首页 > 最新文献

Wildlife Monographs最新文献

英文 中文
The Catastrophic Decline of Tortoises at a Fenced Natural Area 自然保护区陆龟数量的灾难性下降
IF 4.4 1区 生物学 Q1 ECOLOGY Pub Date : 2020-08-05 DOI: 10.1002/wmon.1052
Kristin H. Berry, Julie L. Yee, Timothy A. Shields, Laura Stockton

Agassiz’s desert tortoise (Gopherus agassizii), a threatened species of the southwestern United States, has severely declined to the point where 76% of populations in critical habitat (Tortoise Conservation Areas) are below viability. The potential for rapid recovery of wild populations is low because females require 12–20 years to reach reproductive maturity and produce few eggs annually. We report on a 34-year mark-recapture study of tortoises initiated in 1979 at the Desert Tortoise Research Natural Area in the western Mojave Desert, California, USA, and provide substantive data on challenges faced by the species. In 1980, the United States Congress designated the Research Natural Area and protected the land from recreational vehicles, livestock grazing, and mining with a wildlife-permeable fence. The 7.77-km2 study area, centered on interpretive facilities, included land both within the Natural Area and outside the fence. We expected greater benefits to accrue to the tortoises and habitat inside compared to outside. Our objectives were to conduct a demographic study, analyze and model changes in the tortoise population and habitat, and compare the effectiveness of fencing to protect populations and habitat inside the fence versus outside, where populations and habitat were unprotected. We conducted surveys in spring in each of 7 survey years from 1979, when the fence was under construction, through 2012. We compared populations inside to those outside the fence by survey year for changes in distribution, structure by size and relative age, sex ratios, death rates of adults, and causes of death for all sizes of tortoises. We used a Bayesian implementation of a Jolly Seber model for mark-recapture data. We modeled detection, density, growth and transition of tortoises to larger size-age classes, movements from inside the protective fence to outside and vice versa, and survival. After the second and subsequent survey years, we added surveys to monitor vegetation and habitat changes, conduct health assessments, and collect data on counts of predators and predator sign. At the beginning of the study, counts and densities for all sizes of tortoises were high, but densities were approximately 24% higher inside the fence than outside. By 2002, the low point in densities, densities had declined 90% inside the fence and 95% outside. Between 2002 and 2012, the population inside the fence showed signs of improving with a 54% increase in density. Outside the fence, densities remained low. At the end of the study, when we considered the initial differences in location, densities inside the fence were roughly 2.5 times higher than outside. The pattern of densities was similar for male and female adults. When evaluating survival by blocks of years, survivorship was higher in 1979–1989 than in 1989–2002 (the low point) and highest from 2002 to 2012. Recruitment and survival of adult females into the population was important for growing th

阿加西沙漠龟(Gopherus agassizii)是美国西南部的一种濒危物种,其数量已经严重下降到76%的关键栖息地(陆龟保护区)低于生存能力的程度。野生种群快速恢复的可能性很低,因为雌性需要12-20年才能达到生殖成熟,每年产卵很少。本文报道了1979年在美国加利福尼亚州西部莫哈韦沙漠沙漠陆龟研究自然区开始的一项为期34年的陆龟标记再捕获研究,并提供了该物种面临的挑战的实质性数据。1980年,美国国会指定了研究自然区,并用可渗透野生动物的栅栏保护这片土地,不让娱乐车辆、牲畜放牧和采矿。7.77平方公里的研究区域以解说设施为中心,包括自然区内和围栏外的土地。我们预计,与外部相比,内部的陆龟和栖息地将获得更大的利益。我们的目的是进行人口统计学研究,分析和模拟乌龟种群和栖息地的变化,并比较围栏内和围栏外保护乌龟种群和栖息地的有效性。从1979年,围栏正在建设中,到2012年,我们在每年的春季进行了调查。我们通过调查年份比较了围栏内和围栏外的种群分布、大小结构、相对年龄、性别比例、成年龟死亡率和各种大小龟的死亡原因的变化。我们使用Jolly Seber模型的贝叶斯实现来处理标记-重新捕获数据。我们模拟了乌龟的检测、密度、生长和向更大尺寸年龄类的过渡、从保护围栏内到外面的运动以及反之亦然,以及生存。在第二年和随后的调查年之后,我们增加了调查,以监测植被和栖息地的变化,进行健康评估,并收集捕食者数量和捕食者标志的数据。在研究开始时,各种大小的龟的数量和密度都很高,但围栏内的密度比围栏外的密度高约24%。到2002年,密度的最低点,围栏内的密度下降了90%围栏外的密度下降了95%。2002年至2012年间,围栏内的人口密度增加了54%,出现了改善的迹象。在围栏外,密度仍然很低。在研究结束时,当我们考虑到最初的位置差异时,围栏内的密度大约是外面的2.5倍。雄性和雌性成虫的密度模式相似。以年为单位评估生存率时,1979-1989年生存率高于1989-2002年(最低点),2002 - 2012年生存率最高。成年雌性的招募和生存对于种群的增长是重要的,但包括幼崽在内的各种大小的生存也是至关重要的。导致围栏内外数量下降的主要事件和活动包括非法采集、上呼吸道疾病和普通乌鸦(Corvus corax)对幼龟的过度捕食。其他死亡原因包括枪击、车辆和被哺乳动物捕食。在围栏之外,栖息地的破碎和退化是一个关键的驱动因素。在第一次和最后一次调查之间,正在进行两种不同的生态系统过程:围栏内的植被和土壤从放牧和车辆中恢复,围栏外的持续恶化。篱外生境的灌木逐渐被剥落,被道路和小径分割,生境碎片增加了50倍。篱外非本地一年生植物生物量较高,灌木盖度较低,反映出持续的退化。这些变化和栖息地的丧失导致了灌木覆盖和洞穴的丧失,首选食物植物的减少,以及更大程度地暴露于捕食者和极端温度之下。总体而言,围栏内的乌龟数量和栖息地似乎受益于保护,并在研究结束时显示出恢复的迹象。在1994年的第一个恢复计划中,为关键生境建议了几项管理行动,其中包括围篱、控制车辆进出和取消放牧牲畜。在研究结束时,自然区域仍然是该地理范围内的两个围栏保护区中的一个。我们将围栏归因于围栏内的成人密度持续高于围栏外,并且有希望恢复的迹象。在地理范围内的17个龟类保护区(关键生境单位)中,有16个保护区的成虫密度是前者的2.3至5.5倍。©2020作者。 Wiley期刊有限责任公司代表野生动物协会出版的野生动物专著。
{"title":"The Catastrophic Decline of Tortoises at a Fenced Natural Area","authors":"Kristin H. Berry,&nbsp;Julie L. Yee,&nbsp;Timothy A. Shields,&nbsp;Laura Stockton","doi":"10.1002/wmon.1052","DOIUrl":"https://doi.org/10.1002/wmon.1052","url":null,"abstract":"<p>Agassiz’s desert tortoise (<i>Gopherus agassizii</i>), a threatened species of the southwestern United States, has severely declined to the point where 76% of populations in critical habitat (Tortoise Conservation Areas) are below viability. The potential for rapid recovery of wild populations is low because females require 12–20 years to reach reproductive maturity and produce few eggs annually. We report on a 34-year mark-recapture study of tortoises initiated in 1979 at the Desert Tortoise Research Natural Area in the western Mojave Desert, California, USA, and provide substantive data on challenges faced by the species. In 1980, the United States