Pub Date : 2017-12-01DOI: 10.13189/UJPA.2017.110601
V. Shevchenko, A. V. Konyukova, D. Eselevich, D. D. Afonichev, V. Davydov, N. Popov
The data on oxidation of zirconium and zirconium hydride powders during heating in air to 1373K at a rate of 10K/min were obtained using thermogravimetry (TG), differential scanning calorimetry (DSC) and mass spectrometry of reaction products. The specific heat release during oxidation of hydride powder was found to decrease due to the endothermic character of the decomposition reaction and the fact that the hydrogen combustion reaction takes place in the gaseous phase. The phase formation features in the processes of powders oxidation, their connection with the metal and hydride reactivity and the morphology of the reaction products were determined by the X-ray diffraction method.
{"title":"Oxidation of Zirconium and Zirconium Hydride Powders during Programmed Heating in Air","authors":"V. Shevchenko, A. V. Konyukova, D. Eselevich, D. D. Afonichev, V. Davydov, N. Popov","doi":"10.13189/UJPA.2017.110601","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110601","url":null,"abstract":"The data on oxidation of zirconium and zirconium hydride powders during heating in air to 1373K at a rate of 10K/min were obtained using thermogravimetry (TG), differential scanning calorimetry (DSC) and mass spectrometry of reaction products. The specific heat release during oxidation of hydride powder was found to decrease due to the endothermic character of the decomposition reaction and the fact that the hydrogen combustion reaction takes place in the gaseous phase. The phase formation features in the processes of powders oxidation, their connection with the metal and hydride reactivity and the morphology of the reaction products were determined by the X-ray diffraction method.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"128 20 1","pages":"197-201"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74693387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01DOI: 10.13189/UJPA.2017.110604
A. Ahmed, H. Boukhal, T. E. Bardouni, O. Hajjaji, M. Makhloul, S. E. Ouahdani, M. Kaddour
In criticality and stability studies of the nuclear reactor, it is important to evaluate the impact of the uncertainties of the basic nuclear data (cross sections) on the different neutron parameters. So this work is interested in the analysis of the sensitivity and uncertainties due to the nuclear data of 1H, 16O, 239Pu and 240Pu Isotopes in the ENDF/B-VII.1 cross sections processed by the latest version of NJOY code on the effective multiplication factor. Different rapid and thermal cases of the different IHECSBE benchmarks have been studied to calculate the sensitivity vectors for 1H, 16O, 239Pu and 240Pu Isotopes. These sensitivity vectors are calculated by using the adjoint-weighted perturbation method based on the Ksen card of the Monte Carlo code MCNP6.1. Thus, the uncertainties induced by nuclear data have been calculated by combining the sensitivity vectors with the covariance matrices that are generated by the ERRORJ module of NJOY2016. We found several cross sections and covariance matrices lack the adjustment: The capture and fission cross sections of the 239Pu and their covariance matrices lack the adjustment in the thermal energies. And all of the four cross sections (elastic, inelastic, capture and fission) and their covariance matrices for the same isotope lack the adjustment in the rapid energies. For 16O; the elastic cross section and its covariance matrix lack the adjustment in the thermal energies. The elastic and capture cross sections of the 1H and their covariance matrices lack the adjustment especially in the thermal energies.
