首页 > 最新文献

Wildlife Monographs最新文献

英文 中文
Linking White-Tailed Deer Density, Nutrition, and Vegetation in a Stochastic Environment Relier la Densité de Cerf de Virginie, la Nutrition et la Végétation dans un Environnement Stochastique Relación entre la Densidad de Venado Cola Blanca, la Nutrición y la Vegetación en Ambientes Variables 随机环境下白尾鹿密度、营养与植被的关系随机环境下白尾鹿密度、营养与植被的关系可变环境下白尾鹿密度、营养与植被的关系
IF 4.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-07-22 DOI: 10.1002/wmon.1040
Charles A. DeYoung, Timothy E. Fulbright, David G. Hewitt, David B. Wester, Don A. Draeger

Density-dependent behavior underpins white-tailed deer (Odocoileus virginianus) theory and management application in North America, but strength or frequency of the phenomenon has varied across the geographic range of the species. The modifying effect of stochastic environments and poor-quality habitats on density-dependent behavior has been recognized for ungulate populations around the world, including white-tailed deer populations in South Texas, USA. Despite the importance of understanding mechanisms influencing density dependence, researchers have concentrated on demographic and morphological implications of deer density. Researchers have not focused on linking vegetation dynamics, nutrition, and deer dynamics. We conducted a series of designed experiments during 2004–2012 to determine how strongly white-tailed deer density, vegetation composition, and deer nutrition (natural and supplemented) are linked in a semi-arid environment where the coefficient of variation of annual precipitation exceeds 30%. We replicated our study on 2 sites with thornshrub vegetation in Dimmit County, Texas. During late 2003, we constructed 6 81-ha enclosures surrounded by 2.4-m-tall woven wire fence on each study site. The experimental design included 2 nutrition treatments and 3 deer densities in a factorial array, with study sites as blocks. Abundance targets for low, medium, and high deer densities in enclosures were 10 deer (equivalent to 13 deer/km2), 25 deer (31 deer/km2), and 40 deer (50 deer/km2), respectively. Each study site had 2 enclosures with each deer density. We provided deer in 1 enclosure at each density with a high-quality pelleted supplement ad libitum, which we termed enhanced nutrition; deer in the other enclosure at each density had access to natural nutrition from the vegetation. We conducted camera surveys of deer in each enclosure twice per year and added or removed deer as needed to approximate the target densities. We maintained >50% of deer ear-tagged for individual recognition. We maintained adult sex ratios of 1:1–1:1.5 (males:females) and a mix of young and older deer in enclosures. We used reconstruction, validated by comparison to known number of adult males, to make annual estimates of density for each enclosure in analysis of treatment effects. We explored the effect of deer density on diet composition, diet quality, and intake rate of tractable female deer released into low- and high-density enclosures with natural nutrition on both study sites (4 total enclosures) between June 2009 and May 2011, 5 years after we established density treatments in enclosures. We used the bite count technique and followed 2–3 tractable deer/enclosure during foraging bouts across 4 seasons. Proportion of shrubs, forbs, mast, cacti, and subshrubs in deer diets did not differ (P > 0.57) between deer density treatments. Percent grass in deer diets was higher (P = 0.05) at high de

密度依赖行为是北美白尾鹿(Odocoileus virginianus)理论和管理应用的基础,但这种现象的强度或频率因该物种的地理范围而异。随机环境和低质量栖息地对有蹄类种群的密度依赖行为的调节作用已经在世界范围内得到认可,包括美国南德克萨斯州的白尾鹿种群。尽管了解密度依赖的影响机制很重要,但研究人员主要集中在鹿密度的人口统计学和形态学意义上。研究人员还没有将植被动态、营养和鹿的动态联系起来。在2004年至2012年期间,我们进行了一系列设计实验,以确定在年降水量变化系数超过30%的半干旱环境中,白尾鹿密度、植被组成和鹿营养(天然和补充)之间的联系。我们在德克萨斯州迪米特县的2个有刺灌木植被的地点重复了我们的研究。在2003年底,我们在每个研究地点建造了6个81公顷的围栏,周围有2.4米高的编织铁丝围栏。试验设计包括2种营养处理和3种鹿密度,按因子排列,以研究点为块。圈地低、中、高密度鹿丰度目标分别为10头(13头/km2)、25头(31头/km2)和40头(50头/km2)。每个研究地点有2个圈地,每个圈地对应不同的鹿密度。我们为每个密度的1个圈舍中的鹿提供了高质量的粒状补充剂,我们称之为增强营养;每一密度的另一圈地的鹿都能从植被中获得自然营养。我们每年对每个围场的鹿进行两次相机调查,并根据需要增加或减少鹿的数量,以接近目标密度。我们保留了50%的鹿耳标用于个体识别。我们将成年鹿的性别比保持在1:1-1:1.5(雄性:雌性),并将幼鹿和老年鹿混合在围栏中。我们使用重建方法,通过与已知成年雄鼠数量的比较验证,在分析处理效果时对每个圈地的年密度进行估计。2009年6月至2011年5月,在两个研究地点(共4个圈舍)建立了密度处理5年后,研究了鹿密度对放归低密度和高密度自然营养圈舍的易驯服雌鹿的日粮组成、日粮质量和摄取率的影响。我们使用了咬痕计数技术,在4个季节中跟踪了2-3只可驯服的鹿/围场的觅食回合。不同密度处理鹿饲粮中灌木、草本、桅杆、仙人掌和亚灌木的比例无显著差异(P > 0.57)。鹿密度高时,鹿饲粮中草的比例较高(P = 0.05),但草只占饲粮的1.3±0.3% (SE)。不同密度处理的饲粮可消化蛋白质和代谢能相似(P > 0.45)。同样,咬率、咬口大小和干物质采食量也不随鹿密度的变化而变化(P > 0.45)。与鹿群密度不同,干旱对易驯鹿的觅食影响显著(P≤0.10)。