首页 > 最新文献

Tree physiology最新文献

英文 中文
Energy deprivation affects nitrogen assimilation and fatty acid biosynthesis leading to leaf chlorosis under waterlogging stress in the endangered Abies koreana. 能量匮乏会影响濒危的韩国赤松在水涝胁迫下的氮同化和脂肪酸生物合成,导致叶片萎黄。
IF 4 2区 农林科学 Q1 FORESTRY Pub Date : 2024-06-03 DOI: 10.1093/treephys/tpae055
Umashankar Chandrasekaran, Sanghee Park, Kunhyo Kim, Siyeon Byeon, Ah Reum Han, Young-Sang Lee, Neung-Hwan Oh, Haegeun Chung, Hyeyeong Choe, Hyun Seok Kim

Energy deprivation triggers various physiological, biochemical and molecular changes in plants under abiotic stress. We investigated the oxidative damages in the high altitude grown conifer Korean fir (Abies koreana) exposed to waterlogging stress. Our experimental results showed that waterlogging stress led to leaf chlorosis, 35 days after treatment. A significant decrease in leaf fresh weight, chlorophyll and sugar content supported this phenotypic change. Biochemical analysis showed a significant increase in leaf proline, lipid peroxidase and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical content of waterlogged plants. To elucidate the molecular mechanisms, we conducted RNA-sequencing (RNA-seq) and de novo assembly. Using RNA-seq analysis approach and filtering (P < 0.05 and false discovery rate <0.001), we obtained 134 unigenes upregulated and 574 unigenes downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis placed the obtained differentially expressed unigenes in α-linoleic pathway, fatty acid degradation, glycosis, glycolipid metabolism and oligosaccharide biosynthesis process. Mapping of unigenes with Arabidopsis using basic local alignment search tool for nucleotides showed several critical genes in photosynthesis and carbon metabolism downregulated. Following this, we found the repression of multiple nitrogen (N) assimilation and nucleotide biosynthesis genes including purine metabolism. In addition, waterlogging stress reduced the levels of polyunsaturated fatty acids with a concomitant increase only in myristic acid. Together, our results indicate that the prolonged snowmelt may cause inability of A. koreana seedlings to lead the photosynthesis normally due to the lack of root intercellular oxygen and emphasizes a detrimental effect on the N metabolic pathway, compromising this endangered tree's ability to be fully functional under waterlogging stress.

在非生物胁迫下,能量匮乏会引发植物的各种生理、生化和分子变化。我们研究了暴露于水涝胁迫的高海拔针叶树的氧化损伤。实验结果表明,水涝胁迫导致处理后 35 天(DAT)叶片萎黄。叶片鲜重、叶绿素和糖分含量的明显减少支持了这一表型变化。生化分析表明,受涝植物的叶片脯氨酸、脂质过氧化物酶和 DPPH 自由基含量显著增加。为了阐明其分子机制,我们进行了 RNA 测序和从头组装。利用 RNA-Seq 分析方法和过滤(P
{"title":"Energy deprivation affects nitrogen assimilation and fatty acid biosynthesis leading to leaf chlorosis under waterlogging stress in the endangered Abies koreana.","authors":"Umashankar Chandrasekaran, Sanghee Park, Kunhyo Kim, Siyeon Byeon, Ah Reum Han, Young-Sang Lee, Neung-Hwan Oh, Haegeun Chung, Hyeyeong Choe, Hyun Seok Kim","doi":"10.1093/treephys/tpae055","DOIUrl":"10.1093/treephys/tpae055","url":null,"abstract":"<p><p>Energy deprivation triggers various physiological, biochemical and molecular changes in plants under abiotic stress. We investigated the oxidative damages in the high altitude grown conifer Korean fir (Abies koreana) exposed to waterlogging stress. Our experimental results showed that waterlogging stress led to leaf chlorosis, 35 days after treatment. A significant decrease in leaf fresh weight, chlorophyll and sugar content supported this phenotypic change. Biochemical analysis showed a significant increase in leaf proline, lipid peroxidase and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical content of waterlogged plants. To elucidate the molecular mechanisms, we conducted RNA-sequencing (RNA-seq) and de novo assembly. Using RNA-seq analysis approach and filtering (P < 0.05 and false discovery rate <0.001), we obtained 134 unigenes upregulated and 574 unigenes downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis placed the obtained differentially expressed unigenes in α-linoleic pathway, fatty acid degradation, glycosis, glycolipid metabolism and oligosaccharide biosynthesis process. Mapping of unigenes with Arabidopsis using basic local alignment search tool for nucleotides showed several critical genes in photosynthesis and carbon metabolism downregulated. Following this, we found the repression of multiple nitrogen (N) assimilation and nucleotide biosynthesis genes including purine metabolism. In addition, waterlogging stress reduced the levels of polyunsaturated fatty acids with a concomitant increase only in myristic acid. Together, our results indicate that the prolonged snowmelt may cause inability of A. koreana seedlings to lead the photosynthesis normally due to the lack of root intercellular oxygen and emphasizes a detrimental effect on the N metabolic pathway, compromising this endangered tree's ability to be fully functional under waterlogging stress.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does long-term drought or repeated defoliation affect seasonal leaf N cycling in young beech trees? 长期干旱或反复落叶是否会影响山毛榉幼树的季节性叶片氮循环?
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-06-03 DOI: 10.1093/treephys/tpae054
Catherine Massonnet, Pierre-Antoine Chuste, Bernhard Zeller, Pascal Tillard, Bastien Gerard, Loucif Cheraft, Nathalie Breda, Pascale Maillard

