Pub Date : 2024-05-01Epub Date: 2024-03-14DOI: 10.1016/j.tins.2024.02.006
Xue-Jun Song, Jiang-Jian Hu
The suppression of consciousness by anesthetics and the emergence of the brain from anesthesia are complex and elusive processes. Anesthetics may exert their inhibitory effects by binding to specific protein targets or through membrane-mediated targets, disrupting neural activity and the integrity and function of neural circuits responsible for signal transmission and conscious perception/subjective experience. Emergence from anesthesia was generally thought to depend on the elimination of the anesthetic from the body. Recently, studies have suggested that emergence from anesthesia is a dynamic and active process that can be partially controlled and is independent of the specific molecular targets of anesthetics. This article summarizes the fundamentals of anesthetics' actions in the brain and the mechanisms of emergence from anesthesia that have been recently revealed in animal studies.
{"title":"Neurobiological basis of emergence from anesthesia.","authors":"Xue-Jun Song, Jiang-Jian Hu","doi":"10.1016/j.tins.2024.02.006","DOIUrl":"10.1016/j.tins.2024.02.006","url":null,"abstract":"<p><p>The suppression of consciousness by anesthetics and the emergence of the brain from anesthesia are complex and elusive processes. Anesthetics may exert their inhibitory effects by binding to specific protein targets or through membrane-mediated targets, disrupting neural activity and the integrity and function of neural circuits responsible for signal transmission and conscious perception/subjective experience. Emergence from anesthesia was generally thought to depend on the elimination of the anesthetic from the body. Recently, studies have suggested that emergence from anesthesia is a dynamic and active process that can be partially controlled and is independent of the specific molecular targets of anesthetics. This article summarizes the fundamentals of anesthetics' actions in the brain and the mechanisms of emergence from anesthesia that have been recently revealed in animal studies.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-28DOI: 10.1016/j.tins.2024.03.006
Eun-Jin Bae, Seung-Jae Lee
A recent study by Kumar et al. identified several biological pathways that regulate the levels of endogenous alpha-synuclein (α-synuclein). They specifically highlighted the N-terminal acetylation (NTA) pathway as an important factor in maintaining the stability of endogenous α-synuclein, suggesting targeting the NTA pathway as a potential therapeutic approach.
库马尔等人最近的一项研究确定了调节内源性α-突触核蛋白(α-synuclein)水平的几种生物途径。他们特别强调,N-末端乙酰化(NTA)途径是维持内源性α-突触核蛋白稳定性的重要因素,并建议将 NTA 途径作为一种潜在的治疗方法。
{"title":"CRISPR-based identification of N-terminal acetylation in synucleinopathies.","authors":"Eun-Jin Bae, Seung-Jae Lee","doi":"10.1016/j.tins.2024.03.006","DOIUrl":"10.1016/j.tins.2024.03.006","url":null,"abstract":"<p><p>A recent study by Kumar et al. identified several biological pathways that regulate the levels of endogenous alpha-synuclein (α-synuclein). They specifically highlighted the N-terminal acetylation (NTA) pathway as an important factor in maintaining the stability of endogenous α-synuclein, suggesting targeting the NTA pathway as a potential therapeutic approach.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.tins.2024.05.003
Aaron Keith West, Eve Rebecca Schneider
{"title":"A novel suppressor of Piezo2 in rodent nociceptors","authors":"Aaron Keith West, Eve Rebecca Schneider","doi":"10.1016/j.tins.2024.05.003","DOIUrl":"https://doi.org/10.1016/j.tins.2024.05.003","url":null,"abstract":"","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141032299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-13DOI: 10.1016/j.tins.2024.03.008
Abstract not available
无摘要
{"title":"Orchestrating neuronal activity-dependent translation via the integrated stress response protein GADD34","authors":"","doi":"10.1016/j.tins.2024.03.008","DOIUrl":"https://doi.org/10.1016/j.tins.2024.03.008","url":null,"abstract":"Abstract not available","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.1016/j.tins.2024.03.005
Julia R. Ferrante, Julie A. Blendy
Neonatal opioid withdrawal syndrome (NOWS) is a growing public health concern. The complexity of in utero opioid exposure in clinical studies makes it difficult to investigate underlying mechanisms that could ultimately inform early diagnosis and treatments. Clinical studies are unable to dissociate the influence of maternal polypharmacy or the environment from direct effects of in utero opioid exposure, highlighting the need for effective animal models. Early animal models of prenatal opioid exposure primarily used the prototypical opioid, morphine, and opioid exposure that was often limited to a narrow period during gestation. In recent years, the number of preclinical studies has grown rapidly. Newer models utilize both prescription and nonprescription opioids and vary the onset and duration of opioid exposure. In this review, we summarize novel prenatal opioid exposure models developed in recent years and attempt to reconcile results between studies while critically identifying gaps within the current literature.