在干旱条件下,灌木和花卉在鹿的日粮中所占的比例增加,而牧草的比例下降。非干旱期的可消化蛋白质含量分别比干旱期高31%、53%和54% (P = 0.06)。本研究于2007年4月至2009年2月,即围场密度处理建立3年后,研究了强化营养对易驯服雌鹿日粮组成和品质的影响。我们还估算了鹿饲粮中添加饲料的比例。我们在每个研究地点使用2个低密度围栏,1个强化营养围栏,1个自然营养围栏(共4个围栏)。我们再次使用咬伤计数技术,并在每个围栏中生活2-3只易驯服的鹿。我们利用稳定碳同位素比值估算了易驯养鹿和非易驯养鹿日粮中颗粒饲料的比例。在不同季节和不同营养处理下,灌木占鹿日粮植被的大部分(44%),其次是桅杆(26%)和牧草(15%)。营养的增加影响了植物、仙人掌和花在日粮中的比例,但影响的性质和程度因季节和年份而异。趋势是在自然营养围栏中的鹿吃更多的桅杆。在饲料中灌木的比例上,自然营养与强化营养之间没有统计学差异(P = 0.15),但强化营养的鹿在8个季节中有5个季节对灌木的消耗增加了7-24%。强化营养圈养的鹿日粮中可消化蛋白质含量高于自然营养圈养的鹿(P = 0.03)。 增加营养对整体饲粮代谢能的影响因季节而异,2007年夏秋和2008年冬季增加营养对代谢能的影响更大(P < 0.04)。在强化营养处理中,饲粮中添加饲料的比例平均为47 ~ 80%。在所有增加营养的密度处理中,97% (n = 128只鹿)食用了补充饲料。对于难以驯服的鹿,在不同密度处理、研究地点和年份的平均水平上,所有性别和年龄组的鹿日粮中添加饲料的比例都超过了70%。我们确定了鹿密度的增加和营养的增加是否会导致鹿喜欢的牧草和灌木的减少和鹿不喜欢的植物的增加。我们在每个围场中通过20,50米的永久样条对所有12个围场进行采样。不同营养处理和采样年份的平均鹿群密度间,优选牧草的冠层盖度百分比相似(P = 0.13)(低密度:= 8%,SE范围6-10;中密度:5%,4-6;高密度:4%,3-5;给出SE范围是因为与反向变换的平均值相关的SE是不对称的)。2004年不同营养处理的平均鹿密度、首选牧草冠层盖度相似;到2012年,强化营养圈养的平均比例为20±17-23%,而自然营养圈养的平均比例为10±8-13% (P = 0.107)。不同营养处理和采样年份的鹿密度的平均,其他草本、灌木、其他灌木和禾草的冠层盖度百分比、Shannon’s指数、均匀度和物种丰富度相似(P > 0.10)。我们分析了小鹿:成年母鹿的比例,小鹿和幼鹿的生长率,以及6 - 14个月龄和14个月龄的成年小鹿的存活率。在2004-2012年期间,我们评估了成年鹿体重和种群生长速率(λ表观,λAPP),以确定密度和营养对研究围场鹿群的影响。在自然营养条件下,小鹿:成年母鹿的比例从中低密度到高密度下降(P = 0.04),但在强化营养条件下,小鹿:成年母鹿的比例与自然营养条件下相比增加了0.15±0.12,在高密度条件下增加了0.44±0.17,而在强化营养条件下,小鹿:成年母鹿的比例不受密度的影响(P = 0.48)。在自然营养和强化营养条件下,小鹿的生长速度不受鹿密度的影响(P > 0.17),但在强化营养条件下,小鹿的生长速度比自然营养条件下提高了0.03±0.01 kg/d (P < 0.01)。幼鹿的生长速率不受密度的影响(P > 0.71),但在某些密度水平下,雄鹿的生长速率在某些年份有所提高。在自然营养围场中,成年雄鹿和母鹿的体质量随密度的增加而下降(P < 0.01)。强化营养增加了男性的体重,但与自然营养相比,女性的体重没有增加。在天然营养围栏(P = 0.59)或强化营养围栏(P = 0.94)中,成年雄鹿的存活率不受鹿密度的影响。自然营养的中密度圈养环境成活率最高,低密度和高密度圈养环境成活率相似(P = 0.04)。增加营养可提高雌性的存活率(P < 0.01),而雄性的存活率则略有提高(P = 0.11)。6-14月龄小鹿的存活率不受自然营养或强化营养处理密度的影响(P > 0.35),但强化营养处理的存活率更高(P = 0.04)。在自然营养围场中,随着密度的增加,种群增长率下降(P = 0.06),而在强化营养围场中,种群增长率没有下降(P = 0.55)。增强营养使λAPP提高0.32。在自然营养条件下,密度处理对鹿的日粮组成、营养摄入和植物群落的影响较小。然而,我们发现密度对小鹿的影响:成年雌性比例、成年体重和种群增长率。在一项后续研究中,我们的研究围栏中的鹿的活动范围随着鹿密度的增加而减少。我
{"title":"Linking White-Tailed Deer Density, Nutrition, and Vegetation in a Stochastic Environment\u0000 Relier la Densité de Cerf de Virginie, la Nutrition et la Végétation dans un Environnement Stochastique\u0000 Relación entre la Densidad de Venado Cola Blanca, la Nutrición y la Vegetación en Ambientes Variables","authors":"Charles A. DeYoung,&nbsp;Timothy E. Fulbright,&nbsp;David G. Hewitt,&nbsp;David B. Wester,&nbsp;Don A. Draeger","doi":"10.1002/wmon.1040","DOIUrl":"https://doi.org/10.1002/wmon.1040","url":null,"abstract":"<p>Density-dependent behavior underpins white-tailed deer (<i>Odocoileus virginianus</i>) theory and management application in North America, but strength or frequency of the phenomenon has varied across the geographic range of the species. The modifying effect of stochastic environments and poor-quality habitats on density-dependent behavior has been recognized for ungulate populations around the world, including white-tailed deer populations in South Texas, USA. Despite the importance of understanding mechanisms influencing density dependence, researchers have concentrated on demographic and morphological implications of deer density. Researchers have not focused on linking vegetation dynamics, nutrition, and deer dynamics. We conducted a series of designed experiments during 2004–2012 to determine how strongly white-tailed deer density, vegetation composition, and deer nutrition (natural and supplemented) are linked in a semi-arid environment where the coefficient of variation of annual precipitation exceeds 30%. We replicated our study on 2 sites with thornshrub vegetation in Dimmit County, Texas. During late 2003, we constructed 6 81-ha enclosures surrounded by 2.4-m-tall woven wire fence on each study site. The experimental design included 2 nutrition treatments and 3 deer densities in a factorial array, with study sites as blocks. Abundance targets for low, medium, and high deer densities in enclosures were 10 deer (equivalent to 13 deer/km<sup>2</sup>), 25 deer (31 deer/km<sup>2</sup>), and 40 deer (50 deer/km<sup>2</sup>), respectively. Each study site had 2 enclosures with each deer density. We provided deer in 1 enclosure at each density with a high-quality pelleted supplement <i>ad libitum</i>, which we termed enhanced nutrition; deer in the other enclosure at each density had access to natural nutrition from the vegetation. We conducted camera surveys of deer in each enclosure twice per year and added or removed deer as needed to approximate the target densities. We maintained &gt;50% of deer ear-tagged for individual recognition. We maintained