Forest trees adopt effective strategies to optimize nitrogen (N) use through internal N recycling. In the context of more recurrent environmental stresses due to climate change, the question remains of whether increased frequency of drought or defoliation threatens this internal N recycling strategy. We submitted 8-year-old beech trees to 2 years of either severe drought (Dro) or manual defoliation (Def) to create a state of N starvation. At the end of the second year before leaf senescence, we labeled the foliage of the Dro and Def trees, as well as that of control (Co) trees, with 15N-urea. Leaf N resorption, winter tree N storage (total N, 15N, amino acids, soluble proteins) and N remobilization in spring were evaluated for the three treatments. Defoliation and drought did not significantly impact foliar N resorption or N concentrations in organs in winter. Total N amounts in Def tree remained close to those in Co tree, but winter N was stored more in the branches than in the trunk and roots. Total N amount in Dro trees was drastically reduced (-55%), especially at the trunk level, but soluble protein concentrations increased in the trunk and fine roots compared with Co trees. During spring, 15N was mobilized from the trunk, branches and twigs of both Co and Def trees to support leaf growth. It was only provided through twig 15N remobilization in the Dro trees, thus resulting in extremely reduced Dro leaf N amounts. Our results suggest that stress-induced changes occur in N metabolism but with varying severity depending on the constraints: within-tree 15N transport and storage strategy changed in response to defoliation, whereas a soil water deficit induced a drastic reduction of the N amounts in all the tree organs. Consequently, N dysfunction could be involved in drought-induced beech tree mortality under the future climate.

林木采取有效策略,通过内部氮循环来优化氮(N)的利用。在气候变化导致环境压力日益频繁的背景下,干旱或落叶频率的增加是否会威胁到这种内部氮循环策略仍然是个问题。我们让 8 年树龄的榉树经历了两年的严重干旱(Dro)或人工落叶(Def),以制造氮饥饿状态。在叶片衰老前的第二年年底,我们用 15N-urea 标记了 Dro 和 Def 树以及对照(Co)树的叶片。对三种处理的叶片氮吸收、冬季树木氮储存(总氮、15N、氨基酸、可溶性蛋白质)和春季氮再动员进行了评估。落叶和干旱对叶片的氮吸收和冬季器官中的氮浓度没有显著影响。Def树的氮总量与Co树接近,但冬季氮更多地储存在树枝而不是树干和根部。Dro 树的氮总量急剧减少(-55%),尤其是树干,但与 Co 树相比,树干和细根中的可溶性蛋白质浓度有所增加。在春季,Co 树和 Def 树的树干、树枝和小枝都动员了 15N 以支持叶片生长。而 Dro 树只通过树枝 15N 再动员来提供,因此 Dro 树叶中的氮含量极度减少。我们的研究结果表明,应激诱导的氮代谢发生了变化,但其严重程度因限制因素而异:落叶改变了树体内部的 15N 运输和储存策略,而土壤缺水则导致所有树体器官中的氮含量急剧下降。因此,在未来气候条件下,氮功能失调可能与干旱导致的榉树死亡有关。
{"title":"Does long-term drought or repeated defoliation affect seasonal leaf N cycling in young beech trees?","authors":"Catherine Massonnet, Pierre-Antoine Chuste, Bernhard Zeller, Pascal Tillard, Bastien Gerard, Loucif Cheraft, Nathalie Breda, Pascale Maillard","doi":"10.1093/treephys/tpae054","DOIUrl":"10.1093/treephys/tpae054","url":null,"abstract":"<p><p>Forest trees adopt effective strategies to optimize nitrogen (N) use through internal N recycling. In the context of more recurrent environmental stresses due to climate change, the question remains of whether increased frequency of drought or defoliation threatens this internal N recycling strategy. We submitted 8-year-old beech trees to 2 years of either severe drought (Dro) or manual defoliation (Def) to create a state of N starvation. At the end of the second year before leaf senescence, we labeled the foliage of the Dro and Def trees, as well as that of control (Co) trees, with 15N-urea. Leaf N resorption, winter tree N storage (total N, 15N, amino acids, soluble proteins) and N remobilization in spring were evaluated for the three treatments. Defoliation and drought did not significantly impact foliar N resorption or N concentrations in organs in winter. Total N amounts in Def tree remained close to those in Co tree, but winter N was stored more in the branches than in the trunk and roots. Total N amount in Dro trees was drastically reduced (-55%), especially at the trunk level, but soluble protein concentrations increased in the trunk and fine roots compared with Co trees. During spring, 15N was mobilized from the trunk, branches and twigs of both Co and Def trees to support leaf growth. It was only provided through twig 15N remobilization in the Dro trees, thus resulting in extremely reduced Dro leaf N amounts. Our results suggest that stress-induced changes occur in N metabolism but with varying severity depending on the constraints: within-tree 15N transport and storage strategy changed in response to defoliation, whereas a soil water deficit induced a drastic reduction of the N amounts in all the tree organs. Consequently, N dysfunction could be involved in drought-induced beech tree mortality under the future climate.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-omics explores the potential regulatory role of acetylation modification in flavonoid biosynthesis of Ginkgo biloba. 多组学探索乙酰化修饰在银杏叶类黄酮生物合成中的潜在调控作用。
IF 4 2区 农林科学 Q1 FORESTRY Pub Date : 2024-06-03 DOI: 10.1093/treephys/tpae051
Xiaomeng Liu, Jiabao Ye, Xiaoxi Zhang, Ke Yang, Jiarui Zheng, Shuiyuan Cheng, Weiwei Zhang, Feng Xu

