首页 > 最新文献

Tree physiology最新文献

英文 中文
An in situ 15N labeling experiment unveils distinct responses to N application approaches in a mountain beech forest. 原位 15N 标记实验揭示了山毛榉林对氮施用方法的不同反应。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-09-03 DOI: 10.1093/treephys/tpae104
Luca Da Ros, Mirco Rodeghiero, Maurizio Ventura, Roberto Tognetti, Giustino Tonon, Damiano Gianelle

Atmospheric nitrogen (N) deposition has notably increased since the industrial revolution, doubling N inputs to terrestrial ecosystems. This could mitigate N limitations in forests, potentially enhancing productivity and carbon sequestration. However, excessive N can lead to forest N saturation, causing issues like soil acidification, nutrient imbalances, biodiversity loss, increased tree mortality and a potential net greenhouse gas emission. Traditional experiments often overlook the canopy's role in N fate, focusing instead on direct N addition to the forest floor. In our study, we applied 20 kg N ha y-1 of labeled 15NH415NO3 solution (δ15N = 30‰) both above and below the canopy, maintaining also control plots. We assessed ecosystem components before and after treatment, calculated N stocks, and used mass balance for fertilizer recovery analysis. Findings revealed that the above-canopy N addition intercepted up to 31 ± 4% of added N in foliage, a significant contrast to the negligible recovery in leaves with below-canopy treatment. Overall plant recovery was higher in the above-canopy treatment (43 ± 11%) compared with below (9 ± 24%). Post-vegetative season, about 15 ± 1% of above-canopy added N was transferred to soil via litterfall, indicating substantial N reabsorption or loss through volatilization, stemflow or throughfall. In contrast, the below-canopy approach resulted in just 4.0 ± 0.6% recovery via litterfall. These results highlight a significant difference in N fate based on the application method. Nitrogen applied to the canopy showed distinct recovery in transient compartments like foliage. However, over a few months, there was no noticeable change in N recovery in long-lived tissues across treatments. This implies that N application strategy does not significantly alter the distribution of simulated wet N deposition in high Carbon/N tissues, underscoring the complex dynamics of forest N cycling.

自工业革命以来,大气中的氮沉降量显著增加,使陆地生态系统的氮输入量翻了一番。这可以缓解森林中的氮限制,潜在地提高生产力和碳吸收。然而,过量的氮会导致森林氮饱和,造成土壤酸化、养分失衡、生物多样性丧失、树木死亡率增加等问题,并可能造成温室气体净排放。传统的实验通常会忽略树冠在氮的归宿中的作用,而将重点放在直接向林地添加氮上。在我们的研究中,我们在树冠上下各施用了 20 kg N ha y-1 的标记 15NH415NO3 溶液(δ15N = 30 ‰),同时还保留了对照地块。我们评估了处理前后的生态系统成分,计算了氮储量,并利用质量平衡进行了肥料回收分析。研究结果表明,树冠上方的氮添加可在叶片中截获 31 ± 4% 的氮添加量,这与树冠下方处理时叶片中可忽略不计的氮回收量形成了鲜明对比。与树冠下处理(9 ± 24%)相比,树冠上处理的植物整体恢复率更高(43 ± 11%)。植被生长季节后,树冠上方添加的氮约有 15 ± 1%通过落叶转移到土壤中,这表明大量的氮通过挥发、茎流或直通落叶被重新吸收或流失。相比之下,树冠下方法通过落叶回收的氮仅为 4.0 ± 0.6%。这些结果突显了施肥方法对氮归宿的显著影响。施用到冠层的氮在叶片等瞬时分区中表现出明显的恢复。然而,在几个月的时间里,不同处理的长效组织中氮的恢复没有明显变化。这意味着氮的施用策略不会显著改变模拟湿氮沉积在高 C/N 组织中的分布,突出了森林氮循环的复杂动态。
{"title":"An in situ 15N labeling experiment unveils distinct responses to N application approaches in a mountain beech forest.","authors":"Luca Da Ros, Mirco Rodeghiero, Maurizio Ventura, Roberto Tognetti, Giustino Tonon, Damiano Gianelle","doi":"10.1093/treephys/tpae104","DOIUrl":"10.1093/treephys/tpae104","url":null,"abstract":"<p><p>Atmospheric nitrogen (N) deposition has notably increased since the industrial revolution, doubling N inputs to terrestrial ecosystems. This could mitigate N limitations in forests, potentially enhancing productivity and carbon sequestration. However, excessive N can lead to forest N saturation, causing issues like soil acidification, nutrient imbalances, biodiversity loss, increased tree mortality and a potential net greenhouse gas emission. Traditional experiments often overlook the canopy's role in N fate, focusing instead on direct N addition to the forest floor. In our study, we applied 20 kg N ha y-1 of labeled 15NH415NO3 solution (δ15N = 30‰) both above and below the canopy, maintaining also control plots. We assessed ecosystem components before and after treatment, calculated N stocks, and used mass balance for fertilizer recovery analysis. Findings revealed that the above-canopy N addition intercepted up to 31 ± 4% of added N in foliage, a significant contrast to the negligible recovery in leaves with below-canopy treatment. Overall plant recovery was higher in the above-canopy treatment (43 ± 11%) compared with below (9 ± 24%). Post-vegetative season, about 15 ± 1% of above-canopy added N was transferred to soil via litterfall, indicating substantial N reabsorption or loss through volatilization, stemflow or throughfall. In contrast, the below-canopy approach resulted in just 4.0 ± 0.6% recovery via litterfall. These results highlight a significant difference in N fate based on the application method. Nitrogen applied to the canopy showed distinct recovery in transient compartments like foliage. However, over a few months, there was no noticeable change in N recovery in long-lived tissues across treatments. This implies that N application strategy does not significantly alter the distribution of simulated wet N deposition in high Carbon/N tissues, underscoring the complex dynamics of forest N cycling.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mistletoe-induced carbon, water and nutrient imbalances are imprinted on tree rings. 槲寄生引起的碳、水和养分失衡在树木年轮上留下了印记。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-09-03 DOI: 10.1093/treephys/tpae106
Ester González de Andrés, Antonio Gazol, José Ignacio Querejeta, Michele Colangelo, J Julio Camarero

