Pub Date : 2024-02-28DOI: 10.17588/2072-2672.2024.1.005-011
E.N. Bushuev
When performing technological calculations of water treatment units for thermal power plants (TPP) and nuclear power plants (NPP), it is necessary to determine the quality indicators of process water after the processing steps. The main difficulty is to calculate the concentrations of weak electrolytes since they are in chemical equilibrium with all forms of dissipation. Currently, for each type of processing, either simplified models or methods that solve a complex computational problem are used for calculations. It is necessary to develop a universal mathematical model that allows high accuracy to calculate the concentrations of weak electrolytes and the pH value for various types of water treatment. To develop the model the authors have applied the method of mathematical modeling of chemical-technological processes at thermal power plants and nuclear power plants. A mathematical model based on the transformed equation of electrical neutrality is proposed. It can be used to determine the equilibrium concentrations of dissociation forms of weak electrolytes (primarily water itself and carbonic acid) after various stages of water treatment. The proposed model allows, when conducting technological calculations of water treatment plants, to more accurately and universally calculate the concentrations of weak electrolytes and determine the pH value in process waters for various types of water treatment. The model can be used to determine the required doses of chemical reagents to ensure the required values of technological indicators (pH and Langelier index) in treated water.
{"title":"Using transformed equation of electroneutrality when carrying out technological calculations of water treatment at thermal power and nuclear power plants","authors":"E.N. Bushuev","doi":"10.17588/2072-2672.2024.1.005-011","DOIUrl":"https://doi.org/10.17588/2072-2672.2024.1.005-011","url":null,"abstract":"When performing technological calculations of water treatment units for thermal power plants (TPP) and nuclear power plants (NPP), it is necessary to determine the quality indicators of process water after the processing steps. The main difficulty is to calculate the concentrations of weak electrolytes since they are in chemical equilibrium with all forms of dissipation. Currently, for each type of processing, either simplified models or methods that solve a complex computational problem are used for calculations. It is necessary to develop a universal mathematical model that allows high accuracy to calculate the concentrations of weak electrolytes and the pH value for various types of water treatment. To develop the model the authors have applied the method of mathematical modeling of chemical-technological processes at thermal power plants and nuclear power plants. A mathematical model based on the transformed equation of electrical neutrality is proposed. It can be used to determine the equilibrium concentrations of dissociation forms of weak electrolytes (primarily water itself and carbonic acid) after various stages of water treatment. The proposed model allows, when conducting technological calculations of water treatment plants, to more accurately and universally calculate the concentrations of weak electrolytes and determine the pH value in process waters for various types of water treatment. The model can be used to determine the required doses of chemical reagents to ensure the required values of technological indicators (pH and Langelier index) in treated water.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"66 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140422814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.17588/2072-2672.2023.6.023-028
O. Kolibaba, R.D. Adakin, E.A. Shuina
The main technological equipment to produce bread and confectionary is baking ovens. Fuel-based rotary ovens, in which the heat source is a heat generator, have become widespread. Often, the thermal conditions of ovens are characterized by increased fuel and thermal energy costs which depend on the efficiency of the heat generator. Currently, there are no recommendations on the design of a heat generator with the most efficient characteristics and the coefficient of efficiency, namely the distribution of the heat transfer surface between the flame tube and the heat exchanger, the layout and materials of the heat exchanger tubes, the geometry of heat exchange intensifiers, etc. Therefore, there is a need to study the thermal operation of the rotary oven of the heat generator to increase its efficiency due to improving the design. Physical and numerical experiments using mathematical modeling methods are caried out to study thermal operation of the heat generator of a rotary baking oven. The authors have conducted computational and experimental studies of thermal operation of the heat generator. The results have showed a large unevenness of the temperature field of the heat generator, underheating of the baking chamber to the minimum required temperature of 220 ° C, which indicates the low efficiency of the device. The results of field and numerical studies have confirmed the low thermal efficiency of the heat generator. Thus, the development of new technical solutions aimed at improving the design of this device is highly topical.
{"title":"Study of thermal operation of heat generator of rotary baking oven","authors":"O. Kolibaba, R.D. Adakin, E.A. Shuina","doi":"10.17588/2072-2672.2023.6.023-028","DOIUrl":"https://doi.org/10.17588/2072-2672.2023.6.023-028","url":null,"abstract":"The main technological equipment to produce bread and confectionary is baking ovens. Fuel-based rotary ovens, in which the heat source is a heat generator, have become widespread. Often, the thermal conditions of ovens are characterized by increased fuel and thermal energy costs which depend on the efficiency of the heat generator. Currently, there are no recommendations on the design of a heat generator with the most efficient characteristics and the coefficient of efficiency, namely the distribution of the heat transfer surface between the flame tube and the heat exchanger, the layout and materials of the heat exchanger tubes, the geometry of heat exchange intensifiers, etc. Therefore, there is a need to study the thermal operation of the rotary oven of the heat generator to increase its efficiency due to improving the design. Physical and numerical experiments using mathematical modeling methods are caried out to study thermal operation of the heat generator of a rotary baking oven. The authors have conducted computational and experimental studies of thermal operation of the heat generator. The results have showed a large unevenness of the temperature field of the heat generator, underheating of the baking chamber to the minimum required temperature of 220 ° C, which indicates the low efficiency of the device. The results of field and numerical studies have confirmed the low thermal efficiency of the heat generator. Thus, the development of new technical solutions aimed at improving the design of this device is highly topical.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"330 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139149124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.17588/2072-2672.2023.6.050-056
K.R. Valiullin, S.I. Tushev
Existing thermal models of asynchronous motors either require a large number of calculations and source data or have poor accuracy. Thus, it is relevant to develop methods of thermal calculation of electric motors that have adequate accuracy with a small number of calculations. To design a mathematical model of heating an asynchronous motor, methods of mathematical simulation, and the method of equivalent thermal circuits are used to calculate the temperature rise of motor parts. The authors have proposed a combined mathematical model to calculate the temperature of an asynchronous motor. It combines the method of equivalent thermal circuit and the method of calculating the temperature rise of the rotor, which allows reducing the number of nodes of the thermal circuit without increasing the simulation error. An algorithm of parallel calculation of the thermal state of the fixed part of the electric machine and the rotor has been developed. The results obtained allow us to conclude that the developed model can be used to calculate the thermal state of motors. The calculation error of the combined model is lower than when calculating using the equivalent thermal circuit method. The obtained algorithms can be improved and integrated into the general equivalent thermal circuit. It will allow us to use the proposed method to calculate the motors with a phase-wound rotor.