Flavonoids are crucial medicinal active ingredients in Ginkgo biloba L. However, the effect of protein post-translational modifications on flavonoid biosynthesis remains poorly explored. Lysine acetylation, a reversible post-translational modification, plays a crucial role in metabolic regulation. This study aims to investigate the potential role of acetylation in G. biloba flavonoid biosynthesis. Through comprehensive analysis of transcriptomes, metabolomes, proteomes and acetylated proteins in different tissues, a total of 11,788 lysine acetylation sites were identified on 4324 acetylated proteins, including 89 acetylation sites on 23 proteins. Additionally, 128 types of differentially accumulated flavonoids were identified among tissues, and a dataset of differentially expressed genes related to the flavonoid biosynthesis pathway was constructed. Twelve (CHI, C3H1, ANR, DFR, CCoAOMT1, F3H1, F3H2, CCoAOMT2, C3H2, HCT, F3'5'H and FG2) acetylated proteins that might be involved in flavonoid biosynthesis were identified. Specifically, we found that the modification levels of CCoAOMT1 and F3'5'H sites correlated with the catalytic production of homoeriodictyol and dihydromyricetin, respectively. Inhibitors of lysine deacetylase (trichostatin A) impacted total flavonoid content in different tissues and increased flavonoid levels in G. biloba roots. Treatment with trichostatin A revealed that expression levels of GbF3'5'H and GbCCoAOMT1 in stems and leaves aligned with total flavonoid content variations, while in roots, expression levels of GbC3H2 and GbFG2 corresponded to total flavonoid content changes. Collectively, these findings reveal for the first time the important role of acetylation in flavonoid biosynthesis.

类黄酮是银杏叶中重要的药用活性成分。然而,人们对蛋白质翻译后修饰(PTM)对类黄酮生物合成的影响仍然知之甚少。赖氨酸乙酰化是一种可逆的 PTM,在新陈代谢调节中起着至关重要的作用。本研究旨在探讨乙酰化在双叶黄酮生物合成中的潜在作用。通过对不同组织的转录组、代谢组、蛋白质组和乙酰化蛋白质进行全面分析,在 4324 个乙酰化蛋白质上共鉴定出 11788 个赖氨酸乙酰化位点,其中包括 23 个蛋白质上的 89 个乙酰化位点。此外,还鉴定了128种组织间不同积累的黄酮类化合物,并构建了与黄酮类化合物生物合成途径相关的差异表达基因数据集。鉴定出了12种(CHI、C3H1、ANR、DFR、CCoAOMT1、F3H1、F3H2、CCoAOMT2、C3H2、HCT、F3'5'H和FG2)可能参与类黄酮生物合成的乙酰化蛋白。具体而言,我们发现 CCoAOMT1 和 F3'5'H 位点的修饰水平分别与同源碘酪醇(homoeriodictyol)和二氢杨梅素(dihydromyetin)的催化生产相关。赖氨酸去乙酰化酶抑制剂(trichostatin A,TSA)会影响不同组织中的总黄酮含量,并增加双叶植物根中的黄酮含量。用TSA处理后发现,茎和叶中GbF3'5'H和GbCCoAOMT1的表达水平与总黄酮含量的变化一致,而在根中,GbC3H2和GbFG2的表达水平与总黄酮含量的变化一致。这些发现首次揭示了乙酰化在黄酮类化合物生物合成中的重要作用。
{"title":"Multi-omics explores the potential regulatory role of acetylation modification in flavonoid biosynthesis of Ginkgo biloba.","authors":"Xiaomeng Liu, Jiabao Ye, Xiaoxi Zhang, Ke Yang, Jiarui Zheng, Shuiyuan Cheng, Weiwei Zhang, Feng Xu","doi":"10.1093/treephys/tpae051","DOIUrl":"10.1093/treephys/tpae051","url":null,"abstract":"<p><p>Flavonoids are crucial medicinal active ingredients in Ginkgo biloba L. However, the effect of protein post-translational modifications on flavonoid biosynthesis remains poorly explored. Lysine acetylation, a reversible post-translational modification, plays a crucial role in metabolic regulation. This study aims to investigate the potential role of acetylation in G. biloba flavonoid biosynthesis. Through comprehensive analysis of transcriptomes, metabolomes, proteomes and acetylated proteins in different tissues, a total of 11,788 lysine acetylation sites were identified on 4324 acetylated proteins, including 89 acetylation sites on 23 proteins. Additionally, 128 types of differentially accumulated flavonoids were identified among tissues, and a dataset of differentially expressed genes related to the flavonoid biosynthesis pathway was constructed. Twelve (CHI, C3H1, ANR, DFR, CCoAOMT1, F3H1, F3H2, CCoAOMT2, C3H2, HCT, F3'5'H and FG2) acetylated proteins that might be involved in flavonoid biosynthesis were identified. Specifically, we found that the modification levels of CCoAOMT1 and F3'5'H sites correlated with the catalytic production of homoeriodictyol and dihydromyricetin, respectively. Inhibitors of lysine deacetylase (trichostatin A) impacted total flavonoid content in different tissues and increased flavonoid levels in G. biloba roots. Treatment with trichostatin A revealed that expression levels of GbF3'5'H and GbCCoAOMT1 in stems and leaves aligned with total flavonoid content variations, while in roots, expression levels of GbC3H2 and GbFG2 corresponded to total flavonoid content changes. Collectively, these findings reveal for the first time the important role of acetylation in flavonoid biosynthesis.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140903869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The combined effect of diffuse radiation and leaf wetness on functional traits and transpiration efficiency on a cloud forest species. 漫射辐射和叶片湿度对云雾林物种功能特征和蒸腾效率的综合影响
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-06-03 DOI: 10.1093/treephys/tpae050
Omar Garcia-Tejera, Axel Ritter, Carlos M Regalado

Cloud forests are unique biomes that thrive in foggy environments for a substantial part of the season. Fog in cloud forests plays two critical roles: it reduces incoming radiation and creates a humid environment, leading to the wetting of the canopy. This paper aims to investigate the combined effect of both radiation and wetness on Myrica faya Wilbur-a cloud forest species present in subtropical regions-both directly in plants and through simulations. Experiments consisted of a controlled environment with two levels of radiation and leaf wetness: low radiation/wet conditions, and high radiation/no-wetness; and three treatments: continuous low radiation and wetness, continuous high radiation and no wetness and alternate high low radiation and alternate wetness. The results revealed that a combination of low radiation and leaf wetness significantly improves leaf stomata conductance and increases the specific leaf area (SLA). Changes in SLA were driven by leaf size changes. However, the minimum leaf conductance (gmin) did not respond to any of the treatments. The simulations focused on exploring the impact of radiation and canopy wetness on transpiration efficiency (TE), i.e. the ratio between photosynthesis (An) and transpiration (Tc). The simulations demonstrated that TE increased exponentially as the canopy was gradually wetted, regardless of the radiation environment. This increase in TE results from Tc approaching zero while An maintains positive values. Overall, this study provides an integrated understanding of how fog alters M. faya functioning and, potentially, other cloud forest tree species.

