Pub Date : 2024-07-01Epub Date: 2024-05-31DOI: 10.1016/j.tins.2024.05.007
Andrea I Luppi, Fernando E Rosas, Pedro A M Mediano, Athena Demertzi, David K Menon, Emmanuel A Stamatakis
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
{"title":"Unravelling consciousness and brain function through the lens of time, space, and information.","authors":"Andrea I Luppi, Fernando E Rosas, Pedro A M Mediano, Athena Demertzi, David K Menon, Emmanuel A Stamatakis","doi":"10.1016/j.tins.2024.05.007","DOIUrl":"10.1016/j.tins.2024.05.007","url":null,"abstract":"<p><p>Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"551-568"},"PeriodicalIF":14.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-22DOI: 10.1016/j.tins.2024.04.007
Calvin J Kersbergen, Dwight E Bergles
Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.
{"title":"Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset.","authors":"Calvin J Kersbergen, Dwight E Bergles","doi":"10.1016/j.tins.2024.04.007","DOIUrl":"10.1016/j.tins.2024.04.007","url":null,"abstract":"<p><p>Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"522-537"},"PeriodicalIF":14.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141088867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1016/s0166-2236(24)00097-3
No Abstract
无摘要
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/s0166-2236(24)00097-3","DOIUrl":"https://doi.org/10.1016/s0166-2236(24)00097-3","url":null,"abstract":"No Abstract","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":"271 1","pages":""},"PeriodicalIF":15.9,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1016/s0166-2236(24)00094-8
No Abstract
无摘要
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/s0166-2236(24)00094-8","DOIUrl":"https://doi.org/10.1016/s0166-2236(24)00094-8","url":null,"abstract":"No Abstract","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":"317 1","pages":""},"PeriodicalIF":15.9,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-09DOI: 10.1016/j.tins.2024.04.003
Wenyan Zhang, Hong-Shuo Sun, Xiaoying Wang, Aaron S Dumont, Qiang Liu
Aging may lead to low-level chronic inflammation that increases the susceptibility to age-related conditions, including memory impairment and progressive loss of brain volume. As brain health is essential to promoting healthspan and lifespan, it is vital to understand age-related changes in the immune system and central nervous system (CNS) that drive normal brain aging. However, the relative importance, mechanistic interrelationships, and hierarchical order of such changes and their impact on normal brain aging remain to be clarified. Here, we synthesize accumulating evidence that age-related DNA damage and cellular senescence in the immune system and CNS contribute to the escalation of neuroinflammation and cognitive decline during normal brain aging. Targeting cellular senescence and immune modulation may provide a logical rationale for developing new treatment options to restore immune homeostasis and counteract age-related brain dysfunction and diseases.
衰老可能会导致低水平的慢性炎症,从而增加对与年龄有关的疾病的易感性,包括记忆损伤和脑容量的逐渐丧失。由于大脑健康对促进健康和寿命至关重要,因此了解免疫系统和中枢神经系统(CNS)中与年龄相关的、驱动大脑正常衰老的变化至关重要。然而,这些变化的相对重要性、机理上的相互关系、层次顺序及其对正常脑衰老的影响仍有待澄清。在这里,我们综合了越来越多的证据,证明与年龄相关的 DNA 损伤以及免疫系统和中枢神经系统中的细胞衰老是正常脑衰老过程中神经炎症升级和认知能力下降的原因。以细胞衰老和免疫调节为靶点,可以为开发新的治疗方案提供合理的依据,从而恢复免疫平衡,对抗与年龄相关的脑功能障碍和疾病。
{"title":"Cellular senescence, DNA damage, and neuroinflammation in the aging brain.","authors":"Wenyan Zhang, Hong-Shuo Sun, Xiaoying Wang, Aaron S Dumont, Qiang Liu","doi":"10.1016/j.tins.2024.04.003","DOIUrl":"10.1016/j.tins.2024.04.003","url":null,"abstract":"<p><p>Aging may lead to low-level chronic inflammation that increases the susceptibility to age-related conditions, including memory impairment and progressive loss of brain volume. As brain health is essential to promoting healthspan and lifespan, it is vital to understand age-related changes in the immune system and central nervous system (CNS) that drive normal brain aging. However, the relative importance, mechanistic interrelationships, and hierarchical order of such changes and their impact on normal brain aging remain to be clarified. Here, we synthesize accumulating evidence that age-related DNA damage and cellular senescence in the immune system and CNS contribute to the escalation of neuroinflammation and cognitive decline during normal brain aging. Targeting cellular senescence and immune modulation may provide a logical rationale for developing new treatment options to restore immune homeostasis and counteract age-related brain dysfunction and diseases.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"461-474"},"PeriodicalIF":15.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140904303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-17DOI: 10.1016/j.tins.2024.04.005
Katherine T Martucci
Evidence of central nervous system (CNS) exogenous opioid effects in humans has been primarily gained through neuroimaging of three participant populations: individuals after acute opioid administration, those with opioid use disorder (OUD), and those with chronic pain receiving opioid therapy. In both the brain and spinal cord, opioids alter processes of pain, cognition, and reward. Opioid-related CNS effects may persist and accumulate with longer opioid use duration. Meanwhile, opioid-induced benefits versus risks to brain health remain unclear. This review article highlights recent accumulating evidence for how exogenous opioids impact the CNS in humans. While investigation of CNS opioid effects has remained largely disparate across contexts of opioid acute administration, OUD, and chronic pain opioid therapy, integration across these contexts may enable advancement toward effective interventions.