adult sex ratios of 1:1–1:1.5 (males:females) and a mix of young and older deer in enclosures. We used reconstruction, validated by comparison to known number of adult males, to make annual estimates of density for each enclosure in analysis of treatment effects. We explored the effect of deer density on diet composition, diet quality, and intake rate of tractable female deer released into low- and high-density enclosures with natural nutrition on both study sites (4 total enclosures) between June 2009 and May 2011, 5 years after we established density treatments in enclosures. We used the bite count technique and followed 2–3 tractable deer/enclosure during foraging bouts across 4 seasons. Proportion of shrubs, forbs, mast, cacti, and subshrubs in deer diets did not differ (<i>P</i> &gt; 0.57) between deer density treatments. Percent grass in deer diets was higher (<i>P</i> = 0.05) at high de","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5748034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information - Editorial Board 发行信息-编辑委员会
IF 4.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-07-22 DOI: 10.1002/wmon.1047
{"title":"Issue Information - Editorial Board","authors":"","doi":"10.1002/wmon.1047","DOIUrl":"https://doi.org/10.1002/wmon.1047","url":null,"abstract":"","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5748048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information - Cover 发行资料-封面
IF 4.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-07-22 DOI: 10.1002/wmon.1042
{"title":"Issue Information - Cover","authors":"","doi":"10.1002/wmon.1042","DOIUrl":"https://doi.org/10.1002/wmon.1042","url":null,"abstract":"","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5666873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of maternal condition and predation in survival of juvenile Elk in Oregon 母性条件和捕食对俄勒冈州麋鹿幼崽生存的影响
IF 4.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-03-13 DOI: 10.1002/wmon.1039
Bruce K. Johnson, Dewaine H. Jackson, Rachel C. Cook, Darren A. Clark, Priscilla K. Coe, John G. Cook, Spencer N. Rearden, Scott L. Findholt, James H. Noyes

Understanding bottom-up, top-down, and abiotic factors along with interactions that may influence additive or compensatory effects of predation on ungulate population growth has become increasingly important as carnivore assemblages, land management policies, and climate variability change across western North America. Recruitment and population trends of elk (Cervus canadensis) have been downward in the last 4 decades across the northern Rocky Mountains and Pacific Northwest, USA. In Oregon, changes in vegetation composition and land use practices occurred, cougar (Puma concolor) populations recovered from near-extirpation, and black bear (Ursus americanus) populations increased. Our goal was to provide managers with insight into the influence of annual climatic variation, and bottom-up and top-down factors affecting recruitment of elk in Oregon. We conducted our research in southwestern (SW; Toketee and Steamboat) and northeastern (NE; Wenaha and Sled Springs) Oregon, which had similar predator assemblages but differed in patterns of juvenile recruitment, climate, cougar densities, and vegetative characteristics.

We obtained monthly temperature and precipitation measures from Parameter-elevation Regressions on Independent Slopes Model (PRISM) and estimates of normalized difference vegetation index (NDVI) for each study area to assess effects of climate and vegetation growth on elk vital rates. To evaluate the nutritional status of elk in each study area, we captured, aged, and radio-collared adult female elk in SW (n = 69) in 2002–2005 and NE (n = 113) in 2001–2007. We repeatedly captured these elk in autumn (n = 232) and spring (n = 404) and measured ingesta-free body fat (IFBF), mass, and pregnancy and lactation status. We fitted pregnant elk with vaginal implant transmitters (VITs) in spring and captured their neonates in SW (n = 46) and NE (n = 100). We placed expandable radio-collars on these plus an additional 110 neonates in SW and 360 neonates in NE captured by hand or net-gunning via helicopter and estimated their age at capture, birth mass from mass at capture, and sex. We monitored their fates and documented causes of mortality until 1 year of age. We estimated density of cougars by population reconstruction of captured (n = 96) and unmarked cougars killed (n = 27) and of black bears from DNA analysis of hair collected from snares.

