Pub Date : 2017-02-01DOI: 10.13189/UJPA.2017.110104
P. I. John
India has an international presence in Plasma Physics and its diverse applications such as thermonuclear fusion, material processing, strategic and environmental applications and plasma devices. From a modest start in the early 1970s, we have made great strides in the field of experimental plasma physics. Capacity building in techniques relevant to plasma production, manipulation and parameter control, pulsed power, creation of magnetic fields of complex geometries, clean vacuum and pumping systems, development and deployment of diagnostics to enable understanding of fundamental processes in plasmas and computer simulation to model plasma phenomena have been truly remarkable. Parallel to this, a community of physicists, engineers and computer experts has grown and matured. Funding mechanisms and financial support essential to broad base the research and development activity by drawing in Universities and education institutes have been nucleated. It is through these activities that the human resource and technology development essential to sustain India's ambitious forays into magnetic confinement fusion and industrial and strategic plasma applications has taken place. This paper is an attempt to give a historical perspective to this journey, which started at the Physical Research Laboratory, Ahmedabad and later, involved the Institute for Plasma Research at Gandhinagar, many DAE Institutions, IITs and Universities.
{"title":"From Electrojet to ITER: India's Journey in Experimental Plasma Physics","authors":"P. I. John","doi":"10.13189/UJPA.2017.110104","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110104","url":null,"abstract":"India has an international presence in Plasma Physics and its diverse applications such as thermonuclear fusion, material processing, strategic and environmental applications and plasma devices. From a modest start in the early 1970s, we have made great strides in the field of experimental plasma physics. Capacity building in techniques relevant to plasma production, manipulation and parameter control, pulsed power, creation of magnetic fields of complex geometries, clean vacuum and pumping systems, development and deployment of diagnostics to enable understanding of fundamental processes in plasmas and computer simulation to model plasma phenomena have been truly remarkable. Parallel to this, a community of physicists, engineers and computer experts has grown and matured. Funding mechanisms and financial support essential to broad base the research and development activity by drawing in Universities and education institutes have been nucleated. It is through these activities that the human resource and technology development essential to sustain India's ambitious forays into magnetic confinement fusion and industrial and strategic plasma applications has taken place. This paper is an attempt to give a historical perspective to this journey, which started at the Physical Research Laboratory, Ahmedabad and later, involved the Institute for Plasma Research at Gandhinagar, many DAE Institutions, IITs and Universities.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"143 1","pages":"33-43"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75041650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.13189/UJPA.2017.110101
J. Connerade
Understanding the nature of light has stimulated scientific research over many centuries and progress in the description of electromagnetic radiation has been key in the development of modern science. Some highlights in this story are celebrated in the context of the International Year of Light YL2015 declared by UNESCO, which were the backdrop for scientific meetings held in Caceres (Spain) and in Poland (Wroclaw) involving the European Academy of Sciences Arts and Letters. It is emphasised that this long history of research on Light is by no means over, and has resulted in many important advances, including such applications as the laser and the harnessing of solar energy for electric power generation, of great importance for the economic development of Southern regions such as North Africa. Cultural aspects of the importance of light (in the Arts, in literature and in philosophy) are also mentioned.
{"title":"Light in the Service of Mankind","authors":"J. Connerade","doi":"10.13189/UJPA.2017.110101","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110101","url":null,"abstract":"Understanding the nature of light has stimulated scientific research over many centuries and progress in the description of electromagnetic radiation has been key in the development of modern science. Some highlights in this story are celebrated in the context of the International Year of Light YL2015 declared by UNESCO, which were the backdrop for scientific meetings held in Caceres (Spain) and in Poland (Wroclaw) involving the European Academy of Sciences Arts and Letters. It is emphasised that this long history of research on Light is by no means over, and has resulted in many important advances, including such applications as the laser and the harnessing of solar energy for electric power generation, of great importance for the economic development of Southern regions such as North Africa. Cultural aspects of the importance of light (in the Arts, in literature and in philosophy) are also mentioned.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"40 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74003100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.13189/UJPA.2017.110102
V. Plekhanov
The experimental evidence of renormalization the energy of the elementary excitations in solids which are differ by term of one neutron from each other by the strong (nuclear) interaction has been presented for the first time. This evidence is based on two independent results: 1) The increase exciton energy on 103 meV is caused by the adding of one neutron (using LiD crystals instead LiH ones); 2) After increasing the amounts by one neutron the energy of LO phonons has decreased by 36 meV. The last one is directly seen from luminescence and scattering spectra. As far as the gravitation, electromagnetic and weak interactions are the same in both of kind crystals, it only changes the strong interaction. Therefore a logical conclusion is made that the renormalization of the energy of electromagnetic excitations (excitons, phonons) is carried out by the strong (nuclear) interaction.