云雾林是一种独特的生物群落,大部分季节都在多雾环境中生长。云雾林中的雾有两个关键作用:一是减少入射辐射,二是创造潮湿环境,使树冠湿润。本文旨在研究辐射和湿度对云雾林(亚热带地区的一种云雾林树种)的综合影响。实验包括一个具有两种辐射和叶片湿度水平的受控环境:低辐射/湿润条件和高辐射/不湿润条件;以及三种处理:连续低辐射和湿润(CLR)、连续高辐射和不湿润(CHR)以及交替高低辐射和交替湿润(AHLR)。结果表明,低辐射和叶片湿润的组合能显著改善叶片气孔导度,增加比叶面积(SLA)。比叶面积的变化是由叶片大小的变化驱动的。然而,最小叶片传导率(gmin)对任何处理都没有反应。模拟的重点是探索辐射和冠层湿度对蒸腾效率(TE)的影响,即光合作用(An)和蒸腾作用(Tc)之间的比率,即 TE = An/Tc。模拟结果表明,随着冠层逐渐变湿,蒸腾速率呈指数增长,与辐射环境无关。TE 增加的原因是 Tc 接近于零,而 An 保持正值。总之,这项研究提供了对雾如何改变法雅树功能以及其他云林树种潜在功能的综合理解。
{"title":"The combined effect of diffuse radiation and leaf wetness on functional traits and transpiration efficiency on a cloud forest species.","authors":"Omar Garcia-Tejera, Axel Ritter, Carlos M Regalado","doi":"10.1093/treephys/tpae050","DOIUrl":"10.1093/treephys/tpae050","url":null,"abstract":"<p><p>Cloud forests are unique biomes that thrive in foggy environments for a substantial part of the season. Fog in cloud forests plays two critical roles: it reduces incoming radiation and creates a humid environment, leading to the wetting of the canopy. This paper aims to investigate the combined effect of both radiation and wetness on Myrica faya Wilbur-a cloud forest species present in subtropical regions-both directly in plants and through simulations. Experiments consisted of a controlled environment with two levels of radiation and leaf wetness: low radiation/wet conditions, and high radiation/no-wetness; and three treatments: continuous low radiation and wetness, continuous high radiation and no wetness and alternate high low radiation and alternate wetness. The results revealed that a combination of low radiation and leaf wetness significantly improves leaf stomata conductance and increases the specific leaf area (SLA). Changes in SLA were driven by leaf size changes. However, the minimum leaf conductance (gmin) did not respond to any of the treatments. The simulations focused on exploring the impact of radiation and canopy wetness on transpiration efficiency (TE), i.e. the ratio between photosynthesis (An) and transpiration (Tc). The simulations demonstrated that TE increased exponentially as the canopy was gradually wetted, regardless of the radiation environment. This increase in TE results from Tc approaching zero while An maintains positive values. Overall, this study provides an integrated understanding of how fog alters M. faya functioning and, potentially, other cloud forest tree species.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contrasting water-use strategies to climate warming in white birch and larch in a boreal permafrost region. 北方永久冻土地区白桦和落叶松对气候变暖的不同用水策略。
IF 4 2区 农林科学 Q1 FORESTRY Pub Date : 2024-06-03 DOI: 10.1093/treephys/tpae053
Xi Qi, Kerstin Treydte, Matthias Saurer, Keyan Fang, Wenling An, Marco Lehmann, Kunyuan Liu, Zhengfang Wu, Hong S He, Haibo Du, Mai-He Li

The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C, δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 68 years covering a pre-warming period (1951-1984; base period) and a warm period (1985-2018; warm period). We found that white birch but not larch significantly increased their radial growth over the warm period. The increased intrinsic water-use efficiency in both species was mainly driven by elevated Ca but not climate warming. White birch but not larch showed significantly positive correlations between tree-ring δ13C, δ18O and summer maximum temperature as well as vapor pressure deficit in the warm period, suggesting a strong stomatal response in the broad-leaved birch to temperature changes. The climate warming-induced radial growth enhancement in white birch is primarily associated with a conservative water-use strategy. In contrast, larch exhibits a profligate water-use strategy. It implies an advantage for white birch over larch in the warming permafrost regions.