Mistletoes are xylem-tapping hemiparasites that rely on their hosts for water and nutrient uptake. Thus, they impair tree performance in the face of environmental stress via altering the carbon and water relations and nutritional status of trees. To improve our understanding of physiological responses to mistletoe and ongoing climate change, we investigated radial growth, stable carbon and oxygen isotopic signals, and elemental composition of tree rings in silver fir (Abies alba Mill.) and Scots pine (Pinus sylvestris L.) forests infested with Viscum album L. We compared temporal series (1990-2020) of basal area increment (BAI), intrinsic water-use efficiency (iWUE), oxygen isotope composition (δ18O), nutrient concentrations and stoichiometric ratios between non-infested (NI) and severely infested (SI) fir and pine trees from populations located close to the xeric distribution limit of the species in north-eastern Spain. The SI trees showed historically higher growth, but the BAI trend was negative for more than three decades before 2020 and their growth rates became significantly lower than those of NI trees by the mid-2010s. Mistletoe infestation was related to an enhanced sensitivity of radial growth to vapour pressure deficit (atmospheric drought). The SI trees showed less pronounced iWUE increases (fir) and lower iWUE values (pine) than NI trees. The lower tree-ring δ18O values of SI trees may be the result of several superimposed effects operating simultaneously, including leaf-level evaporative enrichment, source water isotopic signals, and anatomical and phenological differences. We observed a deterioration of potassium (K) nutrition in tree-ring wood of both species in SI trees, along with accumulation of manganese (Mn). We suggest that such nutritional patterns are driven by the indirect effect of mistletoe-induced drought stress, particularly in pine. The combined analyses of different physiological indicators imprinted on tree rings provided evidence of the progressive onset of carbon, water and nutrient imbalances in mistletoe-infested conifers inhabiting seasonally dry regions.

槲寄生是一种木质部吸水半寄生虫,依靠寄主吸收水分和养分。因此,它们会通过改变树木的碳、水关系和营养状况来损害树木在环境压力下的表现。为了提高我们对槲寄生和持续气候变化的生理反应的认识,我们研究了银冷杉(Abies alba)和苏格兰松(Pinus sylvestris)森林中被槲寄生侵染的树木年轮的径向生长、稳定的 C 和 O 同位素信号以及元素组成。我们比较了未受侵染(NI)和严重受侵染(SI)的冷杉和松树的基部面积增量(BAI)、内在水分利用效率(iWUE)、氧同位素组成(δ18O)以及养分浓度和化学计量比的时间序列(1990-2020 年),这些树木的种群位于西班牙东北部靠近该物种干旱分布极限的地区。SI 树历来生长速度较快,但在 2020 年之前的三十多年里 BAI 呈负增长趋势,到 2010 年代中期,其生长速度明显低于 NI 树。槲寄生侵扰与径向生长对蒸汽压力不足(大气干旱)的敏感性增强有关。与 NI 树木相比,SI 树木的 iWUE 增长(杉木)不太明显,iWUE 值(松树)较低。SI树较低的树环δ18O值可能是多种叠加效应同时作用的结果,其中包括叶层蒸发富集、源水同位素信号以及解剖学和物候学差异。我们观察到,在 SI 树的两种树种的树环木材中,钾(K)的营养都在恶化,同时锰(Mn)也在积累。我们认为,这种营养模式是由槲树引起的干旱胁迫的间接影响造成的,尤其是在松树中。通过对印刻在树木年轮上的不同生理指标进行综合分析,可以证明在季节性干旱地区,受槲树侵袭的针叶树逐渐出现碳、水和营养失衡。
{"title":"Mistletoe-induced carbon, water and nutrient imbalances are imprinted on tree rings.","authors":"Ester González de Andrés, Antonio Gazol, José Ignacio Querejeta, Michele Colangelo, J Julio Camarero","doi":"10.1093/treephys/tpae106","DOIUrl":"10.1093/treephys/tpae106","url":null,"abstract":"<p><p>Mistletoes are xylem-tapping hemiparasites that rely on their hosts for water and nutrient uptake. Thus, they impair tree performance in the face of environmental stress via altering the carbon and water relations and nutritional status of trees. To improve our understanding of physiological responses to mistletoe and ongoing climate change, we investigated radial growth, stable carbon and oxygen isotopic signals, and elemental composition of tree rings in silver fir (Abies alba Mill.) and Scots pine (Pinus sylvestris L.) forests infested with Viscum album L. We compared temporal series (1990-2020) of basal area increment (BAI), intrinsic water-use efficiency (iWUE), oxygen isotope composition (δ18O), nutrient concentrations and stoichiometric ratios between non-infested (NI) and severely infested (SI) fir and pine trees from populations located close to the xeric distribution limit of the species in north-eastern Spain. The SI trees showed historically higher growth, but the BAI trend was negative for more than three decades before 2020 and their growth rates became significantly lower than those of NI trees by the mid-2010s. Mistletoe infestation was related to an enhanced sensitivity of radial growth to vapour pressure deficit (atmospheric drought). The SI trees showed less pronounced iWUE increases (fir) and lower iWUE values (pine) than NI trees. The lower tree-ring δ18O values of SI trees may be the result of several superimposed effects operating simultaneously, including leaf-level evaporative enrichment, source water isotopic signals, and anatomical and phenological differences. We observed a deterioration of potassium (K) nutrition in tree-ring wood of both species in SI trees, along with accumulation of manganese (Mn). We suggest that such nutritional patterns are driven by the indirect effect of mistletoe-induced drought stress, particularly in pine. The combined analyses of different physiological indicators imprinted on tree rings provided evidence of the progressive onset of carbon, water and nutrient imbalances in mistletoe-infested conifers inhabiting seasonally dry regions.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of water-use strategies in three subtropical mangrove species: a study of sap flow and gas exchange monitoring. 三种亚热带红树林物种用水策略的比较分析:树液流动和气体交换监测研究。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-09-03 DOI: 10.1093/treephys/tpae102
Sipan Wu, Xiaoxuan Gu, Xiufan Peng, Luzhen Chen

Water-use strategies play a crucial role in the adaptive capabilities of mangroves to the saline intertidal conditions, yet the intricacies of daily water-use patterns in mangrove species, which are pivotal for maintaining water balance, remain poorly understood. In this comprehensive study, we aimed to clarify the water use strategies of three co-occurring mangrove species, Avicennia marina, Aegiceras corniculatum and Kandelia obovata, through stem sap flow monitoring, leaf gas exchange and stem diameter change measurements. Our findings revealed that the daily sap flow density of Avicennia and Aegiceras reached the peak about 1 h earlier than that of Kandelia. When transpiration was strong, Kandelia and Aegiceras used stem storage to meet water demand, while Avicennia synchronized stem water storage. These three mangrove species adopted cross-peak water used and unique stem water storage to regulate their water balance. In Kandelia, the daily sap flow in per sapwood area was significantly lower, while water-use efficiency was significantly higher than those of Avicennia and Aegiceras, indicating that Kandelia adopted a more conservative and efficient water-use strategy. Sap flow in Avicennia was the most sensitive to environmental changes, while Kandelia limited water dissipation by tightly controlling stomata. Meteorological factors (photosynthetically active radiation, vapor pressure deficit and air temperature) were the main driving factors of sap flow. The increase of soil temperature can promote the water use of mangrove species, while the increase of salinity resulted in more conservative water use. Our results highlight the diversity of daily water-use strategies among the three co-occurring mangrove species, pinpointing Kandelia as the most adaptive at navigating the changing conditions of intertidal habitats in the future climate. In conclusion, our findings provide a mesoscale perspective on water-use characteristics of mangroves and also provides theoretical basis for mangroves afforestation and ecological restoration.