{"title":"Renormalization the Energy of Elementary Excitations in Solids by the Strong (Nuclear) Interaction","authors":"V. Plekhanov","doi":"10.13189/UJPA.2017.110102","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110102","url":null,"abstract":"The experimental evidence of renormalization the energy of the elementary excitations in solids which are differ by term of one neutron from each other by the strong (nuclear) interaction has been presented for the first time. This evidence is based on two independent results: 1) The increase exciton energy on 103 meV is caused by the adding of one neutron (using LiD crystals instead LiH ones); 2) After increasing the amounts by one neutron the energy of LO phonons has decreased by 36 meV. The last one is directly seen from luminescence and scattering spectra. As far as the gravitation, electromagnetic and weak interactions are the same in both of kind crystals, it only changes the strong interaction. Therefore a logical conclusion is made that the renormalization of the energy of electromagnetic excitations (excitons, phonons) is carried out by the strong (nuclear) interaction.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"14 1","pages":"6-12"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84538288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.13189/UJPA.2017.110603
D. T. Anh, N. T. Thanh
Perovskite BaSnO 3 materials were synthesized under hydrothermal condition followed heat treatment at variable temperature 423 - 673 K. Phase structure and morphology and optical properties were characterized. Result showed band gap about 3.31 eV and highly optical transparency in the visible spectral region and average particles size 40 -45 nm. Thermal annealing process has affected on phase structure and luminescence in BaSnO 3 material.
{"title":"Investigation of Optical Properties on BaSnO 3 Materials","authors":"D. T. Anh, N. T. Thanh","doi":"10.13189/UJPA.2017.110603","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110603","url":null,"abstract":"Perovskite BaSnO 3 materials were synthesized under hydrothermal condition followed heat treatment at variable temperature 423 - 673 K. Phase structure and morphology and optical properties were characterized. Result showed band gap about 3.31 eV and highly optical transparency in the visible spectral region and average particles size 40 -45 nm. Thermal annealing process has affected on phase structure and luminescence in BaSnO 3 material.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"257 1","pages":"235-238"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82950337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.13189/UJPA.2017.110501
Mehrnoosh Farahmand, H. Mohammadzadeh
Two particles, even being far from each other have quantum correlation as a result of the existence of entanglement between them. Therefore, information can be shared by entangled particles, sitting in separate places. Superdense coding is one of the quantum protocols that rely on entanglement. In this paper, we review superdense coding with a non-inertial observer in the beyond single mode approximation and investigate the probability of success for superdense coding. We analyze the mutual information due to the effects of acceleration on the quantum and classical correlations of the state. Entanglement behavior is studied considering an entanglement measure the so-called the concurrence. Comparing the mutual information and the concurrence with the probability of superdense coding is shown that quantities have different behaviors, particularly, when the beyond single mode approximation plays a powerful role.