随着气候变暖,大气中的二氧化碳浓度(Ca)不断升高,这对北方森林的内在水分利用效率(iWUE)和径向生长的影响仍然知之甚少。我们测量了落叶松(Larix dahurica)和白桦(Betula platyphylla)的树环纤维素δ13C、δ18O和树环宽度,并分析了它们与气候变量的关系。我们发现,在温暖期,白桦的径向生长显著增加,而落叶松则没有。这两个物种的iWUE增加主要是由于钙的升高,而不是气候变暖。在温暖时期,白桦(而非落叶松)的树环δ13C、δ18O 和夏季最高温度以及蒸汽压力亏损之间呈现出明显的正相关,这表明阔叶白桦对温度变化有强烈的气孔反应。气候变暖引起的白桦径向生长增强主要与保守的用水策略有关。与此相反,落叶松则表现出过度用水的策略。这意味着在气候变暖的永久冻土地区,白桦比落叶松更具优势。
{"title":"Contrasting water-use strategies to climate warming in white birch and larch in a boreal permafrost region.","authors":"Xi Qi, Kerstin Treydte, Matthias Saurer, Keyan Fang, Wenling An, Marco Lehmann, Kunyuan Liu, Zhengfang Wu, Hong S He, Haibo Du, Mai-He Li","doi":"10.1093/treephys/tpae053","DOIUrl":"10.1093/treephys/tpae053","url":null,"abstract":"<p><p>The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C, δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 68 years covering a pre-warming period (1951-1984; base period) and a warm period (1985-2018; warm period). We found that white birch but not larch significantly increased their radial growth over the warm period. The increased intrinsic water-use efficiency in both species was mainly driven by elevated Ca but not climate warming. White birch but not larch showed significantly positive correlations between tree-ring δ13C, δ18O and summer maximum temperature as well as vapor pressure deficit in the warm period, suggesting a strong stomatal response in the broad-leaved birch to temperature changes. The climate warming-induced radial growth enhancement in white birch is primarily associated with a conservative water-use strategy. In contrast, larch exhibits a profligate water-use strategy. It implies an advantage for white birch over larch in the warming permafrost regions.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Csn-miR156d-CsSPL1 regulates flowering and anthocyanin metabolism. Csn-miR156d-CsSPL1调控开花和花青素代谢。
IF 4 2区 农林科学 Q1 FORESTRY Pub Date : 2024-05-30 DOI: 10.1093/treephys/tpae058
Qingqing Lin, Hui Li, Hu He, Pu Wang, Mingle Wang, Hua Zhao, Yu Wang, Dejiang Ni, Yanni Fang, Fei Guo

MiR156 play important roles in regulation of plant growth and development, secondary metabolite synthesis, and other biological processes by targeting the SQUAMOSA promoter binding protein-like (SPL) family. Our previous sequencing data analysis suggested that Csn-miR156d may regulate flowering and anthocyanin accumulation by cleavage and degradation of the expression of the SPL in tea plant, but it remains to be elucidated. In this study, 5'RLM-RACE experiment, tobacco transient transformation, qRT-PCR, and antisense oligonucleotide (asODN) were used to verify that CsSPL1 is the target gene of Csn-miR156d. Stable transformation of Arabidopsis revealed that Csn-miR156d could delay flowering by negatively regulating the transcript levels of FT, AP1, FUL, and SOC1, while overexpression of CsSPL1 showed an opposite effect. Additionally, overexpression of Csn-miR156d in Arabidopsis could enhance the transcription of the anthocyanin biosynthesis-related structural genes DFR, ANS, F3H, UGT78D2, and LDOX, as well as regulatory genes PAP1, MYB113, GL3, MYB11, and MYB12, leading to anthocyanin accumulation. Moreover, asODN experiment revealed that Csn-miR156d could increase the anthocyanin content in tea plant. These results suggest that Csn-miR156d regulates flowering and anthocyanin accumulation in tea plant by suppressing the expression of CsSPL1. Our study provides new insights into the development and anthocyanin accumulation in tea plant and lays a theoretical foundation for further research on the molecular mechanism of miRNAs in regulating tea plant growth and secondary metabolism.

MiR156通过靶向SQUAMOSA类启动子结合蛋白(SPL)家族,在调控植物生长发育、次生代谢产物合成等生物过程中发挥重要作用。我们之前的测序数据分析表明,Csn-miR156d可能通过裂解和降解茶树中SPL的表达来调控开花和花青素的积累,但这一观点还有待进一步阐明。本研究采用5'RLM-RACE实验、烟草瞬时转化、qRT-PCR和反义寡核苷酸(asODN)等方法验证了CsSPL1是Csn-miR156d的靶基因。拟南芥的稳定转化结果表明,Csn-miR156d可通过负调控FT、AP1、FUL和SOC1的转录水平来延迟开花,而过表达CsSPL1则显示出相反的效果。此外,在拟南芥中过表达 Csn-miR156d 可增强花青素生物合成相关结构基因 DFR、ANS、F3H、UGT78D2 和 LDOX 以及调控基因 PAP1、MYB113、GL3、MYB11 和 MYB12 的转录,从而导致花青素积累。此外,asODN 实验表明,Csn-miR156d 能增加茶树中的花青素含量。这些结果表明,Csn-miR156d通过抑制CsSPL1的表达调控茶树开花和花青素积累。我们的研究为茶树的生长发育和花青素积累提供了新的见解,为进一步研究miRNA调控茶树生长和次生代谢的分子机制奠定了理论基础。
{"title":"Csn-miR156d-CsSPL1 regulates flowering and anthocyanin metabolism.","authors":"Qingqing Lin, Hui Li, Hu He, Pu Wang, Mingle Wang, Hua Zhao, Yu Wang, Dejiang Ni, Yanni Fang, Fei Guo","doi":"10.1093/treephys/tpae058","DOIUrl":"https://doi.org/10.1093/treephys/tpae058","url":null,"abstract":"<p><p>MiR156 play important roles in regulation of plant growth and development, secondary metabolite synthesis, and other biological processes by targeting the SQUAMOSA promoter binding protein-like (SPL) family. Our previous sequencing data analysis suggested that Csn-miR156d may regulate flowering and anthocyanin accumulation by cleavage and degradation of the expression of the SPL in tea plant, but it remains to be elucidated. In this study, 5'RLM-RACE experiment, tobacco transient transformation, qRT-PCR, and antisense oligonucleotide (asODN) were used to verify that CsSPL1 is the target gene of Csn-miR156d. Stable transformation of Arabidopsis revealed that Csn-miR156d could delay flowering by negatively regulating the transcript levels of FT, AP1, FUL, and SOC1, while overexpression of CsSPL1 showed an opposite effect. Additionally, overexpression of Csn-miR156d in Arabidopsis could enhance the transcription of the anthocyanin biosynthesis-related structural genes DFR, ANS, F3H, UGT78D2, and LDOX, as well as regulatory genes PAP1, MYB113, GL3, MYB11, and MYB12, leading to anthocyanin accumulation. Moreover, asODN experiment revealed that Csn-miR156d could increase the anthocyanin content in tea plant. These results suggest that Csn-miR156d regulates flowering and anthocyanin accumulation in tea plant by suppressing the expression of CsSPL1. Our study provides new insights into the development and anthocyanin accumulation in tea plant and lays a theoretical foundation for further research on the molecular mechanism of miRNAs in regulating tea plant growth and secondary metabolism.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jasmonic acid and heat stress induce high volatile organic compound emissions in Picea abies from needles, but not from roots. 茉莉酸和热胁迫会诱导欧鼠李针叶释放大量挥发性有机化合物,但根部不会。
IF 4 2区 农林科学 Q1 FORESTRY Pub Date : 2024-05-25 DOI: 10.1093/treephys/tpae059
Mirjam Meischner, Stefanie Dumberger, Lars Erik Daber, Simon Haberstroh, Jürgen Kreuzwieser, Jörg-Peter Schnitzler, Christiane Werner