{"title":"Neuroimaging of opioid effects in humans across conditions of acute administration, chronic pain therapy, and opioid use disorder.","authors":"Katherine T Martucci","doi":"10.1016/j.tins.2024.04.005","DOIUrl":"10.1016/j.tins.2024.04.005","url":null,"abstract":"<p><p>Evidence of central nervous system (CNS) exogenous opioid effects in humans has been primarily gained through neuroimaging of three participant populations: individuals after acute opioid administration, those with opioid use disorder (OUD), and those with chronic pain receiving opioid therapy. In both the brain and spinal cord, opioids alter processes of pain, cognition, and reward. Opioid-related CNS effects may persist and accumulate with longer opioid use duration. Meanwhile, opioid-induced benefits versus risks to brain health remain unclear. This review article highlights recent accumulating evidence for how exogenous opioids impact the CNS in humans. While investigation of CNS opioid effects has remained largely disparate across contexts of opioid acute administration, OUD, and chronic pain opioid therapy, integration across these contexts may enable advancement toward effective interventions.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"418-431"},"PeriodicalIF":15.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-16DOI: 10.1016/j.tins.2024.05.002
Michael T Craig, Monika H Bielska, Kate Jeffery
A recent study by Hadler and colleagues uncovered a novel form of plasticity of gamma oscillations in an ex vivo hippocampal slice preparation which they term 'gamma potentiation'. We discuss the potential cellular mechanisms of this form of plasticity and its functional and translational implications.
{"title":"Mechanisms and implications of gamma oscillation plasticity.","authors":"Michael T Craig, Monika H Bielska, Kate Jeffery","doi":"10.1016/j.tins.2024.05.002","DOIUrl":"10.1016/j.tins.2024.05.002","url":null,"abstract":"<p><p>A recent study by Hadler and colleagues uncovered a novel form of plasticity of gamma oscillations in an ex vivo hippocampal slice preparation which they term 'gamma potentiation'. We discuss the potential cellular mechanisms of this form of plasticity and its functional and translational implications.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"398-399"},"PeriodicalIF":15.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-20DOI: 10.1016/j.tins.2024.04.009
Ruth A Lanius, Breanne E Kearney
In a recent study, Clancy et al. elucidate a connection between activity patterns of the hippocampus (HC) and the broader functional connectivity networks associated with trauma-related intrusive memories (TR-IMs). This neurophenomenological methodology situates the HC within a larger neural framework and provides a nuanced exploration of the neurobiological underpinnings of distinct characteristics of TR-IMs.
{"title":"Contextualized hippocampal-cortical dynamics underlying traumatic memory.","authors":"Ruth A Lanius, Breanne E Kearney","doi":"10.1016/j.tins.2024.04.009","DOIUrl":"10.1016/j.tins.2024.04.009","url":null,"abstract":"<p><p>In a recent study, Clancy et al. elucidate a connection between activity patterns of the hippocampus (HC) and the broader functional connectivity networks associated with trauma-related intrusive memories (TR-IMs). This neurophenomenological methodology situates the HC within a larger neural framework and provides a nuanced exploration of the neurobiological underpinnings of distinct characteristics of TR-IMs.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"400-401"},"PeriodicalIF":15.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-28DOI: 10.1016/j.tins.2024.04.004
Nárlon C Boa Sorte Silva, Cindy K Barha, Kirk I Erickson, Arthur F Kramer, Teresa Liu-Ambrose
Exercise training is an important strategy to counteract cognitive and brain health decline during aging. Evidence from systematic reviews and meta-analyses supports the notion of beneficial effects of exercise in cognitively unimpaired and impaired older individuals. However, the effects are often modest, and likely influenced by moderators such as exercise training parameters, sample characteristics, outcome assessments, and control conditions. Here, we discuss evidence on the impact of exercise on cognitive and brain health outcomes in healthy aging and in individuals with or at risk for cognitive impairment and neurodegeneration. We also review neuroplastic adaptations in response to exercise and their potential neurobiological mechanisms. We conclude by highlighting goals for future studies, including addressing unexplored neurobiological mechanisms and the inclusion of under-represented populations.
{"title":"Physical exercise, cognition, and brain health in aging.","authors":"Nárlon C Boa Sorte Silva, Cindy K Barha, Kirk I Erickson, Arthur F Kramer, Teresa Liu-Ambrose","doi":"10.1016/j.tins.2024.04.004","DOIUrl":"10.1016/j.tins.2024.04.004","url":null,"abstract":"<p><p>Exercise training is an important strategy to counteract cognitive and brain health decline during aging. Evidence from systematic reviews and meta-analyses supports the notion of beneficial effects of exercise in cognitively unimpaired and impaired older individuals. However, the effects are often modest, and likely influenced by moderators such as exercise training parameters, sample characteristics, outcome assessments, and control conditions. Here, we discuss evidence on the impact of exercise on cognitive and brain health outcomes in healthy aging and in individuals with or at risk for cognitive impairment and neurodegeneration. We also review neuroplastic adaptations in response to exercise and their potential neurobiological mechanisms. We conclude by highlighting goals for future studies, including addressing unexplored neurobiological mechanisms and the inclusion of under-represented populations.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"402-417"},"PeriodicalIF":15.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1016/j.tins.2024.05.001
Ismael Ferrer, Chadni Sanyal, Marie-Jo Moutin, Damaris N Lorenzo
In a recent study, Ziak et al. employed precise sparse labeling and spatiotemporally controlled genetic manipulations to uncover novel regulators of axon branching of layer 2/3 mouse callosal projection neurons. The authors elucidated a cell-autonomous signaling pathway wherein glycogen synthase kinase 3β (GSK3β) phosphorylation of microtubule-associated protein 1B (MAP1B) restricts interstitial axon branching by modulating microtubule (MT) tyrosination status.