{"title":"Sensitivity and Uncertainty Analysis on the Keff Produced by the 1 H, 16 O, 239 Pu and 240 Pu Cross Sections Uncertainties","authors":"A. Ahmed, H. Boukhal, T. E. Bardouni, O. Hajjaji, M. Makhloul, S. E. Ouahdani, M. Kaddour","doi":"10.13189/UJPA.2017.110604","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110604","url":null,"abstract":"In criticality and stability studies of the nuclear reactor, it is important to evaluate the impact of the uncertainties of the basic nuclear data (cross sections) on the different neutron parameters. So this work is interested in the analysis of the sensitivity and uncertainties due to the nuclear data of 1H, 16O, 239Pu and 240Pu Isotopes in the ENDF/B-VII.1 cross sections processed by the latest version of NJOY code on the effective multiplication factor. Different rapid and thermal cases of the different IHECSBE benchmarks have been studied to calculate the sensitivity vectors for 1H, 16O, 239Pu and 240Pu Isotopes. These sensitivity vectors are calculated by using the adjoint-weighted perturbation method based on the Ksen card of the Monte Carlo code MCNP6.1. Thus, the uncertainties induced by nuclear data have been calculated by combining the sensitivity vectors with the covariance matrices that are generated by the ERRORJ module of NJOY2016. We found several cross sections and covariance matrices lack the adjustment: The capture and fission cross sections of the 239Pu and their covariance matrices lack the adjustment in the thermal energies. And all of the four cross sections (elastic, inelastic, capture and fission) and their covariance matrices for the same isotope lack the adjustment in the rapid energies. For 16O; the elastic cross section and its covariance matrix lack the adjustment in the thermal energies. The elastic and capture cross sections of the 1H and their covariance matrices lack the adjustment especially in the thermal energies.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"24 1","pages":"239-246"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85198607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01DOI: 10.13189/UJPA.2017.110602
V. Simulik
The new relativistic equations of motion for the particles with arbitrary spin and nonzero mass, suggested by author in years 2014–2016, are under consideration. The complete version of brief paper in J. Phys: Conf. Ser., 670 (2016) 012047(1-16) is given. The axiomatic level description of the relativistic canonical quantum mechanics of an arbitrary mass and spin has been given. The 64-dimensional ClR(0,6) algebra in terms of Dirac gamma matrices has been suggested. The interpretation of the 28-dimensional gamma matrix representation of SO(8) algebra over the field of real numbers is given. The link between the relativistic canonical quantum mechanics of the arbitrary spin and the covariant local field theory in the form of extended Foldy–Wouthuysen transformation has been found. Different methods of the Dirac equation derivation have been reviewed. The manifestly covariant field equation for an arbitrary spin that follows from the corresponding equation of relativistic canonical quantum mechanics, has been considered. The found equations are without redundant components. The partial examples for spin s=3/2 and s=2 are presented. The covariant local field theory equations for spin s = (3/2,3/2) particle-antiparticle doublet and spin s = (2,2) particle-antiparticle doublet have been introduced. The Maxwell and slightly generalized Maxwell-like equations containing mass member have been considered as well.
{"title":"On the Relativistic Canonical Quantum Mechanics and Field Theory of Arbitrary Spin","authors":"V. Simulik","doi":"10.13189/UJPA.2017.110602","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110602","url":null,"abstract":"The new relativistic equations of motion for the particles with arbitrary spin and nonzero mass, suggested by author in years 2014–2016, are under consideration. The complete version of brief paper in J. Phys: Conf. Ser., 670 (2016) 012047(1-16) is given. The axiomatic level description of the relativistic canonical quantum mechanics of an arbitrary mass and spin has been given. The 64-dimensional ClR(0,6) algebra in terms of Dirac gamma matrices has been suggested. The interpretation of the 28-dimensional gamma matrix representation of SO(8) algebra over the field of real numbers is given. The link between the relativistic canonical quantum mechanics of the arbitrary spin and the covariant local field theory in the form of extended Foldy–Wouthuysen transformation has been found. Different methods of the Dirac equation derivation have been reviewed. The manifestly covariant field equation for an arbitrary spin that follows from the corresponding equation of relativistic canonical quantum mechanics, has been considered. The found equations are without redundant components. The partial examples for spin s=3/2 and s=2 are presented. The covariant local field theory equations for spin s = (3/2,3/2) particle-antiparticle doublet and spin s = (2,2) particle-antiparticle doublet have been introduced. The Maxwell and slightly generalized Maxwell-like equations containing mass member have been considered as well.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"74 1","pages":"202-234"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85873683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-10-01DOI: 10.13189/UJPA.2017.110507
A. Belyaev
{"title":"A New Model of the Birth of the Universe","authors":"A. Belyaev","doi":"10.13189/UJPA.2017.110507","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110507","url":null,"abstract":"","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"17 1","pages":"182-189"},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90341774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-10-01DOI: 10.13189/UJPA.2017.110505
V. Simulik, R. Tymchyk, T. Zajac
The transition from the He atom to the complex atoms description in the method of interacting configurations in the complex number representation has been presented. As a first step the problem of ionization of H- and Li+ ions is considered. The spectroscopic characteristics of the Be, Mg and Ca atoms in the problem of the electron-impact ionization of these atoms are investigated. Few results in the photoionization problem on the 1P autoionizing states above the n=2 threshold of helium-like Be++ ion are presented. The energies and the widths of the lowest 1S; 1P; 1D; and 1F autoionizing states of the Be, Mg atoms, and the lowest (1P) autoionizing states of Ca atom, are calculated. We consider briefly both a review of our previous results (together with results of other authors) and new calculations of our group. A brief review of the methods of the quasi-stationary states calculation is given.