水利用策略对红树林适应潮间带盐碱环境的能力起着至关重要的作用,但人们对红树林物种日常水利用模式的复杂性仍知之甚少,而这种模式对维持水分平衡至关重要。在这项综合研究中,我们旨在通过茎液流监测、叶片气体交换和茎直径变化测量,阐明三种共生红树林物种(Avicennia marina、Aegiceras corniculatum和Kandelia obovata)的水分利用策略。我们的研究结果表明,Avicennia 和 Aegiceras 的日液流密度(SFD)比 Kandelia 早约一小时达到峰值。当蒸腾作用强烈时,Kandelia 和 Aegiceras 利用茎干储水来满足水分需求,而 Avicennia 则同步进行茎干储水。这三个红树林物种采用交叉峰值用水和独特的茎干蓄水来调节水分平衡。与 Avicennia 和 Aegiceras 相比,Kandelia 的单位边材面积日树液流量明显较低,而用水效率则明显较高,这表明 Kandelia 采用了更为保守和高效的用水策略。Avicennia的树液流动对环境变化最为敏感,而Kandelia则通过严格控制气孔来限制水分散失。气象因素(光合有效辐射、蒸气压差和气温)是汁液流动的主要驱动因素。土壤温度的升高可促进红树林物种的水分利用,而盐度的升高则导致更保守的水分利用。我们的研究结果突显了三种共生红树林物种日常用水策略的多样性,并指出 Kandelia 是在未来气候条件下最能适应潮间带生境变化的物种。总之,我们的研究结果从中尺度的角度揭示了红树林的用水特征,也为红树林造林和生态恢复提供了理论依据。
{"title":"Comparative analysis of water-use strategies in three subtropical mangrove species: a study of sap flow and gas exchange monitoring.","authors":"Sipan Wu, Xiaoxuan Gu, Xiufan Peng, Luzhen Chen","doi":"10.1093/treephys/tpae102","DOIUrl":"10.1093/treephys/tpae102","url":null,"abstract":"<p><p>Water-use strategies play a crucial role in the adaptive capabilities of mangroves to the saline intertidal conditions, yet the intricacies of daily water-use patterns in mangrove species, which are pivotal for maintaining water balance, remain poorly understood. In this comprehensive study, we aimed to clarify the water use strategies of three co-occurring mangrove species, Avicennia marina, Aegiceras corniculatum and Kandelia obovata, through stem sap flow monitoring, leaf gas exchange and stem diameter change measurements. Our findings revealed that the daily sap flow density of Avicennia and Aegiceras reached the peak about 1 h earlier than that of Kandelia. When transpiration was strong, Kandelia and Aegiceras used stem storage to meet water demand, while Avicennia synchronized stem water storage. These three mangrove species adopted cross-peak water used and unique stem water storage to regulate their water balance. In Kandelia, the daily sap flow in per sapwood area was significantly lower, while water-use efficiency was significantly higher than those of Avicennia and Aegiceras, indicating that Kandelia adopted a more conservative and efficient water-use strategy. Sap flow in Avicennia was the most sensitive to environmental changes, while Kandelia limited water dissipation by tightly controlling stomata. Meteorological factors (photosynthetically active radiation, vapor pressure deficit and air temperature) were the main driving factors of sap flow. The increase of soil temperature can promote the water use of mangrove species, while the increase of salinity resulted in more conservative water use. Our results highlight the diversity of daily water-use strategies among the three co-occurring mangrove species, pinpointing Kandelia as the most adaptive at navigating the changing conditions of intertidal habitats in the future climate. In conclusion, our findings provide a mesoscale perspective on water-use characteristics of mangroves and also provides theoretical basis for mangroves afforestation and ecological restoration.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The underlying mechanisms by which boron mitigates copper toxicity in Citrus sinensis leaves revealed by integrated analysis of transcriptome, metabolome and physiology. 通过对转录组、代谢组和生理学的综合分析,揭示硼能减轻中华芸香科植物叶片铜毒性的内在机制。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-09-03 DOI: 10.1093/treephys/tpae099
Xu-Feng Chen, Bi-Sha Wu, Hui Yang, Qian Shen, Fei Lu, Wei-Lin Huang, Jiuxin Guo, Xin Ye, Lin-Tong Yang, Li-Song Chen

Both copper (Cu) excess and boron (B) deficiency are often observed in some citrus orchard soils. The molecular mechanisms by which B alleviates excessive Cu in citrus are poorly understood. Seedlings of sweet orange (Citrus sinensis (L.) Osbeck cv. Xuegan) were treated with 0.5 (Cu0.5) or 350 (Cu350 or Cu excess) μM CuCl2 and 2.5 (B2.5) or 25 (B25) μM HBO3 for 24 wk. Thereafter, this study examined the effects of Cu and B treatments on gene expression levels revealed by RNA-Seq, metabolite profiles revealed by a widely targeted metabolome, and related physiological parameters in leaves. Cu350 upregulated 564 genes and 170 metabolites, and downregulated 598 genes and 58 metabolites in leaves of 2.5 μM B-treated seedlings (LB2.5), but it only upregulated 281 genes and 100 metabolites, and downregulated 136 genes and 40 metabolites in leaves of 25 μM B-treated seedlings (LB25). Cu350 decreased the concentrations of sucrose and total soluble sugars and increased the concentrations of starch, glucose, fructose and total nonstructural carbohydrates in LB2.5, but it only increased the glucose concentration in LB25. Further analysis demonstrated that B addition reduced the oxidative damage and alterations in primary and secondary metabolisms caused by Cu350, and alleviated the impairment of Cu350 to photosynthesis and cell wall metabolism, thus improving leaf growth. LB2.5 exhibited some adaptive responses to Cu350 to meet the increasing need for the dissipation of excessive excitation energy (EEE) and the detoxification of reactive oxygen species (reactive aldehydes) and Cu. Cu350 increased photorespiration, xanthophyll cycle-dependent thermal dissipation, nonstructural carbohydrate accumulation, and secondary metabolite biosynthesis and abundances; and upregulated tryptophan metabolism and related metabolite abundances, some antioxidant-related gene expression, and some antioxidant abundances. Additionally, this study identified some metabolic pathways, metabolites and genes that might lead to Cu tolerance in leaves.