Congress designated the Research Natural Area and protected the land from recreational vehicles, livestock grazing, and mining with a wildlife-permeable fence. The 7.77-km<sup>2</sup> study area, centered on interpretive facilities, included land both within the Natural Area and outside the fence. We expected greater benefits to accrue to the tortoises and habitat inside compared to outside. Our objectives were to conduct a demographic study, analyze and model changes in the tortoise population and habitat, and compare the effectiveness of fencing to protect populations and habitat inside the fence versus outside, where populations and habitat were unprotected. We conducted surveys in spring in each of 7 survey years from 1979, when the fence was under construction, through 2012. We compared populations inside to those outside the fence by survey year for changes in distribution, structure by size and relative age, sex ratios, death rates of adults, and causes of death for all sizes of tortoises. We used a Bayesian implementation of a Jolly Seber model for mark-recapture data. We modeled detection, density, growth and transition of tortoises to larger size-age classes, movements from inside the protective fence to outside and vice versa, and survival. After the second and subsequent survey years, we added surveys to monitor vegetation and habitat changes, conduct health assessments, and collect data on counts of predators and predator sign. At the beginning of the study, counts and densities for all sizes of tortoises were high, but densities were approximately 24% higher inside the fence than outside. By 2002, the low point in densities, densities had declined 90% inside the fence and 95% outside. Between 2002 and 2012, the population inside the fence showed signs of improving with a 54% increase in density. Outside the fence, densities remained low. At the end of the study, when we considered the initial differences in location, densities inside the fence were roughly 2.5 times higher than outside. The pattern of densities was similar for male and female adults. When evaluating survival by blocks of years, survivorship was higher in 1979–1989 than in 1989–2002 (the low point) and highest from 2002 to 2012. Recruitment and survival of adult females into the population was important for growing th","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":"205 1","pages":"1-53"},"PeriodicalIF":4.4,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6084757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
ABSTRACTS OF THE EUROPEAN VETERINARY DIAGNOSTIC IMAGING (EVDI) CONGRESS, BASEL, SWITZERLAND, AUGUST 21-AUGUST 24, 2019. 欧洲兽医诊断成像(EVDI)大会摘要,瑞士巴塞尔,2019年8月21日至8月24日。
IF 1.7 1区 生物学 Q1 ECOLOGY Pub Date : 2019-11-11 DOI: 10.1111/vru.12818
{"title":"ABSTRACTS OF THE EUROPEAN VETERINARY DIAGNOSTIC IMAGING (EVDI) CONGRESS, BASEL, SWITZERLAND, AUGUST 21-AUGUST 24, 2019.","authors":"","doi":"10.1111/vru.12818","DOIUrl":"10.1111/vru.12818","url":null,"abstract":"","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":"159 1","pages":"85-118"},"PeriodicalIF":1.7,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72417867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information - Cover 发行资料-封面
IF 4.4 1区 生物学 Q1 ECOLOGY Pub Date : 2019-09-12 DOI: 10.1002/wmon.1050
{"title":"Issue Information - Cover","authors":"","doi":"10.1002/wmon.1050","DOIUrl":"https://doi.org/10.1002/wmon.1050","url":null,"abstract":"","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":"204 1","pages":"C1"},"PeriodicalIF":4.4,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6229294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information - Editorial Board 发行信息-编辑委员会
IF 4.4 1区 生物学 Q1 ECOLOGY Pub Date : 2019-09-12 DOI: 10.1002/wmon.1049
{"title":"Issue Information - Editorial Board","authors":"","doi":"10.1002/wmon.1049","DOIUrl":"https://doi.org/10.1002/wmon.1049","url":null,"abstract":"","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":"204 1","pages":"C2"},"PeriodicalIF":4.4,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5831528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dedication page/photo 奉献页面/照片
IF 4.4 1区 生物学 Q1 ECOLOGY Pub Date : 2019-09-12 DOI: 10.1002/wmon.1045
{"title":"Dedication page/photo","authors":"","doi":"10.1002/wmon.1045","DOIUrl":"https://doi.org/10.1002/wmon.1045","url":null,"abstract":"","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":"204 1","pages":"3"},"PeriodicalIF":4.4,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6229295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Maternal Penning to Improve Calf Survival in the Chisana Caribou Herd Évaluation des Enclos de Maternité pour Améliorer la Survie des Faons du Troupeau de Caribous Chisana 对奇萨纳驯鹿群中母性圈养以提高小牛存活率的评价对奇萨纳驯鹿群中母性圈养以提高小牛存活率的评价
IF 4.4 1区 生物学 Q1 ECOLOGY Pub Date : 2019-09-12 DOI: 10.1002/wmon.1044
Layne G. Adams, Richard Farnell, Michelle P. Oakley, Thomas S. Jung, Lorne L. Larocque, Grant M. Lortie, Jamie Mclelland, Mason E. Reid, Gretchen H. Roffler, Don E. Russell

Predation is a major limiting factor for most small sedentary caribou (Rangifer tarandus) populations, particularly those that are threatened or endangered across the southern extent of the species’ range. Thus, reducing predation impacts is often a management goal for improving the status of small caribou populations, and lethal predator removal is the primary approach that has been applied. Given that predator control programs are often contentious, other management options that can garner broader public acceptance need to be considered.