{"title":"The Method of Interacting Configurations in Complex Number Representations: From Helium to the Complex Atoms","authors":"V. Simulik, R. Tymchyk, T. Zajac","doi":"10.13189/UJPA.2017.110505","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110505","url":null,"abstract":"The transition from the He atom to the complex atoms description in the method of interacting configurations in the complex number representation has been presented. As a first step the problem of ionization of H- and Li+ ions is considered. The spectroscopic characteristics of the Be, Mg and Ca atoms in the problem of the electron-impact ionization of these atoms are investigated. Few results in the photoionization problem on the 1P autoionizing states above the n=2 threshold of helium-like Be++ ion are presented. The energies and the widths of the lowest 1S; 1P; 1D; and 1F autoionizing states of the Be, Mg atoms, and the lowest (1P) autoionizing states of Ca atom, are calculated. We consider briefly both a review of our previous results (together with results of other authors) and new calculations of our group. A brief review of the methods of the quasi-stationary states calculation is given.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"49 1","pages":"162-175"},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79920373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-10-01DOI: 10.13189/UJPA.2017.110504
Slavica Brkić, M. Dželalija
To create conditions which ruled one billionth of a second after the Big Bang, it is necessary to heat and compact the nuclear matter. During the first microseconds after the Big Bang the universe went through such a phase transition at very high temperatures but very low net baryon density. At very high temperatures or densities, the hadrons melt and their constituents, the quarks and gluons, form a new phase of matter, the so called quark-gluon plasma. Relativistic heavy ion collisions aim to create a quark gluon plasma where quarks and gluons can move freely over volumes that are large in comparison to the typical size of a hadron. When the particles collide at high energies, it leads to the conversion of particle collision participants in a much heavier particle. If the energy density is large enough, after a collision occurs the formation of quark-gluon plasma. In the dense nuclear medium, it comes to collective phenomena such as increased production of strangeness, damping charmonium and collective motion of particles. In nuclear medium, it comes to individual collision of quarks, which also hadronize. Using simulation package Pythia, we analyzed the reaction system that results in individual collisions of quarks and antiquarks, and emergence of collective phenomena.
{"title":"Collective Phenomena in Heavy Ion Collisions","authors":"Slavica Brkić, M. Dželalija","doi":"10.13189/UJPA.2017.110504","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110504","url":null,"abstract":"To create conditions which ruled one billionth of a second after the Big Bang, it is necessary to heat and compact the nuclear matter. During the first microseconds after the Big Bang the universe went through such a phase transition at very high temperatures but very low net baryon density. At very high temperatures or densities, the hadrons melt and their constituents, the quarks and gluons, form a new phase of matter, the so called quark-gluon plasma. Relativistic heavy ion collisions aim to create a quark gluon plasma where quarks and gluons can move freely over volumes that are large in comparison to the typical size of a hadron. When the particles collide at high energies, it leads to the conversion of particle collision participants in a much heavier particle. If the energy density is large enough, after a collision occurs the formation of quark-gluon plasma. In the dense nuclear medium, it comes to collective phenomena such as increased production of strangeness, damping charmonium and collective motion of particles. In nuclear medium, it comes to individual collision of quarks, which also hadronize. Using simulation package Pythia, we analyzed the reaction system that results in individual collisions of quarks and antiquarks, and emergence of collective phenomena.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"231 1","pages":"154-161"},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75567486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-10-01DOI: 10.13189/UJPA.2017.110508
M. Dogra, Kulbir Singh, Kulwinder Kaur, V. Anand, Parminder Kaur
Gamma ray sources and radioactive materials in several sectors including nuclear power plants, nuclear reactors, nuclear medicine, agriculture and industry have harmful effects on humans and it is essential to provide shield against gamma radiations. Gamma radiations are highly penetrating electromagnetic radiations in the environment. The present work is aimed at exploring new glass composition for gamma ray shielding applications. Gamma ray shielding properties of the composition x Bi2O3-0.6 B2O3-(0.4 - x)Na2WO4.2H2O where x = 0.1 to 0.3 (in mole fraction) have been studied by calculating mass attenuation coefficients and half value layer parameters at photon energies 662, 1173 and 1332 keV using XCOM computer software developed by National Institute of Standards and Technology. Higher values of mass attenuation coefficients and lower values of HVL than barite concrete indicate the glass system as better gamma radiation shield. Density, molar volume, XRD and UV-Visible studies have been performed to study the structural properties of the prepared glass system. From the analysis of obtained results, it is reported that density of the prepared glass samples increases with the content of heavy metal oxide Bi2O3. XRD studies confirm the amorphous nature of the glass composition. It has been concluded that bismuth borate tungstate glasses are better shields for γ-radiations in comparison to the standard nuclear radiation shielding concretes and commercially available glasses.