在一些柑橘园土壤中,经常会发现铜(Cu)过量和硼(B)缺乏的现象。人们对硼能缓解柑橘中铜过量的分子机制知之甚少。甜橙(Citrus sinensis (L.) Osbeck cv.用 0.5(Cu0.5)或 350(Cu350 或 Cu 过量)μM CuCl2 和 2.5(B2.5)或 25(B25)μM HBO3 处理甜橙幼苗 24 周。此后,本研究考察了Cu和B处理对RNA-Seq揭示的基因表达水平、广泛靶向代谢组揭示的代谢物谱以及叶片中相关生理参数的影响。在 2.5 μM B 处理的幼苗(LB2.5)叶片中,Cu350 上调了 564 个基因和 170 个代谢物,下调了 598 个基因和 58 个代谢物;但在 25 μM B 处理的幼苗(LB25)叶片中,Cu350 只上调了 281 个基因和 100 个代谢物,下调了 136 个基因和 40 个代谢物。在 LB2.5 中,Cu350 降低了蔗糖和总可溶性糖的浓度,提高了淀粉、葡萄糖、果糖和总非结构碳水化合物(TNC)的浓度,但在 LB25 中只提高了葡萄糖的浓度。进一步的分析表明,硼的添加减少了 Cu350 对叶片的氧化损伤以及初级和次级代谢的改变;减轻了 Cu350 对光合作用和细胞壁代谢的损害,从而改善了叶片的生长。枸杞 2.5 对 Cu350 表现出了一些适应性反应,以满足对过量激发能量(EEE)耗散和活性氧(活性醛类)与 Cu 解毒日益增长的需求。Cu350 增加了光呼吸、依赖黄绿素循环的热耗散、非结构性碳水化合物积累、次生代谢物的生物合成和丰度;上调了色氨酸代谢和相关代谢物丰度,以及一些抗氧化剂相关基因的表达和一些抗氧化剂的丰度。此外,本研究还发现了一些可能导致叶片耐铜的代谢途径、代谢物和基因。
{"title":"The underlying mechanisms by which boron mitigates copper toxicity in Citrus sinensis leaves revealed by integrated analysis of transcriptome, metabolome and physiology.","authors":"Xu-Feng Chen, Bi-Sha Wu, Hui Yang, Qian Shen, Fei Lu, Wei-Lin Huang, Jiuxin Guo, Xin Ye, Lin-Tong Yang, Li-Song Chen","doi":"10.1093/treephys/tpae099","DOIUrl":"10.1093/treephys/tpae099","url":null,"abstract":"<p><p>Both copper (Cu) excess and boron (B) deficiency are often observed in some citrus orchard soils. The molecular mechanisms by which B alleviates excessive Cu in citrus are poorly understood. Seedlings of sweet orange (Citrus sinensis (L.) Osbeck cv. Xuegan) were treated with 0.5 (Cu0.5) or 350 (Cu350 or Cu excess) μM CuCl2 and 2.5 (B2.5) or 25 (B25) μM HBO3 for 24 wk. Thereafter, this study examined the effects of Cu and B treatments on gene expression levels revealed by RNA-Seq, metabolite profiles revealed by a widely targeted metabolome, and related physiological parameters in leaves. Cu350 upregulated 564 genes and 170 metabolites, and downregulated 598 genes and 58 metabolites in leaves of 2.5 μM B-treated seedlings (LB2.5), but it only upregulated 281 genes and 100 metabolites, and downregulated 136 genes and 40 metabolites in leaves of 25 μM B-treated seedlings (LB25). Cu350 decreased the concentrations of sucrose and total soluble sugars and increased the concentrations of starch, glucose, fructose and total nonstructural carbohydrates in LB2.5, but it only increased the glucose concentration in LB25. Further analysis demonstrated that B addition reduced the oxidative damage and alterations in primary and secondary metabolisms caused by Cu350, and alleviated the impairment of Cu350 to photosynthesis and cell wall metabolism, thus improving leaf growth. LB2.5 exhibited some adaptive responses to Cu350 to meet the increasing need for the dissipation of excessive excitation energy (EEE) and the detoxification of reactive oxygen species (reactive aldehydes) and Cu. Cu350 increased photorespiration, xanthophyll cycle-dependent thermal dissipation, nonstructural carbohydrate accumulation, and secondary metabolite biosynthesis and abundances; and upregulated tryptophan metabolism and related metabolite abundances, some antioxidant-related gene expression, and some antioxidant abundances. Additionally, this study identified some metabolic pathways, metabolites and genes that might lead to Cu tolerance in leaves.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonality in embolism resistance and hydraulic capacitance jointly mediate hydraulic safety in branches and leaves of oriental cork oak (Quercus variabilis Bl.). 东方栓皮栎(Quercus variabilis Bl.)枝叶栓塞阻力和水力电容的季节性共同介导水力安全。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-09-03 DOI: 10.1093/treephys/tpae109
Xin Huang, Zhuo-Liang Hou, Bo-Long Ma, Han Zhao, Zai-Min Jiang, Jing Cai

Seasonality in temperate regions is prominent during the era of increased climatic variability. A hydraulic trait that can adjust to seasonally changing climatic conditions is crucial for tree safety. However, little attention has been paid to the intraspecific seasonality of drought-related traits and hydraulic safety of keystone forest trees. We examined seasonal variations in the key morphological and physiological traits as well as multiple hydraulic safety margins (SMs) at the branch and leaf levels in oriental cork oak (Quercus variabilis Bl.), which is predominant in Chinese temperate forests. Pneumatic measurements indicated that, as seasons progressed, the water potential at which 50% of branch embolisms occur (P50_branch) decreased from -3.34 to -4.23 MPa, with a coefficient of variation (CV) of 9.08%. Sapwood capacitance ranged from 48.19 to 248.08 kg m-3 MPa-1, peaking in autumn and reaching minimum in winter (CV 60.58%). Rehydration kinetics confirmed higher leaf embolism vulnerability (P50_leaf) in spring and autumn than those in summer, with values ranging from -1.06 to -3.02 MPa (CV 39.85%). All leaf pressure-volume (PV) traits shifted with growth, with CVs ranging from 6.95% to 46.69%. Sapwood density had significant negative correlations with P50_branch and hydraulic capacitance for elastic water storage, whereas leaf mass per area was linearly associated with PV traits but not with P50_leaf. Furthermore, the branch typical SMs (difference between branch midday water potential and P50_branch) were consistently >1.84 MPa, and vulnerability segmentation was prevalent throughout, implying a plausible hydraulic foundation for the dominance of Q. variabilis. Diverse hydraulic response patterns existed across seasons, leading to positive SMs mediated by the aforementioned physiological traits. Although Q. variabilis exhibits a high level of hydraulic safety, its susceptibility to sudden summer droughts may increase due to global climate change.