Substantial calf losses to predation in the few weeks following birth are common for these small caribou populations. Therefore, we employed a novel experimental approach of maternal penning with the goal of reducing early calf mortality in the Chisana Caribou Herd, a declining population in southwest Yukon and adjacent Alaska thought to number around 300 individuals. Maternal penning entailed temporarily holding pregnant females on their native range in a large pen secure from predators from late March through the initial weeks of calf rearing to mid-June. During 2003–2006, we conducted 4 annual penning trials with 17–50 pregnant females each year (n = 146 total), assessed survival of calves born in the pens, and evaluated survival and nutritional effects of penning for females that were held. We also investigated the herd's population dynamics during 2003–2008 to determine effects of maternal penning on calf recruitment and population growth. In addition to information gained during maternal penning, we determined natality and survival patterns via radiotelemetry, conducted autumn age-sex composition surveys each year, and censused the population in mid-October 2003, 2005, and 2007. Based on our penning trials and demographic investigations, we used simulation models to evaluate the effects of maternal penning relative to a population's inherent growth rate (finite rate of increase [λ] without maternal penning) and penning effort (proportion of calves born in penning) to provide perspective on utility of this approach for improving the status of small imperiled caribou populations.

Pregnant females held in maternal penning tolerated captivity well in that they exhibited positive nutritional responses to ad libitum feed we provided and higher survival than free-ranging females (0.993 and 0.951 for penned and free-ranging females, respectively). Survival of pen calves from birth to mid-June was substantially higher than that of free-ranging calves ( = 0.950 and 0.376, respectively). This initial period accounted for 76% of the annual calf mortality in the free-ranging population. Pen-born calves maintained their survival advantage over wild-born calves to the end of their first year ( = 0.575 and 0.192, respectively) during years penning occurred.

Females in the Chisana Herd were highly productive with 57% producing their first offspring at 2 years of age, and annual na

捕食是大多数小型定居驯鹿(Rangifer tarandus)种群的主要限制因素,特别是那些在该物种分布范围的南部地区受到威胁或濒临灭绝的驯鹿。因此,减少捕食者的影响通常是改善小型驯鹿种群状况的管理目标,而消除致命的捕食者是已应用的主要方法。鉴于食肉动物控制项目经常引起争议,需要考虑其他能够获得更广泛公众接受的管理方案。对于这些小驯鹿群来说,在出生后的几周内,大量的小鹿因捕食而死亡是很常见的。因此,我们采用了一种新颖的实验方法,目的是降低奇萨纳驯鹿群的早期幼崽死亡率。奇萨纳驯鹿群位于育空地区西南部和邻近的阿拉斯加,种群数量正在下降,据估计约有300只。从3月下旬到6月中旬,母性圈养需要暂时把怀孕的母鲸关在一个大围栏里,以保护它们免受捕食者的侵害。在2003-2006年期间,我们每年对17-50只怀孕雌性进行4次圈养试验(n = 146),评估在围栏中出生的小牛的存活率,并评估圈养雌性的存活率和营养效果。我们还调查了2003-2008年间鹿群的种群动态,以确定母围栏对小牛招募和种群增长的影响。除了在母体发育期间获得的信息外,我们还通过无线电遥测确定了出生和生存模式,每年进行秋季年龄-性别组成调查,并在2003年、2005年和2007年10月中旬进行人口普查。基于我们的圈养试验和人口统计调查,我们使用模拟模型来评估母鹿圈养相对于种群固有增长率(没有母鹿圈养的有限增长率[λ])和圈养努力(在圈养中出生的小牛比例)的影响,以提供这种方法在改善小型濒危驯鹿种群状况方面的效用视角。母鼠圈养的怀孕雌鼠对自由放养的饲料表现出积极的营养反应,其存活率高于自由放养的雌鼠(分别为0.993和0.951)。圈养犊牛从出生到6月中旬的成活率显著高于散养犊牛(分别= 0.950和0.376)。这一初始阶段占自由放养种群每年小牛死亡率的76%。在圈养期间,圈养犊牛与野生犊牛的生存优势一直保持到第一年结束(分别= 0.575和0.192)。在Chisana牧群中,有57%的母象在2岁时产下第一个后代,年平均出生率为0.842头/头≥2岁的母象。4 - 9岁年龄组的死亡率超过0.900,到19岁时出现衰老下降,为0.467。在所有研究年份中,自由放养的成年雌性和小牛的年平均存活率分别为0.892和0.184;由于冬季生存能力差,两者在2004年都有所减少。我们注意到那年冬末驯鹿的营养状况有所下降,因为我们捕获的雌性驯鹿比往年更轻,产下的小牛也更轻。我们怀疑2004年冬季的存活率下降和观察到的营养特征是由于不利的雪况和前一个夏天经历的极端干旱的影响。成年雌鼠的年龄特异性生存率≥0.900,10岁后随年龄增长而下降。2003年10月中旬,奇萨纳鹿群的驯鹿数量为720头,是开始母圈之前估计数量的两倍多,到2007年10月中旬增加到766头。根据我们的计算,圈养增加了54.2只一岁的幼崽,占圈养释放的幼崽的40%。根据母鹿围圈的结果和种群的生命率,我们确定在2003-2007年期间,驯鹿群在没有母鹿围圈的情况下稳定在713头左右;因此,我们观察到的畜群规模的增加是由于母鼠围栏造成的,相当于估计的额外的一岁新兵。由于种群规模大于预期,以及由此导致的圈养努力较低(约11%的小牛在圈养中出生),母体圈养引起的种群趋势改善受到限制。我们的模拟证实,即使在较低的圈养努力下,对于固有稳定的种群,母体圈养也会通过提供额外的新兵数量来增加种群规模。由于固有增长率降至λ = 1 000以下,需要更多的圈养人员来抵消人口下降的惯性,因此需要增加圈养工作以达到稳定。 对于λ &lt下降的种群;0.890,考虑到我们模型中的关键速率,稳定性无法以100%的笔划努力实现。迄今为止,母围栏在其有限的应用中已被证明是广泛流行的,作为一种非致命的管理行动,旨在减少小驯鹿种群中被捕食的初始小牛死亡率。然而,根据Chisana计划和其他地方随后的努力,人口趋势的改善充其量是适度的,而且需要付出高昂的财政代价。考虑到最大限度地提高围护力度的必要性,母围护可能在解决一些稳定或缓慢下降的小型驯鹿种群的保护挑战方面发挥作用,但其应用应主要基于对改善种群趋势可能性的客观评估,而不是相对于其他管理方案的受欢迎程度。