{"title":"Gamma Ray Shielding and Structural Properties of Bi 2 O 3 -B 2 O 3 -Na 2 WO 4 Glass System","authors":"M. Dogra, Kulbir Singh, Kulwinder Kaur, V. Anand, Parminder Kaur","doi":"10.13189/UJPA.2017.110508","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110508","url":null,"abstract":"Gamma ray sources and radioactive materials in several sectors including nuclear power plants, nuclear reactors, nuclear medicine, agriculture and industry have harmful effects on humans and it is essential to provide shield against gamma radiations. Gamma radiations are highly penetrating electromagnetic radiations in the environment. The present work is aimed at exploring new glass composition for gamma ray shielding applications. Gamma ray shielding properties of the composition x Bi2O3-0.6 B2O3-(0.4 - x)Na2WO4.2H2O where x = 0.1 to 0.3 (in mole fraction) have been studied by calculating mass attenuation coefficients and half value layer parameters at photon energies 662, 1173 and 1332 keV using XCOM computer software developed by National Institute of Standards and Technology. Higher values of mass attenuation coefficients and lower values of HVL than barite concrete indicate the glass system as better gamma radiation shield. Density, molar volume, XRD and UV-Visible studies have been performed to study the structural properties of the prepared glass system. From the analysis of obtained results, it is reported that density of the prepared glass samples increases with the content of heavy metal oxide Bi2O3. XRD studies confirm the amorphous nature of the glass composition. It has been concluded that bismuth borate tungstate glasses are better shields for γ-radiations in comparison to the standard nuclear radiation shielding concretes and commercially available glasses.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"37 1","pages":"190-195"},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73889097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-10-01DOI: 10.13189/ujpa.2017.110506
N. J. Suliali, P. Baricholo, P. Neethling, E. Rohwer
Free-space spectral domain optical coherence tomography has been demonstrated using an 8 mW ultra-bright 850 nm light-emitting diode with a 40 nm spectral width. The system detects longitudinal reflectivity of surface and sub-surface layers of optical elements to depths of a millimetre with high fidelity. Development stages included mathematical analysis of light interference by superposition of electric field phasors of reference and sample arms of a Michelson interferometer. A method by which depth-resolved reflectivity is acquired is described. A locally assembled Czerny Turner monochromator was aligned such that the interferometer output beam is dispersed into its spectral components before image re-construction. Calibration of the 2048-pixel detecting charge-coupled device line camera was performed using a Mercury vapour lamp with 8 spectral lines spanning from the ultra-violet to yellow region of the electromagnetic spectrum. Processing of interference fringe signals from spectral domain data is described and an analysis of variations in frequency of the interference fringe signal and threshold illumination with depth into the sample presented. A test of sensitivity of the depth imaging algorithm to low-amplitude signals is also reported.
