>et al.</em></span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> uncovered 3β-tigloyloxytropane synthase (TS) in <em>Atropa belladonna</em>, characterizing its mitochondrial localization and substrate specificity. The discovery of this enzyme opens up new bioengineering possibilities for tropane alkaloids (TAs), enhancing the potential for sustainable agriculture and expanding our knowledge of TA biosynthesis.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1016/j.tplants.2024.07.008
Barbara Wójcikowska, Jiří Friml, Ewa Mazur
Lateral root (LR) formation, that is vital for plant development, is one of many auxin-modulated processes, but the underlying regulatory mechanism is not yet fully known. Recently, González-García et al. discovered the BiAux compound and showed that it is involved in LR development via regulating specific auxin coreceptors.
{"title":"BiAux, a newly discovered compound triggering auxin signaling.","authors":"Barbara Wójcikowska, Jiří Friml, Ewa Mazur","doi":"10.1016/j.tplants.2024.07.008","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.07.008","url":null,"abstract":"<p><p>Lateral root (LR) formation, that is vital for plant development, is one of many auxin-modulated processes, but the underlying regulatory mechanism is not yet fully known. Recently, González-García et al. discovered the BiAux compound and showed that it is involved in LR development via regulating specific auxin coreceptors.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.tplants.2024.06.010
Monitoring plant physiological information for gaining a comprehensive understanding of plant growth and stress responses contributes to safeguarding plant health. Light-emitting probes – in terms of small-molecule, nanomaterials-based, and genetically protein-based probes – can be introduced into plants through foliar and root treatment or genetic transformation. These probes offer exciting opportunities for sensitive and in situ monitoring of dynamic plant chemical information – for example, reactive oxygen species (ROS), calcium ions, phytohormones – with spatiotemporal resolution. In this review we explore the sensing mechanisms of these light-emitting probes and their applications in monitoring various chemical information in plants in situ. These probes can be used as part of a sentinel plant approach to provide stress warning in the field or to explore plant signaling pathways.
{"title":"Light-emitting probes for in situ sensing of plant information","authors":"","doi":"10.1016/j.tplants.2024.06.010","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.06.010","url":null,"abstract":"<p>Monitoring plant physiological information for gaining a comprehensive understanding of plant growth and stress responses contributes to safeguarding plant health. Light-emitting probes – in terms of small-molecule, nanomaterials-based, and genetically protein-based probes – can be introduced into plants through foliar and root treatment or genetic transformation. These probes offer exciting opportunities for sensitive and in situ monitoring of dynamic plant chemical information – for example, reactive oxygen species (ROS), calcium ions, phytohormones – with spatiotemporal resolution. In this review we explore the sensing mechanisms of these light-emitting probes and their applications in monitoring various chemical information in plants in situ. These probes can be used as part of a sentinel plant approach to provide stress warning in the field or to explore plant signaling pathways.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1016/j.tplants.2024.07.003
The intricate regulation of flowering time in response to day length has been extensively shown. A recent study has now revealed a similar mechanism for regulating vegetative growth. Wang et al. observed that plants measure daylength as the duration of photosynthesis and metabolite production to modulate vegetative growth.
{"title":"Time-to-growth: photoperiod and photosynthesis make the call","authors":"","doi":"10.1016/j.tplants.2024.07.003","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.07.003","url":null,"abstract":"<p>The intricate regulation of flowering time in response to day length has been extensively shown. A recent study has now revealed a similar mechanism for regulating vegetative growth. <span><span>Wang <em>et al</em>.</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> observed that plants measure daylength as the duration of photosynthesis and metabolite production to modulate vegetative growth.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The year 2023 was the warmest year since 1850. Greenhouse gases, including CO2 and methane, played a significant role in increasing global warming. Among these gases, methane has a 25-fold greater impact on global warming than CO2. Methane is emitted during rice cultivation by a group of rice rhizosphere microbes, termed methanogens, in low oxygen (hypoxic) conditions. To reduce methane emissions, it is crucial to decrease the methane production capacity of methanogens through water and fertilizer management, breeding of new rice cultivars, regulating root exudation, and manipulating rhizosphere microbiota. In this opinion article we review the recent developments in hypoxia ecology and methane emission mitigation and propose potential solutions based on the manipulation of microbiota and methanogens for the mitigation of methane emissions.