Plants emit diverse volatile organic compounds (VOCs) from their leaves and roots for protection against biotic and abiotic stress. An important signaling cascade activated by aboveground herbivory is the jasmonic acid (JA) pathway that stimulates the production of VOCs. So far it remains unclear if the activation of this pathway also leads to enhanced VOC emissions from conifer roots, and how the interplay of above- and belowground defenses in plants are affected by multiple stressors. Therefore, we simultaneously analyzed needle and root VOC emissions of Picea abies saplings, as well as CO2 and H2O fluxes in response to aboveground JA treatment, heat stress and their interaction in a controlled climate chamber experiment. Continuous online VOC measurements by PTR-TOF-MS showed an inverse pattern of total needle and root VOC emissions, when plants were treated with JA and heat. While needle sesquiterpene emissions increased nine-fold one day after JA application, total root VOC emissions decreased. This was mainly due to reduced emissions of acetone and monoterpenes by roots. In response to aboveground JA treatment, root total carbon emitted as VOCs decreased from 31% to only 4%. While VOC emissions aboveground increased, net CO2 assimilation strongly declined due to JA treatment, resulting in net respiration during the day. Interestingly, root respiration was not affected by aboveground JA application. Under heat the effect of JA on VOC emissions of needles and roots was less pronounced. The buffering effect of heat on VOC emissions following JA treatment points towards an impaired defense reaction of the plants under multiple stress. Our results indicate efficient resource allocation within the plant to protect threatened tissues by a rather local VOC release. Roots may only be affected indirectly by reduced belowground carbon allocation, but are not involved directly in the JA-induced stress response.

植物从叶片和根部释放出多种挥发性有机化合物(VOCs),以抵御生物和非生物胁迫。地上部食草动物激活的一个重要信号级联是刺激产生挥发性有机化合物的茉莉酸(JA)途径。到目前为止,人们还不清楚这一途径的激活是否也会导致针叶树根部挥发性有机化合物排放的增加,也不清楚植物的地上和地下防御系统是如何受到多种胁迫因素影响的。因此,我们在受控气候室实验中同时分析了黑松树苗针叶和根部的挥发性有机化合物排放,以及二氧化碳和水通量对地上部 JA 处理、热胁迫及其相互作用的响应。通过 PTR-TOF-MS 对挥发性有机化合物的连续在线测量显示,当植物受到 JA 和热处理时,针叶和根部挥发性有机化合物的总排放量呈反比模式。施用 JA 一天后,针叶倍半萜的排放量增加了九倍,而根部挥发性有机化合物的总排放量却减少了。这主要是由于根部丙酮和单萜的排放量减少。作为对地上部分 JA 处理的反应,根部以挥发性有机化合物形式排放的总碳量从 31% 降至仅 4%。在地上部挥发性有机化合物排放量增加的同时,二氧化碳净同化量却因 JA 处理而大幅下降,导致白天出现净呼吸。有趣的是,根的呼吸作用并没有受到地面施用 JA 的影响。在高温条件下,JA 对针叶和根的挥发性有机化合物排放的影响不太明显。JA 处理后热量对挥发性有机化合物排放的缓冲作用表明,植物在多重胁迫下的防御反应受损。我们的研究结果表明,植物内部的资源分配效率很高,可以通过局部释放挥发性有机化合物来保护受到威胁的组织。根系可能只受到地下碳分配减少的间接影响,但并不直接参与 JA 诱导的胁迫反应。
{"title":"Jasmonic acid and heat stress induce high volatile organic compound emissions in Picea abies from needles, but not from roots.","authors":"Mirjam Meischner, Stefanie Dumberger, Lars Erik Daber, Simon Haberstroh, Jürgen Kreuzwieser, Jörg-Peter Schnitzler, Christiane Werner","doi":"10.1093/treephys/tpae059","DOIUrl":"https://doi.org/10.1093/treephys/tpae059","url":null,"abstract":"<p><p>Plants emit diverse volatile organic compounds (VOCs) from their leaves and roots for protection against biotic and abiotic stress. An important signaling cascade activated by aboveground herbivory is the jasmonic acid (JA) pathway that stimulates the production of VOCs. So far it remains unclear if the activation of this pathway also leads to enhanced VOC emissions from conifer roots, and how the interplay of above- and belowground defenses in plants are affected by multiple stressors. Therefore, we simultaneously analyzed needle and root VOC emissions of Picea abies saplings, as well as CO2 and H2O fluxes in response to aboveground JA treatment, heat stress and their interaction in a controlled climate chamber experiment. Continuous online VOC measurements by PTR-TOF-MS showed an inverse pattern of total needle and root VOC emissions, when plants were treated with JA and heat. While needle sesquiterpene emissions increased nine-fold one day after JA application, total root VOC emissions decreased. This was mainly due to reduced emissions of acetone and monoterpenes by roots. In response to aboveground JA treatment, root total carbon emitted as VOCs decreased from 31% to only 4%. While VOC emissions aboveground increased, net CO2 assimilation strongly declined due to JA treatment, resulting in net respiration during the day. Interestingly, root respiration was not affected by aboveground JA application. Under heat the effect of JA on VOC emissions of needles and roots was less pronounced. The buffering effect of heat on VOC emissions following JA treatment points towards an impaired defense reaction of the plants under multiple stress. Our results indicate efficient resource allocation within the plant to protect threatened tissues by a rather local VOC release. Roots may only be affected indirectly by reduced belowground carbon allocation, but are not involved directly in the JA-induced stress response.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene expression regulation of the effect of shading on chlorophyll content in Fuding White Tea (Camellia sinensis L.). 遮光对福鼎白茶叶绿素含量影响的基因表达调控。
IF 4 2区 农林科学 Q1 FORESTRY Pub Date : 2024-05-08 DOI: 10.1093/treephys/tpae049
Guangzheng Li, Xi Chen, Yichen Zhao, Degang Zhao