在气候变异加剧的时代,温带地区的季节性非常突出。能够适应季节性变化的气候条件的水力特性对树木的安全至关重要。然而,人们很少关注骨干林木干旱相关性状的种内季节性和水力安全性。我们研究了在中国温带森林中占主导地位的东方栓皮栎(Quercus variabilis Bl.)的主要形态和生理性状以及枝叶水平的多重水力安全系数(SMs)的季节性变化。气动测量结果表明,随着季节的变化,50%的枝条栓塞发生时的水势(P50_branch)从-3.34 兆帕下降到-4.23 兆帕,变异系数(CV)为 9.08%。边材容重范围为 48.19-248.08 kg m-3 MPa-1,秋季达到最高,冬季达到最低(变异系数为 60.58%)。再水化动力学证实,春秋两季的叶片易栓塞性(P50_leaf)高于夏季,其数值范围为-1.06 兆帕至-3.02 兆帕(CV 为 39.85%)。所有叶片压力-体积(PV)性状都随生长而变化,CV 值范围为 6.95-46.69%。边材密度与 P50_branch 和弹性储水液压容积呈显著负相关,而叶片单位面积质量与 PV 特性呈线性相关,但与 P50_leaf 无关。此外,树枝的典型SMs(树枝正午水势与P50_branch之间的差值)始终大于1.84 MPa,而且整个树枝普遍存在脆弱分段现象,这意味着变叶桉占优势的水力基础是可信的。不同季节存在不同的水力反应模式,导致上述生理特征介导的正安全系数。虽然变种鹅表现出较高的水力安全水平,但由于全球气候变化,其对夏季突发性干旱的易感性可能会增加。
{"title":"Seasonality in embolism resistance and hydraulic capacitance jointly mediate hydraulic safety in branches and leaves of oriental cork oak (Quercus variabilis Bl.).","authors":"Xin Huang, Zhuo-Liang Hou, Bo-Long Ma, Han Zhao, Zai-Min Jiang, Jing Cai","doi":"10.1093/treephys/tpae109","DOIUrl":"10.1093/treephys/tpae109","url":null,"abstract":"<p><p>Seasonality in temperate regions is prominent during the era of increased climatic variability. A hydraulic trait that can adjust to seasonally changing climatic conditions is crucial for tree safety. However, little attention has been paid to the intraspecific seasonality of drought-related traits and hydraulic safety of keystone forest trees. We examined seasonal variations in the key morphological and physiological traits as well as multiple hydraulic safety margins (SMs) at the branch and leaf levels in oriental cork oak (Quercus variabilis Bl.), which is predominant in Chinese temperate forests. Pneumatic measurements indicated that, as seasons progressed, the water potential at which 50% of branch embolisms occur (P50_branch) decreased from -3.34 to -4.23 MPa, with a coefficient of variation (CV) of 9.08%. Sapwood capacitance ranged from 48.19 to 248.08 kg m-3 MPa-1, peaking in autumn and reaching minimum in winter (CV 60.58%). Rehydration kinetics confirmed higher leaf embolism vulnerability (P50_leaf) in spring and autumn than those in summer, with values ranging from -1.06 to -3.02 MPa (CV 39.85%). All leaf pressure-volume (PV) traits shifted with growth, with CVs ranging from 6.95% to 46.69%. Sapwood density had significant negative correlations with P50_branch and hydraulic capacitance for elastic water storage, whereas leaf mass per area was linearly associated with PV traits but not with P50_leaf. Furthermore, the branch typical SMs (difference between branch midday water potential and P50_branch) were consistently >1.84 MPa, and vulnerability segmentation was prevalent throughout, implying a plausible hydraulic foundation for the dominance of Q. variabilis. Diverse hydraulic response patterns existed across seasons, leading to positive SMs mediated by the aforementioned physiological traits. Although Q. variabilis exhibits a high level of hydraulic safety, its susceptibility to sudden summer droughts may increase due to global climate change.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorus-induced restructuring of the ascorbate-glutathione cycle and lignin biosynthesis alleviates manganese toxicity in peach roots. 磷诱导的抗坏血酸-谷胱甘肽循环和木质素生物合成重组可减轻桃根中的锰毒性。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-09-03 DOI: 10.1093/treephys/tpae098
Iqra Noor, Hamza Sohail, Cao Wentao, Kaijie Zhu, Mirza Hasanuzzaman, Guohuai Li, Junwei Liu

Manganese (Mn) is indispensable for plant growth, but its excessive uptake in acidic soils leads to toxicity, hampering food safety. Phosphorus (P) application is known to mitigate Mn toxicity, yet the underlying molecular mechanism remains elusive. Here, we conducted physiological and transcriptomic analyses of peach roots response to P supply under Mn toxicity. Manganese treatment disrupted root architecture and caused ultrastructural damage due to oxidative injury. Notably, P application ameliorated the detrimental effects and improved the damaged roots by preventing the shrinkage of cortical cells, epidermis and endodermis, as well as reducing the accumulation of reactive oxygen species (ROS). Transcriptomic analysis revealed the differentially expressed genes enriched in phenylpropanoid biosynthesis, cysteine, methionine and glutathione metabolism under Mn and P treatments. Phosphorus application upregulated the transcripts and activities of core enzymes crucial for lignin biosynthesis, enhancing cell wall integrity. Furthermore, P treatment activated ascorbate-glutathione cycle, augmenting ROS detoxification. Additionally, under Mn toxicity, P application downregulated Mn uptake transporter while enhancing vacuolar sequestration transporter transcripts, reducing Mn uptake and facilitating vacuolar storage. Collectively, P application prevents Mn accumulation in roots by modulating Mn transporters, bolstering lignin biosynthesis and attenuating oxidative stress, thereby improving root growth under Mn toxicity. Our findings provide novel insights into the mechanism of P-mediated alleviation of Mn stress and strategies for managing metal toxicity in peach orchards.