We found evidence in lactating females of nutritional limitations on all 4 study areas where IFBFautumn was below 12%, a threshold above which there are few nutritional limitations (9.8% [SE = 0.64%, n = 17] at Toketee, 7.9% [SE = 0.78%, n = 17] at Steamboat, 7.3% [SE = 0.33%, n = 46] at Sled Springs, and 8.9% [SE = 0.51%, n

随着北美西部食肉动物种群、土地管理政策和气候变率的变化,了解自下而上、自上而下和非生物因素以及可能影响捕食对有蹄类种群增长的加性或补偿性效应的相互作用变得越来越重要。在美国北部落基山脉和西北太平洋地区,麋鹿(Cervus canada)的招募和种群趋势在过去40年中一直呈下降趋势。在俄勒冈州,植被组成和土地利用方式发生了变化,美洲狮(美洲狮)种群从近乎灭绝的状态中恢复过来,黑熊(美洲熊)种群增加。我们的目标是让管理者深入了解年度气候变化的影响,以及影响俄勒冈州麋鹿招募的自下而上和自上而下的因素。我们在西南(SW;托克提和汽船)和东北部(东北;俄勒冈州的韦纳哈和斯拉德斯普林斯,这两个地区有相似的捕食者组合,但在幼兽招募模式、气候、美洲狮密度和营养特征方面存在差异。利用独立坡度模型(PRISM)的参数高程回归数据和归一化植被指数(NDVI)估算了每个研究区域的月温度和降水量,以评估气候和植被生长对麋鹿生命率的影响。为了评估每个研究区麋鹿的营养状况,我们于2002-2005年在西南地区(n = 69)和2001-2007年在东北地区(n = 113)捕获成年雌性麋鹿,并对其进行老化和无线电项圈。我们在秋季(n = 232)和春季(n = 404)重复捕获了这些麋鹿,并测量了无摄食体脂(IFBF)、质量、妊娠和哺乳状态。我们在春季为怀孕的麋鹿配备阴道植入发射器(VITs),并在西南地区(n = 46)和东北地区(n = 100)捕获了它们的幼崽。我们在这些婴儿身上放置了可扩展的无线电颈圈,另外还有另外110名西南地区的新生儿和360名东北地区的新生儿,通过手动或通过直升机进行网射捕获,并估计了捕获时的年龄、捕获时的出生质量和性别。我们监测他们的命运,并记录死亡原因,直到1岁。我们通过对捕获的(n = 96)和未标记的被杀的(n = 27)美洲狮的种群重建以及对从陷阱中收集的毛发进行DNA分析来估计美洲狮的密度。我们发现,在IFBFautumn低于12%的所有4个研究区域,哺乳期雌性都存在营养限制的证据,高于该阈值的营养限制很少(Toketee为9.8% [SE = 0.64%, n = 17], Steamboat为7.9% [SE = 0.78%, n = 17], Sled Springs为7.3% [SE = 0.33%, n = 46], Wenaha为8.9% [SE = 0.51%, n = 23])。在春季,已知在前一秋季泌乳的雌性中,48% (SE = 3.3%, n = 56)有IFBFspring &lt;2%,这表明严重的营养限制,而在前一秋季未泌乳的雌性中,这一水平为20% (SE = 1.7%, n = 91)。哺乳期雌性的IFBFspring水平较低可能是由于夏季和初秋营养不足的结转效应。我们发现东北地区夏季降水与IFBFautumn呈正相关,孕妇IFBFautumn与其翌年春季新生儿出生日期呈负相关(F1, 52 = 20.37, P &lt; 0.001, r2 = 0.27)。Toketee (0.67, SE = 0.12, n = 15)、Wenaha (0.70, SE = 0.10, n = 23)和Sled Springs (0.87, SE = 0.05, n = 47)的哺乳期雌性平均妊娠率低于0.90,这是营养限制的阈值,但Steamboat (0.93, SE = 0.07, n = 14)没有。我们在东北冬季对麋鹿的股骨脂肪进行了采样,我们发现21只幼鹿中有3只(12%)濒临饥饿,它们全部被美洲狮杀死,12只成年麋鹿中有2只(17%)都死于非捕食事件。在西南地区和东北地区,6.5%和2%的VIT新生儿的出生质量分别为13公斤,在以前的研究中,这一质量与生存概率降低有关。sleedsprings地区VIT新生儿出生质量(= 18.3 kg, SD = 2.5, n = 59)高于Steamboat地区(= 16.3 kg, SD = 2.1, n = 21)或Toketee地区(= 16.1 kg, SD = 2.8, n = 24),但低于Wenaha地区(= 17.1 kg, SD = 2.8, n = 36);F3, 132 = 7.63, P &lt; 0.001)。VIT新生儿的中位和平均出生日期(5月29日)在地区之间没有差异(F1, 136 = 0.33, P = 0.56),但NE在平均值附近的差异较大,表明分娩间隔较长。我们在研究区域和年份记录了293例幼崽死亡,其中262例死亡的直接原因是捕食,主要来自美洲狮(n = 203),黑熊(n = 34)和其他或未知的捕食(n = 25)。我们还记录了未知死亡原因(n = 16)、人为死亡原因(n = 8)和疾病或饥饿死亡原因(n = 7)。我们记录了2例(1.4%)VIT新生儿被遗弃,4例(2.7%)VIT新生儿被捕食致死。 我们发现,亚成年雌狮和成年美洲狮的密度在不同区域之间存在4倍的差异(0.90-4.29/100 km2),在不同年份的研究区域内存在2倍的差异,西南地区的美洲狮密度低于东北地区。在我们的研究区域,黑熊的密度从15-20/100平方公里不等。我们使用MARK计划中的已知命运模型估计了新生儿30天、16周和12个月的存活率。患有vit的女性所生新生儿的存活率与美洲狮密度、IFBFspring和女性质量有关,但与女性年龄、新生儿出生日期或出生质量无关。在春季,IFBF和质量较低的雌鱼所生的幼鱼存活率较高,这与我们的预测相反。在事后分析中,我们发现,与前一年不成功的雌性相比,成功抚养新生儿的雌性第二年更有可能成功,这可能解释了这一意想不到的发现。随着美洲狮密度的增加,已知营养状况的雌性所生的幼崽存活率下降。我们对所有捕获的新生儿按地区进行了单独的生存分析,以评估气候、自下而上(但不包括母体状况)和自上而下因素的影响。在东北地区,幼崽的存活率受年度气候变化的影响不大,但随着美洲狮密度的增加和出生日期的推迟而下降。与东北地区相比,西南地区4 - 5月降水较少,新生儿出生较晚,存活率较高,但受美洲狮密度的影响较小。在我们的4个研究区域中,前30天的生存率每年变化从0.61 (SE = 0.08)到1.00,前16周的生存率为0.41 (SE = 0.11)到0.90 (SE = 0.09), 12个月(招募)的生存率为0.18 (SE = 0.06)到0.57 (SE = 0.11),西南地区的生存率高于东北地区。幼鹿在30天(F1, 18 = 16.59, R2adj = 0.45, P &lt; 0.001)、16周(F1, 18 = 21.07, R2adj = 0.51, P &lt; 0.001)和12个月(F1, 11 = 18.94, R2adj = 0.60, P = 0.001)的存活率与美洲狮密度呈负相关。我们发现,随着美洲狮特异性死亡率的增加,幼崽存活率下降(= - 0.63,95% CI = - 0.84至- 0.42),这表明美洲狮捕食是部分加性死亡率,因为估计的回归系数显著小于0但大于- 1。我们没有观察
{"title":"Roles of maternal condition and predation in survival of juvenile Elk in Oregon","authors":"Bruce K. Johnson,&nbsp;Dewaine H. Jackson,&nbsp;Rachel C. Cook,&nbsp;Darren A. Clark,&nbsp;Priscilla K. Coe,&nbsp;John G. Cook,&nbsp;Spencer N. Rearden,&nbsp;Scott L. Findholt,&nbsp;James H. Noyes","doi":"10.1002/wmon.1039","DOIUrl":"https://doi.org/10.1002/wmon.1039","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>Understanding bottom-up, top-down, and abiotic factors along with interactions that may influence additive or compensatory effects of predation on ungulate population growth has become increasingly important as carnivore assemblages, land management policies, and climate variability change across western North America. Recruitment and population trends of elk (<i>Cervus canadensis</i>) have been downward in the last 4 decades across the northern Rocky Mountains and Pacific Northwest, USA. In Oregon, changes in vegetation composition and land use practices occurred, cougar (<i>Puma concolor</i>) populations recovered from near-extirpation, and black bear (<i>Ursus americanus</i>) populations increased. Our goal was to provide managers with insight into the influence of annual climatic variation, and bottom-up and top-down factors affecting recruitment of elk in Oregon. We conducted our research in southwestern (SW; Toketee and Steamboat) and northeastern (NE; Wenaha and Sled Springs) Oregon, which had similar predator assemblages but differed in patterns of juvenile recruitment, climate, cougar densities, and vegetative characteristics.