Shading is an important practical method to improve the quality of green tea. Previous research of our group found that because the biosynthesis and distribution of theanine in tea plants were affected by down regulation of gene encoding amino acid permeases, theanine content in tea leaves which grown under shading condition was significantly higher than those under natural light. In this study, our group analyzed the changes of tea leaf area, free amino acid content and photosynthetic parameters under natural light and shading conditions, to ensure that moderate shading did not reduce but improve the quality of tea. Transcriptome sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted to reveal the expression levels of genes related to chlorophyll content and chlorophyll a/b ratio under natural light and shading conditions. Experimental results revealed the presence of the following differentially expressed genes (DEGs) in the porphyrin and chlorophyll metabolism pathway of tea under natural light and shading conditions: the up regulation of CPOX expression may lead to an increase in the accumulation of raw materials of chlorophyll synthesis, while the down regulation of SGR expression may lead to a decrease in chlorophyll degradation. The combined effect of these two genes may lead to an increase in the total chlorophyll content of tea. The down regulation of NOL expression may lead to the obstruction of chlorophyll b transform to chlorophyll a, that is, the decrease of the chlorophyll a/b ratio. This study investigated the molecular mechanism of chlorophyll content and component alteration in Fuding white tea under natural light and shading conditions, and elucidated the effects of different light intensities on the porphyrin and chlorophyll metabolism pathway of tea. Thus provided deep understanding of chlorophyll regulation under shading condition in tea cultivation, which could contribute to high-quality matcha production.

遮光是提高绿茶品质的重要实用方法。本课题组前期研究发现,由于茶树中茶氨酸的生物合成和分布受氨基酸渗透酶基因下调的影响,遮光条件下生长的茶叶中茶氨酸含量明显高于自然光照条件下的茶叶。本研究组分析了自然光和遮光条件下茶叶面积、游离氨基酸含量和光合参数的变化,以确保适度遮光不会降低茶叶品质,反而会提高茶叶品质。通过转录组测序和京都基因组百科全书(KEGG)富集分析,揭示了自然光照和遮光条件下叶绿素含量和叶绿素a/b比相关基因的表达水平。实验结果表明,在自然光照和遮光条件下,茶叶的卟啉和叶绿素代谢途径中存在以下差异表达基因(DEGs):CPOX表达的上调可能导致叶绿素合成原料积累的增加,而SGR表达的下调可能导致叶绿素降解的减少。在这两个基因的共同作用下,茶叶中的总叶绿素含量可能会增加。NOL 表达的下调可能导致叶绿素 b 向叶绿素 a 的转化受阻,即叶绿素 a/b 比值下降。本研究探讨了自然光和遮光条件下福鼎白茶叶绿素含量和成分变化的分子机制,阐明了不同光照强度对茶叶卟啉和叶绿素代谢途径的影响。这为深入理解茶叶栽培中遮光条件下的叶绿素调控提供了重要依据,有助于高品质抹茶的生产。
{"title":"Gene expression regulation of the effect of shading on chlorophyll content in Fuding White Tea (Camellia sinensis L.).","authors":"Guangzheng Li, Xi Chen, Yichen Zhao, Degang Zhao","doi":"10.1093/treephys/tpae049","DOIUrl":"https://doi.org/10.1093/treephys/tpae049","url":null,"abstract":"<p><p>Shading is an important practical method to improve the quality of green tea. Previous research of our group found that because the biosynthesis and distribution of theanine in tea plants were affected by down regulation of gene encoding amino acid permeases, theanine content in tea leaves which grown under shading condition was significantly higher than those under natural light. In this study, our group analyzed the changes of tea leaf area, free amino acid content and photosynthetic parameters under natural light and shading conditions, to ensure that moderate shading did not reduce but improve the quality of tea. Transcriptome sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted to reveal the expression levels of genes related to chlorophyll content and chlorophyll a/b ratio under natural light and shading conditions. Experimental results revealed the presence of the following differentially expressed genes (DEGs) in the porphyrin and chlorophyll metabolism pathway of tea under natural light and shading conditions: the up regulation of CPOX expression may lead to an increase in the accumulation of raw materials of chlorophyll synthesis, while the down regulation of SGR expression may lead to a decrease in chlorophyll degradation. The combined effect of these two genes may lead to an increase in the total chlorophyll content of tea. The down regulation of NOL expression may lead to the obstruction of chlorophyll b transform to chlorophyll a, that is, the decrease of the chlorophyll a/b ratio. This study investigated the molecular mechanism of chlorophyll content and component alteration in Fuding white tea under natural light and shading conditions, and elucidated the effects of different light intensities on the porphyrin and chlorophyll metabolism pathway of tea. Thus provided deep understanding of chlorophyll regulation under shading condition in tea cultivation, which could contribute to high-quality matcha production.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Efficient selection of a biallelic and nonchimeric gene-edited tree using Oxford Nanopore Technologies sequencing. 更正:利用牛津纳米孔技术测序,高效筛选双链基因和非嵌合基因编辑树。
IF 4 2区 农林科学 Q1 FORESTRY Pub Date : 2024-05-05 DOI: 10.1093/treephys/tpae052
{"title":"Correction to: Efficient selection of a biallelic and nonchimeric gene-edited tree using Oxford Nanopore Technologies sequencing.","authors":"","doi":"10.1093/treephys/tpae052","DOIUrl":"https://doi.org/10.1093/treephys/tpae052","url":null,"abstract":"","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":"44 5","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf morpho-anatomical adjustments in a Quercus pubescens forest after 10 years of partial rain exclusion in the field. 经过十年的部分雨水排除后,柞树林的叶片形态解剖结构发生了变化。
IF 4 2区 农林科学 Q1 FORESTRY Pub Date : 2024-05-05 DOI: 10.1093/treephys/tpae047
Justine Laoué, Guillermo Gea-Izquierdo, Sylvie Dupouyet, María Conde, Catherine Fernandez, Elena Ormeño