{"title":"Evaluation of Maternal Penning to Improve Calf Survival in the Chisana Caribou Herd\u0000 Évaluation des Enclos de Maternité pour Améliorer la Survie des Faons du Troupeau de Caribous Chisana","authors":"Layne G. Adams,&nbsp;Richard Farnell,&nbsp;Michelle P. Oakley,&nbsp;Thomas S. Jung,&nbsp;Lorne L. Larocque,&nbsp;Grant M. Lortie,&nbsp;Jamie Mclelland,&nbsp;Mason E. Reid,&nbsp;Gretchen H. Roffler,&nbsp;Don E. Russell","doi":"10.1002/wmon.1044","DOIUrl":"https://doi.org/10.1002/wmon.1044","url":null,"abstract":"<p>Predation is a major limiting factor for most small sedentary caribou (<i>Rangifer tarandus</i>) populations, particularly those that are threatened or endangered across the southern extent of the species’ range. Thus, reducing predation impacts is often a management goal for improving the status of small caribou populations, and lethal predator removal is the primary approach that has been applied. Given that predator control programs are often contentious, other management options that can garner broader public acceptance need to be considered.</p><p>Substantial calf losses to predation in the few weeks following birth are common for these small caribou populations. Therefore, we employed a novel experimental approach of maternal penning with the goal of reducing early calf mortality in the Chisana Caribou Herd, a declining population in southwest Yukon and adjacent Alaska thought to number around 300 individuals. Maternal penning entailed temporarily holding pregnant females on their native range in a large pen secure from predators from late March through the initial weeks of calf rearing to mid-June. During 2003–2006, we conducted 4 annual penning trials with 17–50 pregnant females each year (<i>n</i> = 146 total), assessed survival of calves born in the pens, and evaluated survival and nutritional effects of penning for females that were held. We also investigated the herd's population dynamics during 2003–2008 to determine effects of maternal penning on calf recruitment and population growth. In addition to information gained during maternal penning, we determined natality and survival patterns via radiotelemetry, conducted autumn age-sex composition surveys each year, and censused the population in mid-October 2003, 2005, and 2007. Based on our penning trials and demographic investigations, we used simulation models to evaluate the effects of maternal penning relative to a population's inherent growth rate (finite rate of increase [λ] without maternal penning) and penning effort (proportion of calves born in penning) to provide perspective on utility of this approach for improving the status of small imperiled caribou populations.</p><p>Pregnant females held in maternal penning tolerated captivity well in that they exhibited positive nutritional responses to <i>ad libitum</i> feed we provided and higher survival than free-ranging females (0.993 and 0.951 for penned and free-ranging females, respectively). Survival of pen calves from birth to mid-June was substantially higher than that of free-ranging calves ( = 0.950 and 0.376, respectively). This initial period accounted for 76% of the annual calf mortality in the free-ranging population. Pen-born calves maintained their survival advantage over wild-born calves to the end of their first year ( = 0.575 and 0.192, respectively) during years penning occurred.</p><p>Females in the Chisana Herd were highly productive with 57% producing their first offspring at 2 years of age, and annual na","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":"204 1","pages":"5-46"},"PeriodicalIF":4.4,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6215115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Photo page 照片页
IF 4.4 1区 生物学 Q1 ECOLOGY Pub Date : 2019-09-12 DOI: 10.1002/wmon.1048
{"title":"Photo page","authors":"","doi":"10.1002/wmon.1048","DOIUrl":"https://doi.org/10.1002/wmon.1048","url":null,"abstract":"","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":"204 1","pages":"1"},"PeriodicalIF":4.4,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1048","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6231764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics, Persistence, and Genetic Management of the Endangered Florida Panther Population Dinámicas, Persistencia y Manejo Genético de la Población en Peligro de Extinción de Pantera de Florida 濒危佛罗里达黑豹种群的动态、持久性和遗传管理佛罗里达黑豹种群的动态、持久性和遗传管理
IF 4.4 1区 生物学 Q1 ECOLOGY Pub Date : 2019-07-23 DOI: 10.1002/wmon.1041
Madelon van de Kerk, David P. Onorato, Jeffrey A. Hostetler, Benjamin M. Bolker, Madan K. Oli