{"title":"Advances in animal models of prenatal opioid exposure","authors":"Julia R. Ferrante, Julie A. Blendy","doi":"10.1016/j.tins.2024.03.005","DOIUrl":"https://doi.org/10.1016/j.tins.2024.03.005","url":null,"abstract":"<p>Neonatal opioid withdrawal syndrome (NOWS) is a growing public health concern. The complexity of <em>in utero</em> opioid exposure in clinical studies makes it difficult to investigate underlying mechanisms that could ultimately inform early diagnosis and treatments. Clinical studies are unable to dissociate the influence of maternal polypharmacy or the environment from direct effects of <em>in utero</em> opioid exposure, highlighting the need for effective animal models. Early animal models of prenatal opioid exposure primarily used the prototypical opioid, morphine, and opioid exposure that was often limited to a narrow period during gestation. In recent years, the number of preclinical studies has grown rapidly. Newer models utilize both prescription and nonprescription opioids and vary the onset and duration of opioid exposure. In this review, we summarize novel prenatal opioid exposure models developed in recent years and attempt to reconcile results between studies while critically identifying gaps within the current literature.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1016/s0166-2236(24)00046-8
Abstract not available
无摘要
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/s0166-2236(24)00046-8","DOIUrl":"https://doi.org/10.1016/s0166-2236(24)00046-8","url":null,"abstract":"Abstract not available","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1016/s0166-2236(24)00049-3
Abstract not available
无摘要
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/s0166-2236(24)00049-3","DOIUrl":"https://doi.org/10.1016/s0166-2236(24)00049-3","url":null,"abstract":"Abstract not available","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1016/j.tins.2024.03.003
Benjamin M. Basile, Spencer J. Waters, Elisabeth A. Murray
The two tests most widely used in nonhuman primates to assess the neurobiology of recognition memory produce conflicting results. Preferential viewing tests (e.g., visual paired comparison) produce robust impairments following hippocampal lesions, whereas matching tests (e.g., delayed nonmatching-to-sample) often show complete sparing. Here, we review the data, the proposed explanations for this discrepancy, and then critically evaluate those explanations. The most likely explanation is that preferential viewing tests are not a process-pure assessment of recognition memory, but also test elements of novelty-seeking, habituation, and motivation. These confounds likely explain the conflicting results. Thus, we propose that memory researchers should prefer explicit matching tests and readers interested in the neural substrates of recognition memory should give explicit matching tests greater interpretive weight.