</p>\u0000 \u0000 <p>We obtained monthly temperature and precipitation measures from Parameter-elevation Regressions on Independent Slopes Model (PRISM) and estimates of normalized difference vegetation index (NDVI) for each study area to assess effects of climate and vegetation growth on elk vital rates. To evaluate the nutritional status of elk in each study area, we captured, aged, and radio-collared adult female elk in SW (<i>n </i>= 69) in 2002–2005 and NE (<i>n </i>= 113) in 2001–2007. We repeatedly captured these elk in autumn (<i>n </i>= 232) and spring (<i>n </i>= 404) and measured ingesta-free body fat (IFBF), mass, and pregnancy and lactation status. We fitted pregnant elk with vaginal implant transmitters (VITs) in spring and captured their neonates in SW (<i>n </i>= 46) and NE (<i>n </i>= 100). We placed expandable radio-collars on these plus an additional 110 neonates in SW and 360 neonates in NE captured by hand or net-gunning <i>via</i> helicopter and estimated their age at capture, birth mass from mass at capture, and sex. We monitored their fates and documented causes of mortality until 1 year of age. We estimated density of cougars by population reconstruction of captured (<i>n </i>= 96) and unmarked cougars killed (<i>n </i>= 27) and of black bears from DNA analysis of hair collected from snares.</p>\u0000 \u0000 <p>We found evidence in lactating females of nutritional limitations on all 4 study areas where IFBF<sub>autumn</sub> was below 12%, a threshold above which there are few nutritional limitations (9.8% [SE = 0.64%, <i>n</i> = 17] at Toketee, 7.9% [SE = 0.78%, <i>n</i> = 17] at Steamboat, 7.3% [SE = 0.33%, <i>n</i> = 46] at Sled Springs, and 8.9% [SE = 0.51%, <i>n</i>","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6120076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Photo page 照片页
IF 4.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-03-13 DOI: 10.1002/wmon.1032
{"title":"Photo page","authors":"","doi":"10.1002/wmon.1032","DOIUrl":"https://doi.org/10.1002/wmon.1032","url":null,"abstract":"","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6120082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of power lines on habitat use and demography of greater sage-grouse (Centrocercus urophasianus) 输电线对大尾松鸡生境利用及种群分布的影响
IF 4.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2018-10-23 DOI: 10.1002/wmon.1034
Daniel Gibson, Erik J. Blomberg, Michael T. Atamian, Shawn P. Espinosa, James S. Sedinger

Energy development and its associated infrastructure, including power lines, may influence wildlife population dynamics through effects on survival, reproduction, and movements of individuals. These infrastructure impacts may be direct or indirect, the former occurring when development acts directly as an agent of mortality (e.g., collision) and the latter when impacts occur as a by-product of other processes that are altered by infrastructure presence. Functional or numerical responses by predators to power-line corridors are indirect impacts that may suppress demographic rates for certain species, and perceived predation risk may affect animal behaviors such as habitat selection. Greater sage-grouse (Centrocercus urophasianus) are a species of conservation concern across western North America that may be affected by power lines. Previous studies, however, have not provided evidence for causal mechanisms influencing demographic rates. Our primary objective was to assess the influence of power lines on multiple sage-grouse vital rates, greater sage-grouse habitat selection, and ultimately greater sage-grouse population dynamics. We used demographic and behavioral data for greater sage-grouse collected from 2003 to 2012 in central Nevada, USA, accounting for sources of underlying environmental heterogeneity. We also concurrently monitored populations of common ravens (Corvus corax), a primary predator of sage-grouse nests and young. We focused primarily on a single 345 kV transmission line that was constructed at the beginning of our study; however, we also determined if similar patterns were associated with other nearby, preexisting power lines. We found that numerous behaviors (e.g., nest-site selection, brood-site selection) and demographic rates (e.g., nest survival, recruitment, and population growth) were affected by power lines, and that these negative effects were predominantly explained by temporal variation in the relative abundance of common ravens. Specifically, in years of high common raven abundance, avoidance of the transmission line was extended farther from the line, re-nesting propensity was reduced, and nest survival was lower near the transmission line relative to areas more distant from the transmission line. Additionally, we found that before and immediately after construction of the transmission line, habitats near the footprint of the transmission line were generally more productive (e.g., greater reproductive success and population growth) than areas farther from the transmission line. However, multiple demographic rates (i.e., pre-fledging chick survival, annual male survival, per capita recruitment, and population growth) for groups of individuals that used habitats near the transmission line declined to a greater extent than for individuals using habitats more distant in the years following construction of the transmission line