Abundant evidence supports the benefits accrued to the Florida panther (Puma concolor coryi) population via the genetic introgression project implemented in South Florida, USA, in 1995. Since then, genetic diversity has improved, the frequency of morphological and biomedical correlates of inbreeding depression have declined, and the population size has increased. Nevertheless, the panther population remains small and isolated and faces substantial challenges due to deterministic and stochastic forces. Our goals were 1) to comprehensively assess the demographics of the Florida panther population using long-term (1981–2015) field data and modeling to gauge the persistence of benefits accrued via genetic introgression and 2) to evaluate the effectiveness of various potential genetic management strategies. Translocation and introduction of female pumas (Puma concolor stanleyana) from Texas, USA, substantially improved genetic diversity. The average individual heterozygosity of canonical (non-introgressed) panthers was 0.386 ± 0.012 (SE); for admixed panthers, it was 0.615 ± 0.007. Survival rates were strongly age-dependent (kittens had the lowest survival rates), were positively affected by individual heterozygosity, and decreased with increasing population abundance. Overall annual kitten survival was 0.32 ± 0.09; sex did not have a clear effect on kitten survival. Annual survival of subadult and adult panthers differed by sex; regardless of age, females exhibited higher survival than males. Annual survival rates of subadult, prime adult, and old adult females were 0.97 ± 0.02, 0.86 ± 0.03, and 0.78 ± 0.09, respectively. Survival rates of subadult, prime adult, and old adult males were 0.66 ± 0.06, 0.77 ± 0.05, and 0.65 ± 0.10, respectively. For panthers of all ages, genetic ancestry strongly affected survival rate, where first filial generation (F1) admixed panthers of all ages exhibited the highest rates and canonical (mostly pre-introgression panthers and their post-introgression descendants) individuals exhibited the lowest rates. The most frequently observed causes of death of radio-collared panthers were intraspecific aggression and vehicle collision. Cause-specific mortality analyses revealed that mortality rates from vehicle collision, intraspecific aggression, other causes, and unknown causes were generally similar for males and females, although males were more likely to die from intraspecific aggression than females. The probability of reproduction and the annual number of kittens produced varied by age; evidence that ancestry or abundance influenced these parameters was weak. Predicted annual probabilities of reproduction were 0.35 ± 0.08, 0.50 ± 0.05, and 0.25 ± 0.06 for subadult, prime adult, and old adult females, respectively. The number of kittens predicted to be produced annually by subadult, prime adult, and old adult females were 2.80 ± 0.75, 2.67 ± 0.43, and 2.28 ± 0.83, respectively. The stochastic annual popul

大量证据支持1995年在美国南佛罗里达实施的遗传渗入项目给佛罗里达黑豹(Puma concolor coryi)种群带来的益处。从那时起,遗传多样性得到了改善,近交抑郁的形态学和生物医学相关频率有所下降,种群规模有所增加。然而,由于确定性和随机力量的影响,黑豹的数量仍然很小,并且孤立存在,面临着巨大的挑战。我们的目标是:1)利用长期(1981-2015年)的野外数据和建模来全面评估佛罗里达黑豹种群的人口统计数据,以衡量通过遗传渗入积累的利益的持久性;2)评估各种潜在遗传管理策略的有效性。美国德克萨斯州雌性美洲狮(Puma concolor stanleyana)的易位和引进,极大地提高了遗传多样性。典型黑豹(非渐渗)个体平均杂合度为0.386±0.012 (SE);混合黑豹为0.615±0.007。存活率强烈依赖于年龄(小猫的存活率最低),受个体杂合度的积极影响,并随着种群丰度的增加而下降。小猫年总体存活率为0.32±0.09;性别对小猫的存活率没有明显的影响。亚成体和成体黑豹的年存活率存在性别差异;不论年龄大小,雌性的存活率都高于雄性。亚成虫、壮年成虫和老年成虫的年存活率分别为0.97±0.02、0.86±0.03和0.78±0.09。亚成虫、壮年成虫和老年成虫的存活率分别为0.66±0.06、0.77±0.05和0.65±0.10。对于所有年龄段的黑豹来说,遗传祖先都强烈影响其存活率,其中所有年龄段的第一代(F1)混合黑豹的存活率最高,而典型个体(主要是前渗入黑豹及其后渗入后代)的存活率最低。无线电项圈黑豹最常见的死亡原因是种内攻击和车辆碰撞。原因特异性死亡率分析显示,男性和女性因车辆碰撞、种内攻击、其他原因和未知原因导致的死亡率大致相似,尽管男性比女性更容易死于种内攻击。繁殖概率和年产仔数因年龄而异;祖先或丰度影响这些参数的证据很弱。亚成虫、壮年成虫和老年成虫的年繁殖概率分别为0.35±0.08、0.50±0.05和0.25±0.06。亚成年母猫、初级成年母猫和老年成年母猫预计年产仔数分别为2.80±0.75、2.67±0.43和2.28±0.83。使用矩阵种群模型估计的随机年种群增长率为1.04 (95% CI = 0.72-1.41)。基于个体的种群模型预测,如果忽略遗传侵蚀的不利影响,100年内种群数量下降到10只以下(准灭绝)的概率为1.4%(0-0.8%)。而考虑遗传侵蚀的影响,100年内的准灭绝概率增加到17%(0 ~ 100%)。考虑遗传侵蚀的影响,以100年内准灭绝为条件的准灭绝平均时间为22(0 ~ 75)年。敏感性分析表明,准灭绝概率和准灭绝预期时间对小猫生存参数的变化最为敏感。如果没有基因管理干预,佛罗里达黑豹种群将面临更大的准灭绝风险。因此,问题不在于是否需要对佛罗里达黑豹种群进行遗传管理,而在于何时以及如何实施。因此,我们利用基于个体的模拟模型评估了替代遗传渗入策略的遗传和种群后果,以确定最佳管理行动。每20年释放5只美洲狮的成本(100年20万美元)要比每10年释放15只美洲狮的成本(100年120万美元)少得多,但却能降低类似灭绝的风险(44-59%对40-58%)。一般来说,每次基因渗入尝试释放更多的雌性几乎没有额外的好处。遗传渗入工程的积极影响在黑豹种群中持续了20年。我们建议管理者考虑通过每20-40年从其他美洲狮种群中释放5-10只来重复基因渗入。我们还建议管理人员继续收集数据,以便对小猫、成虫和亚成虫的存活率进行估计和监测。 我们通过敏感性分析确定了这些参数,因为它们对准灭绝的概率和预期时间的影响最为关键。继续进行长期监测应能在收集已证明对评估人口的遗传和人口健康至关重要的数据的同时,酌情调整遗传管理战略。遵循这些指导方针,黑豹的恢复前景肯定会得到改善。©2019作者。Wiley期刊公司代表野生动物协会出版的野生动物专著。