{"title":"Challenges of Superdense Coding with Accelerated Fermions","authors":"Mehrnoosh Farahmand, H. Mohammadzadeh","doi":"10.13189/UJPA.2017.110501","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110501","url":null,"abstract":"Two particles, even being far from each other have quantum correlation as a result of the existence of entanglement between them. Therefore, information can be shared by entangled particles, sitting in separate places. Superdense coding is one of the quantum protocols that rely on entanglement. In this paper, we review superdense coding with a non-inertial observer in the beyond single mode approximation and investigate the probability of success for superdense coding. We analyze the mutual information due to the effects of acceleration on the quantum and classical correlations of the state. Entanglement behavior is studied considering an entanglement measure the so-called the concurrence. Comparing the mutual information and the concurrence with the probability of superdense coding is shown that quantities have different behaviors, particularly, when the beyond single mode approximation plays a powerful role.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"30 1","pages":"139-143"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75847279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.13189/UJPA.2017.110301
G. Eichenhofer, I. Fernandez, A. Wennberg
It has been demonstrated by several groups that HiPIMS is a state of the art tool for applying demanding coatings with superior film properties. The real industrial breakthrough for the HiPIMS-technology has not yet happened. On the other hand, the up till now available HiPIMS-PS were mainly been up-scaled “prototypes”, far away from industrial work horses. With the hiP-V HiPIMS power system, a direct derivative of a robust power supply technology already in commercial use for public transportation systems, another milestone is set to make the HiPIMS technology go mainstream. HiPIMS is not a revolution that will make all other technologies obsolete, yet it is a very powerful complement. With a reliable, multi-functional power supply and with a rapid arc-handling, it could possibly be a start of a new era in thin film production. Just consider the possibility of etching and implantation to increase cleanliness and adhesion of the samples. Until now, most of the R&D work done in HiPIMS, has been dedicated to hard coatings and tool coatings. Here, HiPIMS is surely useful but not the expected technological breakthrough. For the future, the implementation of the new pos. reverse pulse, the hiP-V hiPlus HiPIMS technology, is opening a whole new field of possible applications for i.e. nonconductive substrates where no bias can be applied. Glass and plastics can be processed with remarkable results in hardness, enhanced film properties and additionally, it is achieved at lower substrate temperatures. It has been a slow start for HiPIMS, but the future looks bright.
{"title":"Industrial Use of HiPIMS up to Now and a Glance into the Future, A Review by a Manufacturer Introduction of the hiP-V hiPlus Technology","authors":"G. Eichenhofer, I. Fernandez, A. Wennberg","doi":"10.13189/UJPA.2017.110301","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110301","url":null,"abstract":"It has been demonstrated by several groups that HiPIMS is a state of the art tool for applying demanding coatings with superior film properties. The real industrial breakthrough for the HiPIMS-technology has not yet happened. On the other hand, the up till now available HiPIMS-PS were mainly been up-scaled “prototypes”, far away from industrial work horses. With the hiP-V HiPIMS power system, a direct derivative of a robust power supply technology already in commercial use for public transportation systems, another milestone is set to make the HiPIMS technology go mainstream. HiPIMS is not a revolution that will make all other technologies obsolete, yet it is a very powerful complement. With a reliable, multi-functional power supply and with a rapid arc-handling, it could possibly be a start of a new era in thin film production. Just consider the possibility of etching and implantation to increase cleanliness and adhesion of the samples. Until now, most of the R&D work done in HiPIMS, has been dedicated to hard coatings and tool coatings. Here, HiPIMS is surely useful but not the expected technological breakthrough. For the future, the implementation of the new pos. reverse pulse, the hiP-V hiPlus HiPIMS technology, is opening a whole new field of possible applications for i.e. nonconductive substrates where no bias can be applied. Glass and plastics can be processed with remarkable results in hardness, enhanced film properties and additionally, it is achieved at lower substrate temperatures. It has been a slow start for HiPIMS, but the future looks bright.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"1 1","pages":"73-79"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88870987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.13189/ujpa.2017.110201
M. Mahfuzur, A. Golam, Md. Anwarul
The aim of this study is to ensure the MLC positional and leaf speed accuracy. To check the MLC positional and leaf speed accuracy picket fence and synchronized segmented stripes test pattern were performed. The relative and absolute dosimetric verification were analyzed in this study. This project was followed by Quality control for Intensity-Modulated Radiation Therapy, as in the Recommendation No.15 from SGSMP. For relative dosimetric verification test such as different dose in same depth, same dose in different depth, chair test and inhomogeneous test were performed. All the plans were followed by Gamma index. To verify absolute dose 0.3 cc SemiFlex chamber along with a PTW solid water phantom was used. In picket fence and synchronized segmented stripes test, match-lines appear at -10.0, -5.0, 0.0, 5.0, 10.0 and -12.0, -8.0, -4.0, 0.0, 4.0, 8.0, 12.0 cm respectively from the center of the field. The Gamma Index for the different dose in same depth, same dose in different depth, chair test and inhomogeneous test were 99.48% & -0.52%, 99.35% & -0.65%, 99.04% & -1.96% and 98.34% & -1.66% at the pixel range of -1.00 to 1.00 & 1.00 to 2.00 respectively. Calculated and measured absolute dose for three cases were 2.050 &1.970 (% deviation 4.06), 1.728 & 1.730 (% deviation -0.011) and 1.270 & 1.250 (% deviation 1.6).