能源开发及其相关的基础设施,包括电力线,可能通过对个体生存、繁殖和迁徙的影响影响野生动物种群动态。这些基础设施的影响可能是直接的,也可能是间接的,前者是由于发展直接造成死亡(例如碰撞),后者是由于基础设施的存在而改变的其他过程的副产品。捕食者对电力线走廊的功能或数量反应是间接影响,可能会抑制某些物种的人口统计率,并且感知到的捕食风险可能会影响动物的行为,如栖息地选择。大艾草松鸡(Centrocercus urophasianus)是一种在北美西部可能受到电力线影响的保护物种。然而,以前的研究并没有提供影响人口比率的因果机制的证据。我们的主要目标是评估电力线对多种鼠尾草存活率、更大的鼠尾草栖息地选择以及最终更大的鼠尾草种群动态的影响。我们使用了2003年至2012年在美国内华达州中部收集的大鼠尾草的人口统计和行为数据,以解释潜在环境异质性的来源。我们还同时监测了普通乌鸦(Corvus corax)的种群,普通乌鸦是鼠尾草巢穴和幼鸟的主要捕食者。我们主要关注在研究开始时建成的一条345千伏输电线路;然而,我们也确定了类似的模式是否与附近其他先前存在的输电线有关。我们发现,许多行为(例如,巢址选择,巢址选择)和人口统计率(例如,巢生存,招募和人口增长)受到电力线的影响,这些负面影响主要是由普通乌鸦相对丰度的时间变化来解释的。具体而言,在普通渡鸦数量较高的年份,对传输线的躲避距离越远,重巢倾向越低,在传输线附近的巢存活率相对于离传输线较远的地区要低。此外,我们发现,在输电线路建设之前和之后,输电线路足迹附近的栖息地通常比远离输电线路的地区更具生产力(例如,更大的繁殖成功率和人口增长)。然而,在输电线路建设后的几年中,使用输电线路附近生境的个体群体的多重人口统计率(即雏前存活率、年雄性存活率、人均招募率和人口增长率)比使用更远生境的个体群体下降的程度更大。这些减少与普通渡鸦数量的增加有关。因此,电力线对大鼠尾草种群过程产生负面影响的地理程度取决于当地乌鸦的数量和行为。在这个系统中,我们发现电力线的影响,取决于行为或人口比率,延伸2.5-12.5公里,这超过了目前在鼠尾草韭周围地区放置结构的建议。在渡鸦数量平均到高水平的年份里,距离输电线12.5公里的巢穴的孵化概率比距离输电线1公里内的巢穴高0.06到0.14。同样,在渡鸦数量平均到高水平的年份,距离输电线5公里处的渡鸦种群增长率(λ)比距离输电线1公里内的渡鸦种群增长率(λ)高0.02至0.16。我们的研究发现,输电线路的负面影响与普通乌鸦的数量有关,这表明,将普通乌鸦数量与电力线之间的这种关联分离的管理行动可能会减少电力线对大鼠尾松种群动态的负面间接影响。然而,由于移除普通乌鸦或在电力线上使用鲈鱼威慑物并没有被证明在降低普通乌鸦对大鼠尾草巢穴的捕食率方面始终有效,我们建议优先处理减少大鼠尾草关键栖息地10公里内高架建筑数量的缓解策略。©2018野生动物协会。
{"title":"Effects of power lines on habitat use and demography of greater sage-grouse (Centrocercus urophasianus)","authors":"Daniel Gibson,&nbsp;Erik J. Blomberg,&nbsp;Michael T. Atamian,&nbsp;Shawn P. Espinosa,&nbsp;James S. Sedinger","doi":"10.1002/wmon.1034","DOIUrl":"https://doi.org/10.1002/wmon.1034","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>Energy development and its associated infrastructure, including power lines, may influence wildlife population dynamics through effects on survival, reproduction, and movements of individuals. These infrastructure impacts may be direct or indirect, the former occurring when development acts directly as an agent of mortality (e.g., collision) and the latter when impacts occur as a by-product of other processes that are altered by infrastructure presence. Functional or numerical responses by predators to power-line corridors are indirect impacts that may suppress demographic rates for certain species, and perceived predation risk may affect animal behaviors such as habitat selection. Greater sage-grouse (<i>Centrocercus urophasianus</i>) are a species of conservation concern across western North America that may be affected by power lines. Previous studies, however, have not provided evidence for causal mechanisms influencing demographic rates. Our primary objective was to assess the influence of power lines on multiple sage-grouse vital rates, greater sage-grouse habitat selection, and ultimately greater sage-grouse population dynamics. We used demographic and behavioral data for greater sage-grouse collected from 2003 to 2012 in central Nevada, USA, accounting for sources of underlying environmental heterogeneity. We also concurrently monitored populations of common ravens (<i>Corvus corax</i>), a primary predator of sage-grouse nests and young. We focused primarily on a single 345 kV transmission line that was constructed at the beginning of our study; however, we also determined if similar patterns were associated with other nearby, preexisting power lines. We found that numerous behaviors (e.g., nest-site selection, brood-site selection) and demographic rates (e.g., nest survival, recruitment, and population growth) were affected by power lines, and that these negative effects were predominantly explained by temporal variation in the relative abundance of common ravens. Specifically, in years of high common raven abundance, avoidance of the transmission line was extended farther from the line, re-nesting propensity was reduced, and nest survival was lower near the transmission line relative to areas more distant from the transmission line. Additionally, we found that before and immediately after construction of the transmission line, habitats near the footprint of the transmission line were generally more productive (e.g., greater reproductive success and population growth) than areas farther from the transmission line. However, multiple demographic rates (i.e., pre-fledging chick survival, annual male survival, <i>per capita</i> recruitment, and population growth) for groups of individuals that used habitats near the transmission line declined to a greater extent than for individuals using habitats more distant in the years following construction of the transmission line","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2018-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5770259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
Dedication page/photo 奉献页面/照片
IF 4.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2018-10-23 DOI: 10.1002/wmon.1028
{"title":"Dedication page/photo","authors":"","doi":"10.1002/wmon.1028","DOIUrl":"https://doi.org/10.1002/wmon.1028","url":null,"abstract":"","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2018-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5827321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information – Cover 发行资料-封面
IF 4.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2018-10-23 DOI: 10.1002/wmon.1035
{"title":"Issue Information – Cover","authors":"","doi":"10.1002/wmon.1035","DOIUrl":"https://doi.org/10.1002/wmon.1035","url":null,"abstract":"","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2018-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5827323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Elk Nutrition and Habitat Use in Western Oregon and Washington 俄勒冈州西部和华盛顿州麋鹿营养和栖息地利用模型