{"title":"Dynamics, Persistence, and Genetic Management of the Endangered Florida Panther Population\u0000 Dinámicas, Persistencia y Manejo Genético de la Población en Peligro de Extinción de Pantera de Florida","authors":"Madelon van de Kerk,&nbsp;David P. Onorato,&nbsp;Jeffrey A. Hostetler,&nbsp;Benjamin M. Bolker,&nbsp;Madan K. Oli","doi":"10.1002/wmon.1041","DOIUrl":"https://doi.org/10.1002/wmon.1041","url":null,"abstract":"<p>Abundant evidence supports the benefits accrued to the Florida panther (<i>Puma concolor coryi</i>) population via the genetic introgression project implemented in South Florida, USA, in 1995. Since then, genetic diversity has improved, the frequency of morphological and biomedical correlates of inbreeding depression have declined, and the population size has increased. Nevertheless, the panther population remains small and isolated and faces substantial challenges due to deterministic and stochastic forces. Our goals were 1) to comprehensively assess the demographics of the Florida panther population using long-term (1981–2015) field data and modeling to gauge the persistence of benefits accrued via genetic introgression and 2) to evaluate the effectiveness of various potential genetic management strategies. Translocation and introduction of female pumas (<i>Puma concolor stanleyana</i>) from Texas, USA, substantially improved genetic diversity. The average individual heterozygosity of canonical (non-introgressed) panthers was 0.386 ± 0.012 (SE); for admixed panthers, it was 0.615 ± 0.007. Survival rates were strongly age-dependent (kittens had the lowest survival rates), were positively affected by individual heterozygosity, and decreased with increasing population abundance. Overall annual kitten survival was 0.32 ± 0.09; sex did not have a clear effect on kitten survival. Annual survival of subadult and adult panthers differed by sex; regardless of age, females exhibited higher survival than males. Annual survival rates of subadult, prime adult, and old adult females were 0.97 ± 0.02, 0.86 ± 0.03, and 0.78 ± 0.09, respectively. Survival rates of subadult, prime adult, and old adult males were 0.66 ± 0.06, 0.77 ± 0.05, and 0.65 ± 0.10, respectively. For panthers of all ages, genetic ancestry strongly affected survival rate, where first filial generation (F1) admixed panthers of all ages exhibited the highest rates and canonical (mostly pre-introgression panthers and their post-introgression descendants) individuals exhibited the lowest rates. The most frequently observed causes of death of radio-collared panthers were intraspecific aggression and vehicle collision. Cause-specific mortality analyses revealed that mortality rates from vehicle collision, intraspecific aggression, other causes, and unknown causes were generally similar for males and females, although males were more likely to die from intraspecific aggression than females. The probability of reproduction and the annual number of kittens produced varied by age; evidence that ancestry or abundance influenced these parameters was weak. Predicted annual probabilities of reproduction were 0.35 ± 0.08, 0.50 ± 0.05, and 0.25 ± 0.06 for subadult, prime adult, and old adult females, respectively. The number of kittens predicted to be produced annually by subadult, prime adult, and old adult females were 2.80 ± 0.75, 2.67 ± 0.43, and 2.28 ± 0.83, respectively. The stochastic annual popul","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":"203 1","pages":"3-35"},"PeriodicalIF":4.4,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5775298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Photo page 照片页
IF 4.4 1区 生物学 Q1 ECOLOGY Pub Date : 2019-07-23 DOI: 10.1002/wmon.1043
{"title":"Photo page","authors":"","doi":"10.1002/wmon.1043","DOIUrl":"https://doi.org/10.1002/wmon.1043","url":null,"abstract":"","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":"203 1","pages":"1"},"PeriodicalIF":4.4,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5775289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking White-Tailed Deer Density, Nutrition, and Vegetation in a Stochastic Environment Relier la Densité de Cerf de Virginie, la Nutrition et la Végétation dans un Environnement Stochastique Relación entre la Densidad de Venado Cola Blanca, la Nutrición y la Vegetación en Ambientes Variables 随机环境下白尾鹿密度、营养与植被的关系随机环境下白尾鹿密度、营养与植被的关系可变环境下白尾鹿密度、营养与植被的关系
IF 4.4 1区 生物学 Q1 ECOLOGY Pub Date : 2019-07-22 DOI: 10.1002/wmon.1040
Charles A. DeYoung, Timothy E. Fulbright, David G. Hewitt, David B. Wester, Don A. Draeger