{"title":"Development of a Free Space, LED Illuminated Spectral-domain Optical Coherence Tomography Setup","authors":"N. J. Suliali, P. Baricholo, P. Neethling, E. Rohwer","doi":"10.13189/ujpa.2017.110506","DOIUrl":"https://doi.org/10.13189/ujpa.2017.110506","url":null,"abstract":"Free-space spectral domain optical coherence tomography has been demonstrated using an 8 mW ultra-bright 850 nm light-emitting diode with a 40 nm spectral width. The system detects longitudinal reflectivity of surface and sub-surface layers of optical elements to depths of a millimetre with high fidelity. Development stages included mathematical analysis of light interference by superposition of electric field phasors of reference and sample arms of a Michelson interferometer. A method by which depth-resolved reflectivity is acquired is described. A locally assembled Czerny Turner monochromator was aligned such that the interferometer output beam is dispersed into its spectral components before image re-construction. Calibration of the 2048-pixel detecting charge-coupled device line camera was performed using a Mercury vapour lamp with 8 spectral lines spanning from the ultra-violet to yellow region of the electromagnetic spectrum. Processing of interference fringe signals from spectral domain data is described and an analysis of variations in frequency of the interference fringe signal and threshold illumination with depth into the sample presented. A test of sensitivity of the depth imaging algorithm to low-amplitude signals is also reported.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"7 1","pages":"176-181"},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86584584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-08-01DOI: 10.13189/UJPA.2017.110401
H. O. Dávila, S. M. Ovalle, H. Perez, H. Castro
Based on The National Electrical Manufacturers Association (NEMA), using the AMINE software to construction of sinograms and using a positron emission source of 22Na, were made calculations to determine the spatial resolution of a ring array system of phoswich detectors of positron emission tomograph included in the CLEAR PET-XPAD3/CT prototype for small animals, made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source 22Na of approximately 9 MBq of activity, with spherical shape and diameter of 0.57mm is immersed in a plexiglas disc that was located at the geometric center of tomographic system with a Field of View (FOV) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allows describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking enough distance to cover the dimensions of radioactive source. Data for each phoswich detector were recorded. The process was repeated for other axes and then radioactive source was centered with respect to the FOV and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system.
{"title":"Determination of Spatial Resolution of Positron Emission Tomograph of Clear PET-XPAD3/CT System","authors":"H. O. Dávila, S. M. Ovalle, H. Perez, H. Castro","doi":"10.13189/UJPA.2017.110401","DOIUrl":"https://doi.org/10.13189/UJPA.2017.110401","url":null,"abstract":"Based on The National Electrical Manufacturers Association (NEMA), using the AMINE software to construction of sinograms and using a positron emission source of 22Na, were made calculations to determine the spatial resolution of a ring array system of phoswich detectors of positron emission tomograph included in the CLEAR PET-XPAD3/CT prototype for small animals, made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source 22Na of approximately 9 MBq of activity, with spherical shape and diameter of 0.57mm is immersed in a plexiglas disc that was located at the geometric center of tomographic system with a Field of View (FOV) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allows describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking enough distance to cover the dimensions of radioactive source. Data for each phoswich detector were recorded. The process was repeated for other axes and then radioactive source was centered with respect to the FOV and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"112 1","pages":"97-101"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87667710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-08-01DOI: 10.13189/ujpa.2017.110405
G. Rosca-Fartat, C. Popescu, Nicolae-Alexandru Pana
This paper present a possible method for decommissioning of the horizontal fuel channels in the CANDU 6 nuclear reactor, a new device design concept solution with an operating panel. The device shall be designed according to the radiation protection procedures. The horizontal fuel channels decommissioning device from the CANDU 6 nuclear reactor is an electromechanical system with many freedom degrees, able to perform the internal components extraction and manage the storage into the waste container. The operations are performed under the control of a system equipped with a Programmable Logic Controller (PLC) and monitored by an operator panel, Human Machine Interface (HMI) type. The fuel channel decommissioning device ensures full radiation protection of workers and environment during the dismantling stages.
{"title":"Researches for a Decommissioning Device Development Concept of the Horizontal Fuel Channel in the CANDU 6 Nuclear Reactor: Presentation, Functioning and Operating","authors":"G. Rosca-Fartat, C. Popescu, Nicolae-Alexandru Pana","doi":"10.13189/ujpa.2017.110405","DOIUrl":"https://doi.org/10.13189/ujpa.2017.110405","url":null,"abstract":"This paper present a possible method for decommissioning of the horizontal fuel channels in the CANDU 6 nuclear reactor, a new device design concept solution with an operating panel. The device shall be designed according to the radiation protection procedures. The horizontal fuel channels decommissioning device from the CANDU 6 nuclear reactor is an electromechanical system with many freedom degrees, able to perform the internal components extraction and manage the storage into the waste container. The operations are performed under the control of a system equipped with a Programmable Logic Controller (PLC) and monitored by an operator panel, Human Machine Interface (HMI) type. The fuel channel decommissioning device ensures full radiation protection of workers and environment during the dismantling stages.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"25 1","pages":"121-134"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90575654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}