IF 4.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2018-10-23 DOI: 10.1002/wmon.1033
Mary M. Rowland, Michael J. Wisdom, Ryan M. Nielson, John G. Cook, Rachel C. Cook, Bruce K. Johnson, Priscilla K. Coe, Jennifer M. Hafer, Bridgett J. Naylor, David J. Vales, Robert G. Anthony, Eric K. Cole, Chris D. Danilson, Ronald W. Davis, Frank Geyer, Scott Harris, Larry L. Irwin, Robert McCoy, Michael D. Pope, Kim Sager-Fradkin, Martin Vavra

Studies of habitat selection and use by wildlife, especially large herbivores, are foundational for understanding their ecology and management, especially if predictors of use represent habitat requirements that can be related to demography or fitness. Many ungulate species serve societal needs as game animals or subsistence foods, and also can affect native vegetation and agricultural crops because of their large body size, diet choices, and widespread distributions. Understanding nutritional resources and habitat use of large herbivores like elk (Cervus canadensis) can benefit their management across different land ownerships and management regimes. Distributions of elk in much of the western United States have shifted from public to private lands, leading to reduced hunting and viewing opportunities on the former and increased crop damage and other undesired effects on the latter. These shifts may be caused by increasing human disturbance (e. g., roads and traffic) and declines of early-seral vegetation, which provides abundant forage for elk and other wildlife on public lands. Managers can benefit from tools that predict how nutritional resources, other environmental characteristics, elk productivity and performance, and elk distributions respond to management actions. We present a large-scale effort to develop regional elk nutrition and habitat-use models for summer ranges spanning 11 million ha in western Oregon and Washington, USA (hereafter Westside). We chose summer because nutritional limitations on elk condition (e. g., body fat levels) and reproduction in this season are evident across much of the western United States. Our overarching hypothesis was that elk habitat use during summer is driven by a suite of interacting covariates related to energy balance: acquisition (e g., nutritional resources, juxtaposition of cover and foraging areas), and loss (e g., proximity to open roads, topography). We predicted that female elk consistently select areas of higher summer nutrition, resulting in better animal performance in more nutritionally rich landscapes. We also predicted that factors of human disturbance, vegetation, and topography would affect elk use of landscapes and available nutrition during summer, and specifically predicted that elk would avoid open roads and areas far from cover-forage edges because of their preference for foraging sites with secure patches of cover nearby. Our work had 2 primary objectives: 1) to develop and evaluate a nutrition model that estimates regional nutritional conditions for elk on summer ranges, using predictors that reflect elk nutritional ecology; and 2) to develop a summer habitat-use model that integrates the nutrition model predictions with other covariates to estimate relative probability of use by elk, accounting for ecological processes that drive use. To meet our objectives, we used 25 previously

研究野生动物,特别是大型食草动物的栖息地选择和利用,是了解其生态和管理的基础,特别是如果利用的预测指标代表了可能与人口统计学或适应性相关的栖息地需求。许多有蹄类动物作为狩猎动物或维持生计的食物服务于社会需求,也会影响本地植被和农作物,因为它们体型大,饮食选择多,分布广泛。了解麋鹿(Cervus canada)等大型食草动物的营养资源和栖息地利用,有助于在不同土地所有权和管理制度下对其进行管理。在美国西部的大部分地区,麋鹿的分布已经从公共土地转移到私人土地,导致前者的狩猎和观赏机会减少,后者的作物损失和其他不良影响增加。这些变化可能是人为干扰(如道路和交通)的增加和早期植被的减少造成的,这些植被为公共土地上的麋鹿和其他野生动物提供了丰富的饲料。管理人员可以从预测营养资源、其他环境特征、麋鹿生产力和表现以及麋鹿分布如何响应管理行动的工具中受益。我们提出了一项大规模的努力来开发区域麋鹿营养和栖息地利用模型,该模型涵盖了美国俄勒冈州西部和华盛顿州(以下简称西区)1100万公顷的夏季范围。我们选择夏季是因为在这个季节,麋鹿的营养状况(例如,体脂水平)和繁殖的限制在美国西部的大部分地区都很明显。我们的总体假设是,麋鹿在夏季的栖息地使用是由一系列与能量平衡相关的相互作用的协变量驱动的:获取(例如,营养资源,覆盖和觅食区域的并置)和损失(例如,靠近开阔的道路,地形)。我们预测,雌性麋鹿始终选择夏季营养较高的地区,从而在营养更丰富的景观中获得更好的动物生产性能。我们还预测了人类干扰、植被和地形因素会影响麋鹿在夏季对景观和有效营养的利用,特别是麋鹿会避开开阔的道路和远离覆盖-饲料边缘的区域,因为它们更倾向于在附近有安全覆盖的地方觅食。我们的工作有两个主要目标:1)开发和评估一个营养模型,利用反映麋鹿营养生态的预测因子来估计夏季麋鹿的区域营养状况;2)建立一个夏季栖息地-利用模型,该模型将营养模型预测与其他协变量相结合,以估计麋鹿利用的相对概率,并考虑驱动利用的生态过程。为了实现我们的目标,我们使用了先前收集的25组麋鹿营养、性能和分布数据,这些数据来自12个研究区域。我们通过在华盛顿的两个景观中的应用,展示了我们的区域尺度模型的管理效用。麋鹿营养模型预测了麋鹿日粮中可消化能量的水平(DDE;kcal DE/g消耗饲料)。模型输入数据来自圈养雌性麋鹿的觅食实验和精细尺度(~ 0.5 ha)的现场特征测量。营养模型包括一组预测牧草生物量作为场地特征函数的方程,以及第二组主要预测DDE作为牧草生物量函数的方程。我们利用营养模型绘制了西区的DDE地图。然后,我们通过将预测的DDE与麋鹿的营养资源选择和种群水平的秋季体脂和哺乳期麋鹿的怀孕率进行比较,来评估模型的性能。为了模拟麋鹿栖息地的利用,我们收集了7个研究区(1991年6月- 2009年8月)的13组独特的母麋鹿遥测数据集(n = 173)。我们使用5个数据集的广义线性模型,加上生态相关协变量,如营养、人为干扰、植被和物理条件,用负二项模型估计利用强度。我们通过将预测的栖息地使用映射到区域模型中,并将预测结果与使用8个独立遥测数据集的麋鹿数量进行比较,来评估模型的性能。该营养模型解释了牧草生物量的较大变化(r2 = 0.46 ~ 0.72),并包含了林冠覆盖、阔叶林占林冠比例、潜在自然植被带和研究面积等协变量。模型中的饲粮DE方程解释了PNV区和研究区的DDE随饲料生物量变化的50%左右(r2 = 0.39-0.57)。 该营养模型在西部地区的大规模应用表明,不能满足哺乳期雌性(≤2.58 kcal/g)及其幼崽营养需求的景观占主导地位,特别是在海岸山脉和南喀斯喀特山脉的中等海拔的封闭冠层森林中。乳母DDE达到(2.58 ~ 2.75 kcal/g)和超过(2.75 kcal/g)基本需要量的地区分别为罕见(占总面积的15%)和罕见(占总面积的5%),主要发生在早期的几个群落,特别是在高海拔地区。野生麋鹿避开DDE低于基本要求的区域,选择DDE为2.60 kcal/g的区域。提供DDE水平接近或高于基本要求的麋鹿范围的百分比与哺乳期雌性的怀孕率高度相关。