{"title":"Quality Control of Intensity Modulated Radiation Therapy (IMRT)","authors":"M. Mahfuzur, A. Golam, Md. Anwarul","doi":"10.13189/ujpa.2017.110201","DOIUrl":"https://doi.org/10.13189/ujpa.2017.110201","url":null,"abstract":"The aim of this study is to ensure the MLC positional and leaf speed accuracy. To check the MLC positional and leaf speed accuracy picket fence and synchronized segmented stripes test pattern were performed. The relative and absolute dosimetric verification were analyzed in this study. This project was followed by Quality control for Intensity-Modulated Radiation Therapy, as in the Recommendation No.15 from SGSMP. For relative dosimetric verification test such as different dose in same depth, same dose in different depth, chair test and inhomogeneous test were performed. All the plans were followed by Gamma index. To verify absolute dose 0.3 cc SemiFlex chamber along with a PTW solid water phantom was used. In picket fence and synchronized segmented stripes test, match-lines appear at -10.0, -5.0, 0.0, 5.0, 10.0 and -12.0, -8.0, -4.0, 0.0, 4.0, 8.0, 12.0 cm respectively from the center of the field. The Gamma Index for the different dose in same depth, same dose in different depth, chair test and inhomogeneous test were 99.48% & -0.52%, 99.35% & -0.65%, 99.04% & -1.96% and 98.34% & -1.66% at the pixel range of -1.00 to 1.00 & 1.00 to 2.00 respectively. Calculated and measured absolute dose for three cases were 2.050 &1.970 (% deviation 4.06), 1.728 & 1.730 (% deviation -0.011) and 1.270 & 1.250 (% deviation 1.6).","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"20 1","pages":"45-49"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91374867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.13189/UJPA.2017.110302
W. Tay, S. S. Kausik, S. Yap, C. S. Wong
In this work, the discharge dynamics in an atmospheric pressure dielectric barrier discharge (DBD) is studied in a DBD reactor having parallel plate electrodes geometry. The DBD reactor is powered by a 50 Hz ac high voltage power source through a ballast resistor. The images of filaments occurring in the discharge gap are captured using a high speed intensified charge coupled device camera. The occurrence of frequent synchronous breakdown of micro discharges has been observed across the discharge gap when the electron avalanche happens in the direction from the dielectric surface towards the opposite electrode. The discharge gap dependence on synchronous breakdown is studied by changing the discharge gap. The shape of the filaments has been found to be strongly dependent on the direction of the electron avalanche. It is demonstrated that the diffusion of electrons occurs when the electron avalanche happens in the direction towards the dielectric from the opposite electrode. A smaller diffusion leading to narrower filaments is observed when the electron avalanche happens in the direction from the dielectric to the opposite electrode. This can be explained by the existence of memory charge on the dielectric surface.