{"title":"What does preferential viewing tell us about the neurobiology of recognition memory?","authors":"Benjamin M. Basile, Spencer J. Waters, Elisabeth A. Murray","doi":"10.1016/j.tins.2024.03.003","DOIUrl":"https://doi.org/10.1016/j.tins.2024.03.003","url":null,"abstract":"<p>The two tests most widely used in nonhuman primates to assess the neurobiology of recognition memory produce conflicting results. Preferential viewing tests (e.g., visual paired comparison) produce robust impairments following hippocampal lesions, whereas matching tests (e.g., delayed nonmatching-to-sample) often show complete sparing. Here, we review the data, the proposed explanations for this discrepancy, and then critically evaluate those explanations. The most likely explanation is that preferential viewing tests are not a process-pure assessment of recognition memory, but also test elements of novelty-seeking, habituation, and motivation. These confounds likely explain the conflicting results. Thus, we propose that memory researchers should prefer explicit matching tests and readers interested in the neural substrates of recognition memory should give explicit matching tests greater interpretive weight.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1016/j.tins.2024.03.004
Nathalie Jurisch-Yaksi, Dagmar Wachten, Jay Gopalakrishnan
Cilia are fascinating organelles that act as cellular antennae, sensing the cellular environment. Cilia gained significant attention in the late 1990s after their dysfunction was linked to genetic diseases known as ciliopathies. Since then, several breakthrough discoveries have uncovered the mechanisms underlying cilia biogenesis and function. Like most cells in the animal kingdom, neurons also harbor cilia, which are enriched in neuromodulatory receptors. Yet, how neuronal cilia modulate neuronal physiology and animal behavior remains poorly understood. By comparing ciliary biology between the sensory and central nervous systems (CNS), we provide new perspectives on the functions of cilia in brain physiology.
{"title":"The neuronal cilium – a highly diverse and dynamic organelle involved in sensory detection and neuromodulation","authors":"Nathalie Jurisch-Yaksi, Dagmar Wachten, Jay Gopalakrishnan","doi":"10.1016/j.tins.2024.03.004","DOIUrl":"https://doi.org/10.1016/j.tins.2024.03.004","url":null,"abstract":"<p>Cilia are fascinating organelles that act as cellular antennae, sensing the cellular environment. Cilia gained significant attention in the late 1990s after their dysfunction was linked to genetic diseases known as ciliopathies. Since then, several breakthrough discoveries have uncovered the mechanisms underlying cilia biogenesis and function. Like most cells in the animal kingdom, neurons also harbor cilia, which are enriched in neuromodulatory receptors. Yet, how neuronal cilia modulate neuronal physiology and animal behavior remains poorly understood. By comparing ciliary biology between the sensory and central nervous systems (CNS), we provide new perspectives on the functions of cilia in brain physiology.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1016/j.tins.2024.02.003
Nicholas B. Turk-Browne, Richard N. Aslin
The functional properties of the infant brain are poorly understood. Recent advances in cognitive neuroscience are opening new avenues for measuring brain activity in human infants. These include novel uses of existing technologies such as electroencephalography (EEG) and magnetoencephalography (MEG), the availability of newer technologies including functional near-infrared spectroscopy (fNIRS) and optically pumped magnetometry (OPM), and innovative applications of functional magnetic resonance imaging (fMRI) in awake infants during cognitive tasks. In this review article we catalog these available non-invasive methods, discuss the challenges and opportunities encountered when applying them to human infants, and highlight the potential they may ultimately hold for advancing our understanding of the youngest minds.
{"title":"Infant neuroscience: how to measure brain activity in the youngest minds","authors":"Nicholas B. Turk-Browne, Richard N. Aslin","doi":"10.1016/j.tins.2024.02.003","DOIUrl":"https://doi.org/10.1016/j.tins.2024.02.003","url":null,"abstract":"<p>The functional properties of the infant brain are poorly understood. Recent advances in cognitive neuroscience are opening new avenues for measuring brain activity in human infants. These include novel uses of existing technologies such as electroencephalography (EEG) and magnetoencephalography (MEG), the availability of newer technologies including functional near-infrared spectroscopy (fNIRS) and optically pumped magnetometry (OPM), and innovative applications of functional magnetic resonance imaging (fMRI) in awake infants during cognitive tasks. In this review article we catalog these available non-invasive methods, discuss the challenges and opportunities encountered when applying them to human infants, and highlight the potential they may ultimately hold for advancing our understanding of the youngest minds.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}