锰(Mn)是植物生长不可或缺的元素,但在酸性土壤中过量吸收锰会导致中毒,影响食品安全。众所周知,施磷可减轻锰的毒性,但其潜在的分子机制仍然难以捉摸。在此,我们对锰毒性下桃根对磷供应的反应进行了生理和转录组分析。锰处理破坏了根系结构,并因氧化损伤导致超微结构损伤。值得注意的是,施用磷可以防止皮层细胞、表皮和内皮的萎缩,并减少活性氧(ROS)的积累,从而改善有害影响和受损根系。转录组分析表明,在锰和磷处理下,富含苯丙醇类生物合成、半胱氨酸、蛋氨酸和谷胱甘肽代谢的基因有不同表达。施加磷可上调木质素生物合成关键核心酶的转录本和活性,增强细胞壁的完整性。此外,磷处理激活了抗坏血酸-谷胱甘肽循环,增强了 ROS 的解毒能力。此外,在锰毒性条件下,施用磷酸盐会下调锰的吸收转运体,同时增强液泡螯合转运体的转录,从而减少锰的吸收并促进液泡贮存。总之,施用磷可以通过调节锰转运体、促进木质素生物合成和减轻氧化应激来防止根中的锰积累,从而改善锰毒性下的根系生长。我们的研究结果为了解钾介导的锰胁迫缓解机制以及桃园金属毒性管理策略提供了新的视角。
{"title":"Phosphorus-induced restructuring of the ascorbate-glutathione cycle and lignin biosynthesis alleviates manganese toxicity in peach roots.","authors":"Iqra Noor, Hamza Sohail, Cao Wentao, Kaijie Zhu, Mirza Hasanuzzaman, Guohuai Li, Junwei Liu","doi":"10.1093/treephys/tpae098","DOIUrl":"10.1093/treephys/tpae098","url":null,"abstract":"<p><p>Manganese (Mn) is indispensable for plant growth, but its excessive uptake in acidic soils leads to toxicity, hampering food safety. Phosphorus (P) application is known to mitigate Mn toxicity, yet the underlying molecular mechanism remains elusive. Here, we conducted physiological and transcriptomic analyses of peach roots response to P supply under Mn toxicity. Manganese treatment disrupted root architecture and caused ultrastructural damage due to oxidative injury. Notably, P application ameliorated the detrimental effects and improved the damaged roots by preventing the shrinkage of cortical cells, epidermis and endodermis, as well as reducing the accumulation of reactive oxygen species (ROS). Transcriptomic analysis revealed the differentially expressed genes enriched in phenylpropanoid biosynthesis, cysteine, methionine and glutathione metabolism under Mn and P treatments. Phosphorus application upregulated the transcripts and activities of core enzymes crucial for lignin biosynthesis, enhancing cell wall integrity. Furthermore, P treatment activated ascorbate-glutathione cycle, augmenting ROS detoxification. Additionally, under Mn toxicity, P application downregulated Mn uptake transporter while enhancing vacuolar sequestration transporter transcripts, reducing Mn uptake and facilitating vacuolar storage. Collectively, P application prevents Mn accumulation in roots by modulating Mn transporters, bolstering lignin biosynthesis and attenuating oxidative stress, thereby improving root growth under Mn toxicity. Our findings provide novel insights into the mechanism of P-mediated alleviation of Mn stress and strategies for managing metal toxicity in peach orchards.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis. 更正:PtoMYB142是一种杨树R2R3-MYB转录因子,通过调节蜡的生物合成提高耐旱性。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-09-03 DOI: 10.1093/treephys/tpae123
{"title":"Correction to: PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis.","authors":"","doi":"10.1093/treephys/tpae123","DOIUrl":"https://doi.org/10.1093/treephys/tpae123","url":null,"abstract":"","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":"44 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent warming and increasing CO2 stimulate growth of dominant trees under no water limitation in South Korea. 最近的气候变暖和二氧化碳增加刺激了韩国无水限制条件下优势树种的生长。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-09-03 DOI: 10.1093/treephys/tpae103
Julieta Gabriela Arco Molina, Matthias Saurer, Nela Altmanova, Kerstin Treydte, Jiri Dolezal, Jong-Suk Song, Jan Altman

Increases in temperatures and atmospheric CO2 concentration influence the growth performance of trees worldwide. The direction and intensity of tree growth and physiological responses to changing climate do, however, vary according to environmental conditions. Here we present complex, long-term, tree-physiological responses to unprecedented temperature increase in East Asia. For this purpose, we studied radial growth and isotopic (δ13C and δ18O) variations using tree-ring data for the past 100 yr of dominant Quercus mongolica trees from the cool-temperate forests from Hallasan, South Korea. Overall, we found that tree stem basal area increment, intercellular CO2 concentration and intrinsic water-use efficiency significantly increased over the last century. We observed, however, short-term variability in the trends of these variables among four periods identified by change point analysis. In comparison, δ18O did not show significant changes over time, suggesting no major hydrological changes in this precipitation-rich area. The strength and direction of growth-climate relationships also varied during the past 100 yr. Basal area increment (BAI) did not show significant relationships with the climate over the 1924-1949 and 1975-1999 periods. However, over 1950-1974, BAI was negatively affected by both temperature and precipitation, while after 2000, a temperature stimulus was observed. Finally, over the past two decades, the increase in Q. mongolica tree growth accelerated and was associated with high spring-summer temperatures and atmospheric CO2 concentrations and decreasing intrinsic water-use efficiency, δ18O and vapour pressure deficit, suggesting that the photosynthetic rate continued increasing under no water limitations. Our results indicate that the performance of dominant trees of one of the most widely distributed species in East Asia has benefited from recent global changes, mainly over the past two decades. Such findings are essential for projections of forest dynamics and carbon sequestration under climate change.