{"title":"Study on Discharge Dynamics in an Atmospheric Pressure Dielectric Barrier Discharge","authors":"W. Tay, S. S. Kausik, S. Yap, C. S. Wong","doi":"10.13189/UJPA.2017.110302","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110302","url":null,"abstract":"In this work, the discharge dynamics in an atmospheric pressure dielectric barrier discharge (DBD) is studied in a DBD reactor having parallel plate electrodes geometry. The DBD reactor is powered by a 50 Hz ac high voltage power source through a ballast resistor. The images of filaments occurring in the discharge gap are captured using a high speed intensified charge coupled device camera. The occurrence of frequent synchronous breakdown of micro discharges has been observed across the discharge gap when the electron avalanche happens in the direction from the dielectric surface towards the opposite electrode. The discharge gap dependence on synchronous breakdown is studied by changing the discharge gap. The shape of the filaments has been found to be strongly dependent on the direction of the electron avalanche. It is demonstrated that the diffusion of electrons occurs when the electron avalanche happens in the direction towards the dielectric from the opposite electrode. A smaller diffusion leading to narrower filaments is observed when the electron avalanche happens in the direction from the dielectric to the opposite electrode. This can be explained by the existence of memory charge on the dielectric surface.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"83 1","pages":"80-84"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84253921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.13189/ujpa.2016.100605
A. Kotkov
There are three generations of charged leptons - the electron, muon, and tau. Masses of elementary particles are considered as fundamental constants. Modern physics believes these masses could be calculated from more fundamental mass scale, e.g., the Planck mass. Scientists seek for such relationship for many years. However, a relation between mass-spectrum of charged leptons and the Planck mass is still unknown. Here we show a way to derive the mass-spectrum of charged leptons from the Planck mass.
{"title":"Mass-spectrum of Charged Leptons from the Planck Mass","authors":"A. Kotkov","doi":"10.13189/ujpa.2016.100605","DOIUrl":"https://doi.org/10.13189/ujpa.2016.100605","url":null,"abstract":"There are three generations of charged leptons - the electron, muon, and tau. Masses of elementary particles are considered as fundamental constants. Modern physics believes these masses could be calculated from more fundamental mass scale, e.g., the Planck mass. Scientists seek for such relationship for many years. However, a relation between mass-spectrum of charged leptons and the Planck mass is still unknown. Here we show a way to derive the mass-spectrum of charged leptons from the Planck mass.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"35 1","pages":"207-211"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90742380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.13189/UJPA.2016.100604
U. Seshavatharam, S. Lakshminarayana
We show that, Schwarzschild radius of Planck mass plays a vital role in electroweak and strong interactions. With reference to the observed large proportionality ratio, , it seems appropriate to consider a large nuclear gravitational constant, . Qualitatively this idea is in agreement with 'Strong gravity' concept proposed by Abdus Salam and C.Sivaram [Mod. Phys. Lett., A8(4), 321- 326. (1993)]. We would like to suggest that, by replacing the Newtonian gravitational constant with the proposed nuclear gravitational constant, predicted high energy levels of String theory can be brought down to the current hadronic scale. Based on this idea, we defined the nuclear Planck mass, and proposed a quantized model mechanism for understanding the hadronic mass spectrum.
{"title":"Scale Independent Workable Model of Final Unification","authors":"U. Seshavatharam, S. Lakshminarayana","doi":"10.13189/UJPA.2016.100604","DOIUrl":"https://doi.org/10.13189/UJPA.2016.100604","url":null,"abstract":"We show that, Schwarzschild radius of Planck mass plays a vital role in electroweak and strong interactions. With reference to the observed large proportionality ratio, , it seems appropriate to consider a large nuclear gravitational constant, . Qualitatively this idea is in agreement with 'Strong gravity' concept proposed by Abdus Salam and C.Sivaram [Mod. Phys. Lett., A8(4), 321- 326. (1993)]. We would like to suggest that, by replacing the Newtonian gravitational constant with the proposed nuclear gravitational constant, predicted high energy levels of String theory can be brought down to the current hadronic scale. Based on this idea, we defined the nuclear Planck mass, and proposed a quantized model mechanism for understanding the hadronic mass spectrum.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"60 1","pages":"198-206"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82605782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}