In the Mediterranean region, a reduction of annual precipitation and a longer and drier summer season are expected with climate change by the end of the century, eventually endangering forest survival. To cope with such rapid changes, trees may modulate their morpho-anatomical and physiological traits. In the present study, we focused on the variation in leaf gas exchange and different leaf morpho-anatomical functional traits of Quercus pubescens Willd. in summer using a long-term drought experiment in natura consisting of a dynamic rainfall exclusion system where trees have been submitted to amplified drought (AD) (~-30% of annual precipitation) since April 2012 and compared them with trees under natural drought (ND) in a Mediterranean forest. During the study, we analyzed net CO2 assimilation (An), stomatal conductance (gs), transpiration (E), water-use efficiency (WUE), stomatal size and density, density of glandular trichomes and non-glandular trichomes, thickness of the different leaf tissues, specific leaf area and leaf surface. Under AD, tree functioning was slightly impacted, since only An exhibited a 49% drop, while gs, E and WUE remained stable. The decrease in An under AD was regulated by concomitant lower stomatal density and reduced leaf thickness. Trees under AD also featured leaves with a higher non-glandular trichome density and a lower glandular trichome density compared with ND, which simultaneously limits transpiration and production costs. This study points out that Q. pubescens exhibits adjustments of leaf morpho-anatomical traits which can help trees to acclimate to AD scenarios as those expected in the future in the Mediterranean region.

在地中海地区,随着气候变化,预计到本世纪末,年降水量将减少,夏季将更长、更干燥,最终危及森林的生存。为了应对这种快速变化,树木可能会调节其形态解剖和生理特征。在本研究中,我们利用一个由动态降雨排斥系统组成的长期干旱自然实验,重点研究了柞树在夏季叶片气体交换和不同叶片形态-解剖功能特征的变化。研究期间,我们分析了二氧化碳净同化(An)、气孔导度(gs)、蒸腾(E)、水分利用效率(WUE)、气孔大小和密度、腺毛和非腺毛密度、不同叶片组织的厚度、比叶面积(SLA)和叶面。在AD条件下,树木功能受到轻微影响,因为只有An下降了49%,而gs、E和WUE保持稳定。AD条件下An的下降受气孔密度降低和叶片厚度减少的影响。与 ND 相比,AD 下的树木叶片非腺体毛状体密度更高,腺体毛状体密度更低,这同时限制了蒸腾作用和生产成本。这项研究指出,Q. pubescens叶片形态解剖特征的调整可以帮助树木适应地中海地区未来预计会出现的干旱加剧的情况。
{"title":"Leaf morpho-anatomical adjustments in a Quercus pubescens forest after 10 years of partial rain exclusion in the field.","authors":"Justine Laoué, Guillermo Gea-Izquierdo, Sylvie Dupouyet, María Conde, Catherine Fernandez, Elena Ormeño","doi":"10.1093/treephys/tpae047","DOIUrl":"10.1093/treephys/tpae047","url":null,"abstract":"<p><p>In the Mediterranean region, a reduction of annual precipitation and a longer and drier summer season are expected with climate change by the end of the century, eventually endangering forest survival. To cope with such rapid changes, trees may modulate their morpho-anatomical and physiological traits. In the present study, we focused on the variation in leaf gas exchange and different leaf morpho-anatomical functional traits of Quercus pubescens Willd. in summer using a long-term drought experiment in natura consisting of a dynamic rainfall exclusion system where trees have been submitted to amplified drought (AD) (~-30% of annual precipitation) since April 2012 and compared them with trees under natural drought (ND) in a Mediterranean forest. During the study, we analyzed net CO2 assimilation (An), stomatal conductance (gs), transpiration (E), water-use efficiency (WUE), stomatal size and density, density of glandular trichomes and non-glandular trichomes, thickness of the different leaf tissues, specific leaf area and leaf surface. Under AD, tree functioning was slightly impacted, since only An exhibited a 49% drop, while gs, E and WUE remained stable. The decrease in An under AD was regulated by concomitant lower stomatal density and reduced leaf thickness. Trees under AD also featured leaves with a higher non-glandular trichome density and a lower glandular trichome density compared with ND, which simultaneously limits transpiration and production costs. This study points out that Q. pubescens exhibits adjustments of leaf morpho-anatomical traits which can help trees to acclimate to AD scenarios as those expected in the future in the Mediterranean region.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tree physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1