{"title":"Rice rhizobiome engineering for climate change mitigation.","authors":"Youngho Kwon, Yunkai Jin, Jong-Hee Lee, Chuanxin Sun, Choong-Min Ryu","doi":"10.1016/j.tplants.2024.06.006","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.06.006","url":null,"abstract":"<p><p>The year 2023 was the warmest year since 1850. Greenhouse gases, including CO<sub>2</sub> and methane, played a significant role in increasing global warming. Among these gases, methane has a 25-fold greater impact on global warming than CO<sub>2</sub>. Methane is emitted during rice cultivation by a group of rice rhizosphere microbes, termed methanogens, in low oxygen (hypoxic) conditions. To reduce methane emissions, it is crucial to decrease the methane production capacity of methanogens through water and fertilizer management, breeding of new rice cultivars, regulating root exudation, and manipulating rhizosphere microbiota. In this opinion article we review the recent developments in hypoxia ecology and methane emission mitigation and propose potential solutions based on the manipulation of microbiota and methanogens for the mitigation of methane emissions.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.tplants.2024.06.008
Karen Serrano, Francesca Tedeschi, Stig U Andersen, Henrik V Scheller
Plant-microbe symbioses require intense interaction and genetic coordination to successfully establish in specific cell types of the host and symbiont. Traditional RNA-seq methodologies lack the cellular resolution to fully capture these complexities, but single-cell and spatial transcriptomics (ST) are now allowing scientists to probe symbiotic interactions at an unprecedented level of detail. Here, we discuss the advantages that novel spatial and single-cell transcriptomic technologies provide in studying plant-microbe endosymbioses and highlight key recent studies. Finally, we consider the remaining limitations of applying these approaches to symbiosis research, which are mainly related to the simultaneous capture of both plant and microbial transcripts within the same cells.
{"title":"Unraveling plant-microbe symbioses using single-cell and spatial transcriptomics.","authors":"Karen Serrano, Francesca Tedeschi, Stig U Andersen, Henrik V Scheller","doi":"10.1016/j.tplants.2024.06.008","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.06.008","url":null,"abstract":"<p><p>Plant-microbe symbioses require intense interaction and genetic coordination to successfully establish in specific cell types of the host and symbiont. Traditional RNA-seq methodologies lack the cellular resolution to fully capture these complexities, but single-cell and spatial transcriptomics (ST) are now allowing scientists to probe symbiotic interactions at an unprecedented level of detail. Here, we discuss the advantages that novel spatial and single-cell transcriptomic technologies provide in studying plant-microbe endosymbioses and highlight key recent studies. Finally, we consider the remaining limitations of applying these approaches to symbiosis research, which are mainly related to the simultaneous capture of both plant and microbial transcripts within the same cells.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.1016/j.tplants.2024.06.012
Ruixue Xiao, Zongliang Chen, Yongfu Tao
Cultivated tomatoes exhibit cleistogamy – self-pollination within closed flowers. Wu et al. report that three HD-Zip IV genes and Style2.1 coordinately control anther trichome formation and style length to form closed anther cones that underpin the development of cleistogamy. Further exploration of causal variation and regulatory elements could provide targets for plant breeding.
{"title":"Closed floral structure for self-pollination in cultivated tomato","authors":"Ruixue Xiao, Zongliang Chen, Yongfu Tao","doi":"10.1016/j.tplants.2024.06.012","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.06.012","url":null,"abstract":"<p>Cultivated tomatoes exhibit cleistogamy – self-pollination within closed flowers. <span>Wu <em>et al.</em></span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"8px\" viewbox=\"0 0 8 8\" width=\"8px\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg> report that three HD-Zip IV genes and <em>Style2.1</em> coordinately control anther trichome formation and style length to form closed anther cones that underpin the development of cleistogamy. Further exploration of causal variation and regulatory elements could provide targets for plant breeding.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1016/s1360-1385(24)00161-4
No Abstract
无摘要
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/s1360-1385(24)00161-4","DOIUrl":"https://doi.org/10.1016/s1360-1385(24)00161-4","url":null,"abstract":"No Abstract","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}