秋季体脂水平与提供DDE水平高于基本要求的麋鹿范围百分比高度相关。经验数据中支持度最高的麋鹿栖息地利用区域模型包括4个协变量:DDE、到最近的公共机动车开放道路的距离、到覆盖-放牧边缘的距离和坡度。麋鹿偏好DDE相对较高、远离道路、靠近草料覆盖边缘、坡度较缓的生境。根据标准化系数,坡度变化(- 0.949)对预测生境利用最重要,其次是DDE(0.656)、到边缘的距离(- 0.305)和到开放道路的距离(0.300)。区域模型的使用比率显示了麋鹿相对使用可能性的变化:DDE每增加0.1个单位,使用增加111.2%;距离开放道路每公里,使用量增加22.7%;到边缘的距离每增加100米,用水量减少8.1%;坡度每增加一个百分点,用水量就会减少5.3%。区域模型总体上验证良好,华盛顿州4个站点的预测使用量与观测值之间具有较高的相关性(rs≥0.96),而俄勒冈州西南部站点的相关性较低(rs = 0.32-0.87)。研究结果表明,在小尺度上收集的圈养麋鹿营养数据可以用于大尺度上的营养资源预测,这些预测与西侧地区自由放养麋鹿的栖息地利用和生产性能直接相关。这些结果也强调了将夏季营养纳入西城麋鹿栖息地评价和景观规划的重要性。这些模型可以为管理策略提供信息,以实现跨土地所有权的麋鹿目标。区域模型提供了一个有用的工具来理解和记录麋鹿在当前或未来景观中的空间明确的栖息地需求和分布。这两个管理应用的例子展示了如何在景观尺度上评估管理对麋鹿营养和栖息地利用的影响,以及反过来如何影响动物的生产性能和分布。结果进一步说明了营养管理与其他协变量(如道路、坡度、覆盖-草料边缘)的重要性,这些协变量会影响麋鹿对营养资源的利用,以实现麋鹿的理想分布。我们的荟萃分析方法通过识别在多个建模区域和大地理范围内健壮的栖息地利用模式的共性,为具有粗尺度栖息地需求的野生动物物种的研究和管理提供了一个有用的框架。在未来的建模中使用这些方法,包括在监测程序和适应性管理中的应用,将继续推进对麋鹿等野生动物物种的生态知识和管理。©2018作者。Wiley代表野生动物协会出版的野生动物专著。
{"title":"Modeling Elk Nutrition and Habitat Use in Western Oregon and Washington","authors":"Mary M. Rowland,&nbsp;Michael J. Wisdom,&nbsp;Ryan M. Nielson,&nbsp;John G. Cook,&nbsp;Rachel C. Cook,&nbsp;Bruce K. Johnson,&nbsp;Priscilla K. Coe,&nbsp;Jennifer M. Hafer,&nbsp;Bridgett J. Naylor,&nbsp;David J. Vales,&nbsp;Robert G. Anthony,&nbsp;Eric K. Cole,&nbsp;Chris D. Danilson,&nbsp;Ronald W. Davis,&nbsp;Frank Geyer,&nbsp;Scott Harris,&nbsp;Larry L. Irwin,&nbsp;Robert McCoy,&nbsp;Michael D. Pope,&nbsp;Kim Sager-Fradkin,&nbsp;Martin Vavra","doi":"10.1002/wmon.1033","DOIUrl":"https://doi.org/10.1002/wmon.1033","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>Studies of habitat selection and use by wildlife, especially large herbivores, are foundational for understanding their ecology and management, especially if predictors of use represent habitat requirements that can be related to demography or fitness. Many ungulate species serve societal needs as game animals or subsistence foods, and also can affect native vegetation and agricultural crops because of their large body size, diet choices, and widespread distributions. Understanding nutritional resources and habitat use of large herbivores like elk (<i>Cervus canadensis</i>) can benefit their management across different land ownerships and management regimes. Distributions of elk in much of the western United States have shifted from public to private lands, leading to reduced hunting and viewing opportunities on the former and increased crop damage and other undesired effects on the latter. These shifts may be caused by increasing human disturbance (e. g., roads and traffic) and declines of early-seral vegetation, which provides abundant forage for elk and other wildlife on public lands. Managers can benefit from tools that predict how nutritional resources, other environmental characteristics, elk productivity and performance, and elk distributions respond to management actions. We present a large-scale effort to develop regional elk nutrition and habitat-use models for summer ranges spanning 11 million ha in western Oregon and Washington, USA (hereafter Westside). We chose summer because nutritional limitations on elk condition (e. g., body fat levels) and reproduction in this season are evident across much of the western United States. Our overarching hypothesis was that elk habitat use during summer is driven by a suite of interacting covariates related to energy balance: acquisition (e g., nutritional resources, juxtaposition of cover and foraging areas), and loss (e g., proximity to open roads, topography). We predicted that female elk consistently select areas of higher summer nutrition, resulting in better animal performance in more nutritionally rich landscapes. We also predicted that factors of human disturbance, vegetation, and topography would affect elk use of landscapes and available nutrition during summer, and specifically predicted that elk would avoid open roads and areas far from cover-forage edges because of their preference for foraging sites with secure patches of cover nearby. Our work had 2 primary objectives: 1) to develop and evaluate a nutrition model that estimates regional nutritional conditions for elk on summer ranges, using predictors that reflect elk nutritional ecology; and 2) to develop a summer habitat-use model that integrates the nutrition model predictions with other covariates to estimate relative probability of use by elk, accounting for ecological processes that drive use. To meet our objectives, we used 25 previously ","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2018-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6010862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Issue Information – Editorial Board 发行信息-编辑委员会
IF 4.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2018-10-23 DOI: 10.1002/wmon.1037
{"title":"Issue Information – Editorial Board","authors":"","doi":"10.1002/wmon.1037","DOIUrl":"https://doi.org/10.1002/wmon.1037","url":null,"abstract":"","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2018-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmon.1037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5827324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Wildlife Monographs
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1