气温和大气中二氧化碳浓度的升高影响着全球树木的生长表现。然而,树木生长的方向和强度以及对气候变化的生理反应确实因环境条件而异。在此,我们介绍了东亚地区树木对前所未有的温度上升所产生的复杂、长期的生理反应。为此,我们利用韩国哈拉山(Hallasan)寒温带森林中主要柞树过去 100 年的树环数据,研究了其径向生长和同位素(δ13C 和 δ18O)变化。总体而言,我们发现在过去的一个世纪中,树木茎干基部面积增量、细胞间二氧化碳浓度和内在水分利用效率显著增加。然而,通过变化点分析,我们观察到这些变量在四个时期的变化趋势存在短期差异。相比之下,δ18O 并未随时间发生显著变化,这表明这一降水丰富的地区没有发生重大水文变化。在过去 100 年中,生长与气候关系的强度和方向也各不相同。在 1924-1949 年和 1975-1999 年期间,基底面积增量(BAI)与气候的关系并不明显。然而,1950-1974 年期间,BAI 受到温度和降水的负面影响,而 2000 年之后,BAI 受到温度的刺激。最后,在过去二十年中,蒙古栎树的生长速度加快,并与春夏季气温和大气二氧化碳浓度较高以及内在水分利用效率、δ18O 和 VPD 下降有关,这表明光合速率在不受水分限制的情况下继续增加。我们的研究结果表明,东亚分布最广的物种之一的优势树种的表现得益于最近的全球变化,主要是在过去二十年里。这些发现对于预测气候变化下的森林动态和碳吸收至关重要。
{"title":"Recent warming and increasing CO2 stimulate growth of dominant trees under no water limitation in South Korea.","authors":"Julieta Gabriela Arco Molina, Matthias Saurer, Nela Altmanova, Kerstin Treydte, Jiri Dolezal, Jong-Suk Song, Jan Altman","doi":"10.1093/treephys/tpae103","DOIUrl":"10.1093/treephys/tpae103","url":null,"abstract":"<p><p>Increases in temperatures and atmospheric CO2 concentration influence the growth performance of trees worldwide. The direction and intensity of tree growth and physiological responses to changing climate do, however, vary according to environmental conditions. Here we present complex, long-term, tree-physiological responses to unprecedented temperature increase in East Asia. For this purpose, we studied radial growth and isotopic (δ13C and δ18O) variations using tree-ring data for the past 100 yr of dominant Quercus mongolica trees from the cool-temperate forests from Hallasan, South Korea. Overall, we found that tree stem basal area increment, intercellular CO2 concentration and intrinsic water-use efficiency significantly increased over the last century. We observed, however, short-term variability in the trends of these variables among four periods identified by change point analysis. In comparison, δ18O did not show significant changes over time, suggesting no major hydrological changes in this precipitation-rich area. The strength and direction of growth-climate relationships also varied during the past 100 yr. Basal area increment (BAI) did not show significant relationships with the climate over the 1924-1949 and 1975-1999 periods. However, over 1950-1974, BAI was negatively affected by both temperature and precipitation, while after 2000, a temperature stimulus was observed. Finally, over the past two decades, the increase in Q. mongolica tree growth accelerated and was associated with high spring-summer temperatures and atmospheric CO2 concentrations and decreasing intrinsic water-use efficiency, δ18O and vapour pressure deficit, suggesting that the photosynthetic rate continued increasing under no water limitations. Our results indicate that the performance of dominant trees of one of the most widely distributed species in East Asia has benefited from recent global changes, mainly over the past two decades. Such findings are essential for projections of forest dynamics and carbon sequestration under climate change.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel growth-promoting dark septate endophytic fungus improved drought tolerance in blueberries by modulating phytohormones and non-structural carbohydrates. 一种新型促进生长的暗隔内生真菌通过调节植物激素和非结构性碳水化合物提高了蓝莓的耐旱性。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-09-03 DOI: 10.1093/treephys/tpae105
Hongyan Su, Yingtian Guo, Liang Gu, Xiaomeng Shi, Yangyan Zhou, Fanlin Wu, Lei Wang

Drought is a significant global issue affecting agricultural production, and the utilization of beneficial rhizosphere microorganisms is one of the effective ways to increase the productivity of crops and forest under drought. In this study, we characterized a novel growth-promoting dark septate endophytes (DSE) fungus R16 (Dothideomycetes sp.) derived from blueberry roots. Hyphae or microsclerotia were visible within the epidermal or cortical cells of R16-colonized blueberry roots, which was consistent with the typical characteristics of DSE fungi. Inoculation with R16 promoted the growth of blueberry seedlings, and the advantage over the control group was more significant under PEG-induced drought. Comparison of physiological indicators related to drought resistance between the inoculated and control groups was performed on the potted blueberry plants, including the chlorophyll content, net photosynthetic rate, root activities, malondialdehyde and H2O2 content, which indicated that R16 colonization mitigated drought injury in blueberry plants. We further analyzed the effects of R16 on phytohormones and non-structural carbohydrates (NSCs) to explore the mechanism of increased drought tolerance by R16 in blueberry seedlings. The results showed that except for the gibberellin content, indole-3-acetic acid, zeatin and abscisic acid varied significantly between the inoculated and control groups. Sucrose phosphate synthase and sorbitol-6-phosphate dehydrogenase activities in mature leaves, the key enzymes responsible for sucrose and sorbitol synthesis, respectively, as well as sorbitol dehydrogenase, sucrose synthase, cell wall invertase, hexokinase and fructokinase in roots, the key enzymes involved in the NSCs metabolism, showed significant differences between the inoculated and control groups before and after drought treatment. These results suggested that the positive effects of R16 colonization on the drought tolerance of blueberry seedlings are partially attributable to the regulation of phytohormone and sugar metabolism. This study provided valuable information for the research on the interaction between DSE fungi and host plants as well as the application of DSE preparations in agriculture.

干旱是影响农业生产的一个重大全球性问题,而利用有益的根瘤微生物是提高干旱条件下农作物和森林生产力的有效方法之一。在这项研究中,我们鉴定了一种来自蓝莓根部的新型促生长暗隔内生菌(DSE)R16。在R16定殖的蓝莓根系表皮或皮层细胞内可见菌丝或小硬孢子,这符合DSE真菌的典型特征。接种 R16 能促进蓝莓幼苗的生长,在 PEG 诱导的干旱条件下,与对照组相比优势更为显著。在盆栽蓝莓植株上比较了接种组和对照组与抗旱相关的生理指标,包括叶绿素含量、净光合速率、根系活性、MDA 和 H2O2 含量,结果表明 R16 定殖减轻了蓝莓植株的干旱伤害。我们进一步分析了 R16 对植物激素和非结构碳水化合物(NSCs)的影响,以探讨 R16 提高蓝莓幼苗抗旱性的机制。结果表明,除 GA 含量外,IAA、ZT 和 ABA 在接种组和对照组之间存在显著差异。接种组和对照组在干旱处理前后的SPS和S6PDH活性(分别是合成蔗糖和山梨醇的关键酶)以及根中的SDH、SuSy、CWINV、HXK和FRK活性(参与NSCs代谢的关键酶)均有显著差异。这些结果表明,R16 定殖对蓝莓幼苗抗旱性的积极影响部分归因于植物激素和糖代谢的调控。这项研究为 DSE 真菌与寄主植物之间相互作用的研究以及 DSE 制剂在农业中的应用提供了宝贵的信息。
{"title":"A novel growth-promoting dark septate endophytic fungus improved drought tolerance in blueberries by modulating phytohormones and non-structural carbohydrates.","authors":"Hongyan Su, Yingtian Guo, Liang Gu, Xiaomeng Shi, Yangyan Zhou, Fanlin Wu, Lei Wang","doi":"10.1093/treephys/tpae105","DOIUrl":"10.1093/treephys/tpae105","url":null,"abstract":"<p><p>Drought is a significant global issue affecting agricultural production, and the utilization of beneficial rhizosphere microorganisms is one of the effective ways to increase the productivity of crops and forest under drought. In this study, we characterized a novel growth-promoting dark septate endophytes (DSE) fungus R16 (Dothideomycetes sp.) derived from blueberry roots. Hyphae or microsclerotia were visible within the epidermal or cortical cells of R16-colonized blueberry roots, which was consistent with the typical characteristics of DSE fungi. Inoculation with R16 promoted the growth of blueberry seedlings, and the advantage over the control group was more significant under PEG-induced drought. Comparison of physiological indicators related to drought resistance between the inoculated and control groups was performed on the potted blueberry plants, including the chlorophyll content, net photosynthetic rate, root activities, malondialdehyde and H2O2 content, which indicated that R16 colonization mitigated drought injury in blueberry plants. We further analyzed the effects of R16 on phytohormones and non-structural carbohydrates (NSCs) to explore the mechanism of increased drought tolerance by R16 in blueberry seedlings. The results showed that except for the gibberellin content, indole-3-acetic acid, zeatin and abscisic acid varied significantly between the inoculated and control groups. Sucrose phosphate synthase and sorbitol-6-phosphate dehydrogenase activities in mature leaves, the key enzymes responsible for sucrose and sorbitol synthesis, respectively, as well as sorbitol dehydrogenase, sucrose synthase, cell wall invertase, hexokinase and fructokinase in roots, the key enzymes involved in the NSCs metabolism, showed significant differences between the inoculated and control groups before and after drought treatment. These results suggested that the positive effects of R16 colonization on the drought tolerance of blueberry seedlings are partially attributable to the regulation of phytohormone and sugar metabolism. This study provided valuable information for the research on the interaction between DSE fungi and host plants as well as the application of DSE preparations in agriculture.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of extreme pre-monsoon drought on xylogenesis and intra-annual radial increments of two tree species in a tropical montane evergreen broad-leaved forest, southwest China. 季风前极端干旱对中国西南热带山地常绿阔叶林中两种树种的木质部生成和年内径增量的影响
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-09-03 DOI: 10.1093/treephys/tpae086
Ya-Nan Liu, Ze-Xin Fan, You-Xing Lin, Arisa Kaewmano, Xiao-Lian Wei, Pei-Li Fu, Jussi Grießinger, Achim Bräuning