<p>Density-dependent behavior underpins white-tailed deer (<i>Odocoileus virginianus</i>) theory and management application in North America, but strength or frequency of the phenomenon has varied across the geographic range of the species. The modifying effect of stochastic environments and poor-quality habitats on density-dependent behavior has been recognized for ungulate populations around the world, including white-tailed deer populations in South Texas, USA. Despite the importance of understanding mechanisms influencing density dependence, researchers have concentrated on demographic and morphological implications of deer density. Researchers have not focused on linking vegetation dynamics, nutrition, and deer dynamics. We conducted a series of designed experiments during 2004–2012 to determine how strongly white-tailed deer density, vegetation composition, and deer nutrition (natural and supplemented) are linked in a semi-arid environment where the coefficient of variation of annual precipitation exceeds 30%. We replicated our study on 2 sites with thornshrub vegetation in Dimmit County, Texas. During late 2003, we constructed 6 81-ha enclosures surrounded by 2.4-m-tall woven wire fence on each study site. The experimental design included 2 nutrition treatments and 3 deer densities in a factorial array, with study sites as blocks. Abundance targets for low, medium, and high deer densities in enclosures were 10 deer (equivalent to 13 deer/km<sup>2</sup>), 25 deer (31 deer/km<sup>2</sup>), and 40 deer (50 deer/km<sup>2</sup>), respectively. Each study site had 2 enclosures with each deer density. We provided deer in 1 enclosure at each density with a high-quality pelleted supplement <i>ad libitum</i>, which we termed enhanced nutrition; deer in the other enclosure at each density had access to natural nutrition from the vegetation. We conducted camera surveys of deer in each enclosure twice per year and added or removed deer as needed to approximate the target densities. We maintained >50% of deer ear-tagged for individual recognition. We maintained adult sex ratios of 1:1–1:1.5 (males:females) and a mix of young and older deer in enclosures. We used reconstruction, validated by comparison to known number of adult males, to make annual estimates of density for each enclosure in analysis of treatment effects. We explored the effect of deer density on diet composition, diet quality, and intake rate of tractable female deer released into low- and high-density enclosures with natural nutrition on both study sites (4 total enclosures) between June 2009 and May 2011, 5 years after we established density treatments in enclosures. We used the bite count technique and followed 2–3 tractable deer/enclosure during foraging bouts across 4 seasons. Proportion of shrubs, forbs, mast, cacti, and subshrubs in deer diets did not differ (<i>P</i> > 0.57) between deer density treatments. Percent grass in deer diets was higher (<i>P</i> = 0.05) at high de
密度依赖行为是北美白尾鹿(Odocoileus virginianus)理论和管理应用的基础,但这种现象的强度或频率因该物种的地理范围而异。随机环境和低质量栖息地对有蹄类种群的密度依赖行为的调节作用已经在世界范围内得到认可,包括美国南德克萨斯州的白尾鹿种群。尽管了解密度依赖的影响机制很重要,但研究人员主要集中在鹿密度的人口统计学和形态学意义上。研究人员还没有将植被动态、营养和鹿的动态联系起来。在2004年至2012年期间,我们进行了一系列设计实验,以确定在年降水量变化系数超过30%的半干旱环境中,白尾鹿密度、植被组成和鹿营养(天然和补充)之间的联系。我们在德克萨斯州迪米特县的2个有刺灌木植被的地点重复了我们的研究。在2003年底,我们在每个研究地点建造了6个81公顷的围栏,周围有2.4米高的编织铁丝围栏。试验设计包括2种营养处理和3种鹿密度,按因子排列,以研究点为块。圈地低、中、高密度鹿丰度目标分别为10头(13头/km2)、25头(31头/km2)和40头(50头/km2)。每个研究地点有2个圈地,每个圈地对应不同的鹿密度。我们为每个密度的1个圈舍中的鹿提供了高质量的粒状补充剂,我们称之为增强营养;每一密度的另一圈地的鹿都能从植被中获得自然营养。我们每年对每个围场的鹿进行两次相机调查,并根据需要增加或减少鹿的数量,以接近目标密度。我们保留了50%的鹿耳标用于个体识别。我们将成年鹿的性别比保持在1:1-1:1.5(雄性:雌性),并将幼鹿和老年鹿混合在围栏中。我们使用重建方法,通过与已知成年雄鼠数量的比较验证,在分析处理效果时对每个圈地的年密度进行估计。2009年6月至2011年5月,在两个研究地点(共4个圈舍)建立了密度处理5年后,研究了鹿密度对放归低密度和高密度自然营养圈舍的易驯服雌鹿的日粮组成、日粮质量和摄取率的影响。我们使用了咬痕计数技术,在4个季节中跟踪了2-3只可驯服的鹿/围场的觅食回合。不同密度处理鹿饲粮中灌木、草本、桅杆、仙人掌和亚灌木的比例无显著差异(P &gt; 0.57)。鹿密度高时,鹿饲粮中草的比例较高(P = 0.05),但草只占饲粮的1.3±0.3% (SE)。不同密度处理的饲粮可消化蛋白质和代谢能相似(P &gt; 0.45)。同样,咬率、咬口大小和干物质采食量也不随鹿密度的变化而变化(P &gt; 0.45)。与鹿群密度不同,干旱对易驯鹿的觅食影响显著(P≤0.10)。在干旱条件下,灌木和花卉在鹿的日粮中所占的比例增加,而牧草的比例下降。非干旱期的可消化蛋白质含量分别比干旱期高31%、53%和54% (P = 0.06)。本研究于2007年4月至2009年2月,即围场密度处理建立3年后,研究了强化营养对易驯服雌鹿日粮组成和品质的影响。我们还估算了鹿饲粮中添加饲料的比例。我们在每个研究地点使用2个低密度围栏,1个强化营养围栏,1个自然营养围栏(共4个围栏)。我们再次使用咬伤计数技术,并在每个围栏中生活2-3只易驯服的鹿。我们利用稳定碳同位素比值估算了易驯养鹿和非易驯养鹿日粮中颗粒饲料的比例。在不同季节和不同营养处理下,灌木占鹿日粮植被的大部分(44%),其次是桅杆(26%)和牧草(15%)。营养的增加影响了植物、仙人掌和花在日粮中的比例,但影响的性质和程度因季节和年份而异。趋势是在自然营养围栏中的鹿吃更多的桅杆。在饲料中灌木的比例上,自然营养与强化营养之间没有统计学差异(P = 0.15),但强化营养的鹿在8个季节中有5个季节对灌木的消耗增加了7-24%。强化营养圈养的鹿日粮中可消化蛋白质含量高于自然营养圈养的鹿(P = 0.03)。 增加营养对整体饲粮代谢能的影响因季节而异,2007年夏秋和2008年冬季增加营养对代谢能的影响更大(P &lt; 0.04)。在强化营养处理中,饲粮中添加饲料的比例平均为47 ~ 80%。在所有增加营养的密度处理中,97% (n = 128只鹿)食用了补充饲料。对于难以驯服的鹿,在不同密度处理、研究地点和年份的平均水平上,所有性别和年龄组的鹿日粮中添加饲料的比例都超过了70%。我们确定了鹿密度的增加和营养的增加是否会导致鹿喜欢的牧草和灌木的减少和鹿不喜欢的植物的增加。我们在每个围场中通过20,50米的永久样条对所有12个围场进行采样。不同营养处理和采样年份的平均鹿群密度间,优选牧草的冠层盖度百分比相似(P = 0.13)(低密度:= 8%,SE范围6-10;中密度:5%,4-6;高密度:4%,3-5;给出SE范围是因为与反向变换的平均值相关的SE是不对称的)。2004年不同营养处理的平均鹿密度、首选牧草冠层盖度相似;到2012年,强化营养圈养的平均比例为20±17-23%,而自然营养圈养的平均比例为10±8-13% (P = 0.107)。不同营养处理和采样年份的鹿密度的平均,其他草本、灌木、其他灌木和禾草的冠层盖度百分比、Shannon’s指数、均匀度和物种丰富度相似(P &gt; 0.10)。我们分析了小鹿:成年母鹿的比例,小鹿和幼鹿的生长率,以及6 - 14个月龄和14个月龄的成年小鹿的存活率。在2004-2012年期间,我们评估了成年鹿体重和种群生长速率(λ表观,λAPP),以确定密度和营养对研究围场鹿群的影响。