Tropical montane evergreen broad-leaved forests cover the majority of forest areas and have high carbon storage in Xishuangbanna, southwest China. However, stem radial growth dynamics and their correlations with climate factors have never been analyzed in this forest type. By combining bi-weekly microcoring and high-resolution dendrometer measurements, we monitored xylogenesis and stem radius variations of the deciduous species Betula alnoides Buch.-Ham. ex D. Don and the evergreen species Schima wallichii (DC.) Korth. We analyzed the relationships between weekly climate variables prior to sampling and the enlarging zone width or wall-thickening zone width, as well as weekly radial increments and climate factors during two consecutive years (2020 to 2021) showing contrasting hydrothermal conditions in the pre-monsoon season. In the year 2020, which was characterized by a warmer and drier pre-monsoon season, the onset of xylogenesis and radial increments of B. alnoides and S. wallichii were delayed by three months and one month, respectively, compared with the year 2021. In 2020, xylem formation and radial increments were significantly reduced for B. alnoides, but not for S. wallichii. The thickness of enlarging zone and wall-thickening zone in S. wallichii were positively correlated with relative humidity, and minimum and mean air temperature, but were negatively correlated with vapor pressure deficit during 2020 to 2021. The radial increments of both species showed significant positive correlations with precipitation and relative humidity, and negative correlations with vapor pressure deficit and maximum air temperature during two years. Our findings reveal that drier pre-monsoon conditions strongly delay growth initiation and reduce stem radial growth, providing deep insights to understand tree growth and carbon sequestration potential in tropical forests under a predicted increase in frequent drought events.

热带山地常绿阔叶林覆盖了中国西南部西双版纳的大部分林区,具有很高的碳储量。然而,该森林类型的茎径向生长动态及其与气候因素的相关性却从未被分析过。通过结合双周微量刻痕和高分辨率树干仪测量,我们监测了落叶树种白桦(Betula alnoides)和常绿树种五味子(Schima wallichii)的木质部发生和茎杆半径变化。我们分析了采样前每周气候变量与扩大区宽度或壁增厚区宽度之间的关系,以及连续两年(2020-2021 年)中每周径向增量与气候因子之间的关系,这两年季风前的水热条件截然不同。与 2021 年相比,2020 年的季风前期较为温暖干燥,B. alnoides 和 S. wallichi 的木质部形成时间和径向增量分别推迟了三个月和一个月。2020 年,B. alnoides 的木质部形成和径向增量显著减少,而 S. wallichill 则没有。2020-2021 年期间,S. wallichill 的木质部扩大区厚度和壁增厚区厚度与相对湿度、最低气温和平均气温呈正相关,但与水汽压差呈负相关。在这两年中,两种植物的径向增量与降水量和相对湿度呈显著正相关,而与水汽压差和最高气温呈负相关。我们的研究结果表明,季风前的干旱条件会严重推迟树木的生长启动,并降低茎干的径向生长,这为了解热带雨林在干旱事件频繁发生的情况下树木的生长和碳封存潜力提供了深刻的见解。
{"title":"Impact of extreme pre-monsoon drought on xylogenesis and intra-annual radial increments of two tree species in a tropical montane evergreen broad-leaved forest, southwest China.","authors":"Ya-Nan Liu, Ze-Xin Fan, You-Xing Lin, Arisa Kaewmano, Xiao-Lian Wei, Pei-Li Fu, Jussi Grießinger, Achim Bräuning","doi":"10.1093/treephys/tpae086","DOIUrl":"10.1093/treephys/tpae086","url":null,"abstract":"<p><p>Tropical montane evergreen broad-leaved forests cover the majority of forest areas and have high carbon storage in Xishuangbanna, southwest China. However, stem radial growth dynamics and their correlations with climate factors have never been analyzed in this forest type. By combining bi-weekly microcoring and high-resolution dendrometer measurements, we monitored xylogenesis and stem radius variations of the deciduous species Betula alnoides Buch.-Ham. ex D. Don and the evergreen species Schima wallichii (DC.) Korth. We analyzed the relationships between weekly climate variables prior to sampling and the enlarging zone width or wall-thickening zone width, as well as weekly radial increments and climate factors during two consecutive years (2020 to 2021) showing contrasting hydrothermal conditions in the pre-monsoon season. In the year 2020, which was characterized by a warmer and drier pre-monsoon season, the onset of xylogenesis and radial increments of B. alnoides and S. wallichii were delayed by three months and one month, respectively, compared with the year 2021. In 2020, xylem formation and radial increments were significantly reduced for B. alnoides, but not for S. wallichii. The thickness of enlarging zone and wall-thickening zone in S. wallichii were positively correlated with relative humidity, and minimum and mean air temperature, but were negatively correlated with vapor pressure deficit during 2020 to 2021. The radial increments of both species showed significant positive correlations with precipitation and relative humidity, and negative correlations with vapor pressure deficit and maximum air temperature during two years. Our findings reveal that drier pre-monsoon conditions strongly delay growth initiation and reduce stem radial growth, providing deep insights to understand tree growth and carbon sequestration potential in tropical forests under a predicted increase in frequent drought events.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tree physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1