在自然营养条件下,小鹿:成年母鹿的比例从中低密度到高密度下降(P = 0.04),但在强化营养条件下,小鹿:成年母鹿的比例与自然营养条件下相比增加了0.15±0.12,在高密度条件下增加了0.44±0.17,而在强化营养条件下,小鹿:成年母鹿的比例不受密度的影响(P = 0.48)。在自然营养和强化营养条件下,小鹿的生长速度不受鹿密度的影响(P &gt; 0.17),但在强化营养条件下,小鹿的生长速度比自然营养条件下提高了0.03±0.01 kg/d (P &lt; 0.01)。幼鹿的生长速率不受密度的影响(P &gt; 0.71),但在某些密度水平下,雄鹿的生长速率在某些年份有所提高。在自然营养围场中,成年雄鹿和母鹿的体质量随密度的增加而下降(P &lt; 0.01)。强化营养增加了男性的体重,但与自然营养相比,女性的体重没有增加。在天然营养围栏(P = 0.59)或强化营养围栏(P = 0.94)中,成年雄鹿的存活率不受鹿密度的影响。自然营养的中密度圈养环境成活率最高,低密度和高密度圈养环境成活率相似(P = 0.04)。增加营养可提高雌性的存活率(P &lt; 0.01),而雄性的存活率则略有提高(P = 0.11)。6-14月龄小鹿的存活率不受自然营养或强化营养处理密度的影响(P &gt; 0.35),但强化营养处理的存活率更高(P = 0.04)。在自然营养围场中,随着密度的增加,种群增长率下降(P = 0.06),而在强化营养围场中,种群增长率没有下降(P = 0.55)。增强营养使λAPP提高0.32。在自然营养条件下,密度处理对鹿的日粮组成、营养摄入和植物群落的影响较小。然而,我们发现密度对小鹿的影响:成年雌性比例、成年体重和种群增长率。在一项后续研究中,我们的研究围栏中的鹿的活动范围随着鹿密度的增加而减少。我
{"title":"Linking White-Tailed Deer Density, Nutrition, and Vegetation in a Stochastic Environment\u0000 Relier la Densité de Cerf de Virginie, la Nutrition et la Végétation dans un Environnement Stochastique\u0000 Relación entre la Densidad de Venado Cola Blanca, la Nutrición y la Vegetación en Ambientes Variables","authors":"Charles A. DeYoung,&nbsp;Timothy E. Fulbright,&nbsp;David G. Hewitt,&nbsp;David B. Wester,&nbsp;Don A. Draeger","doi":"10.1002/wmon.1040","DOIUrl":"https://doi.org/10.1002/wmon.1040","url":null,"abstract":"&lt;p&gt;Density-dependent behavior underpins white-tailed deer (&lt;i&gt;Odocoileus virginianus&lt;/i&gt;) theory and management application in North America, but strength or frequency of the phenomenon has varied across the geographic range of the species. The modifying effect of stochastic environments and poor-quality habitats on density-dependent behavior has been recognized for ungulate populations around the world, including white-tailed deer populations in South Texas, USA. Despite the importance of understanding mechanisms influencing density dependence, researchers have concentrated on demographic and morphological implications of deer density. Researchers have not focused on linking vegetation dynamics, nutrition, and deer dynamics. We conducted a series of designed experiments during 2004–2012 to determine how strongly white-tailed deer density, vegetation composition, and deer nutrition (natural and supplemented) are linked in a semi-arid environment where the coefficient of variation of annual precipitation exceeds 30%. We replicated our study on 2 sites with thornshrub vegetation in Dimmit County, Texas. During late 2003, we constructed 6 81-ha enclosures surrounded by 2.4-m-tall woven wire fence on each study site. The experimental design included 2 nutrition treatments and 3 deer densities in a factorial array, with study sites as blocks. Abundance targets for low, medium, and high deer densities in enclosures were 10 deer (equivalent to 13 deer/km&lt;sup&gt;2&lt;/sup&gt;), 25 deer (31 deer/km&lt;sup&gt;2&lt;/sup&gt;), and 40 deer (50 deer/km&lt;sup&gt;2&lt;/sup&gt;), respectively. Each study site had 2 enclosures with each deer density. We provided deer in 1 enclosure at each density with a high-quality pelleted supplement &lt;i&gt;ad libitum&lt;/i&gt;, which we termed enhanced nutrition; deer in the other enclosure at each density had access to natural nutrition from the vegetation. We conducted camera surveys of deer in each enclosure twice per year and added or removed deer as needed to approximate the target densities. We maintained &gt;50% of deer ear-tagged for individual recognition. We maintained adult sex ratios of 1:1–1:1.5 (males:females) and a mix of young and older deer in enclosures. We used reconstruction, validated by comparison to known number of adult males, to make annual estimates of density for each enclosure in analysis of treatment effects. We explored the effect of deer density on diet composition, diet quality, and intake rate of tractable female deer released into low- and high-density enclosures with natural nutrition on both study sites (4 total enclosures) between June 2009 and May 2011, 5 years after we established density treatments in enclosures. We used the bite count technique and followed 2–3 tractable deer/enclosure during foraging bouts across 4 seasons. Proportion of shrubs, forbs, mast, cacti, and subshrubs in deer diets did not differ (&lt;i&gt;P&lt;/i&gt; &gt; 0.57) between deer density treatments. Percent grass in deer diets was higher (&lt;i&gt;P&lt;/i&gt; = 0.05) at high de","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":"202 1","pages":"1-63"},"PeriodicalIF":4.4,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5748034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Wildlife Monographs
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1