{"title":"Combined mathematical model of heating an asynchronous motor","authors":"K.R. Valiullin, S.I. Tushev","doi":"10.17588/2072-2672.2023.6.050-056","DOIUrl":"https://doi.org/10.17588/2072-2672.2023.6.050-056","url":null,"abstract":"Existing thermal models of asynchronous motors either require a large number of calculations and source data or have poor accuracy. Thus, it is relevant to develop methods of thermal calculation of electric motors that have adequate accuracy with a small number of calculations. To design a mathematical model of heating an asynchronous motor, methods of mathematical simulation, and the method of equivalent thermal circuits are used to calculate the temperature rise of motor parts. The authors have proposed a combined mathematical model to calculate the temperature of an asynchronous motor. It combines the method of equivalent thermal circuit and the method of calculating the temperature rise of the rotor, which allows reducing the number of nodes of the thermal circuit without increasing the simulation error. An algorithm of parallel calculation of the thermal state of the fixed part of the electric machine and the rotor has been developed. The results obtained allow us to conclude that the developed model can be used to calculate the thermal state of motors. The calculation error of the combined model is lower than when calculating using the equivalent thermal circuit method. The obtained algorithms can be improved and integrated into the general equivalent thermal circuit. It will allow us to use the proposed method to calculate the motors with a phase-wound rotor.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"41 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139150008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.17588/2072-2672.2023.6.013-022
V. Bukhmirov, I. Svetushkov, E.N. Bushuev, E. N. Temlyantseva, M.V. Rodionova
Microclimate quality required by regulatory documents in the main housing of the thermal power plant is necessary to manage the technological process and comply with labor protection requirements. Thus, obtaining information about microclimate parameters is an urgent task. A passive experiment using state-of-the-industry measuring instruments is carried out to obtain the microclimate parameters in the main housing of the thermal power plant. The main (temperature and relative humidity) and auxiliary (CO2, РМ2.5, tVOC) characteristics of the air environment in the turbine and boiler sections of the main housing of the Ivanovo CHPP-2 are obtained. Analysis of experimental data allows us to draw conclusions that the microclimate parameters at the thermal power plant are in compliance with the current regulatory documents. Information about the state of the microclimate depending on the technological operating mode of the thermal station and the environment will allow us to develop energy-saving measures to reduce energy consumption for in-house needs. It can be useful to check the reliability of the existing and new methods to calculate the microclimate at thermal power plants.
{"title":"Experimental study of microclimate at thermal power plant","authors":"V. Bukhmirov, I. Svetushkov, E.N. Bushuev, E. N. Temlyantseva, M.V. Rodionova","doi":"10.17588/2072-2672.2023.6.013-022","DOIUrl":"https://doi.org/10.17588/2072-2672.2023.6.013-022","url":null,"abstract":"Microclimate quality required by regulatory documents in the main housing of the thermal power plant is necessary to manage the technological process and comply with labor protection requirements. Thus, obtaining information about microclimate parameters is an urgent task. A passive experiment using state-of-the-industry measuring instruments is carried out to obtain the microclimate parameters in the main housing of the thermal power plant. The main (temperature and relative humidity) and auxiliary (CO2, РМ2.5, tVOC) characteristics of the air environment in the turbine and boiler sections of the main housing of the Ivanovo CHPP-2 are obtained. Analysis of experimental data allows us to draw conclusions that the microclimate parameters at the thermal power plant are in compliance with the current regulatory documents. Information about the state of the microclimate depending on the technological operating mode of the thermal station and the environment will allow us to develop energy-saving measures to reduce energy consumption for in-house needs. It can be useful to check the reliability of the existing and new methods to calculate the microclimate at thermal power plants.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"3 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139148773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.17588/2072-2672.2023.6.043-049
A.B. Biryukov, A.N. Lebedev, K.D. Kaminskii
Currently, there are various methods to determine the dew point temperature of humid air and combustion products of distinct types of fuels. It is especially important when designing deep flue gas cooling systems in boiler plants that do not consider the composition of a particular type of fuel. In this regard, the urgent issue is the development of a simple method to calculate this value when using natural gas as fuel. The authors have used the methods of thermodynamic analysis of processes in humid air and fuel combustion products, and the results of thermal calculations of fuel combustion processes. The authors have conducted the analysis of existing methods to determine the dew point temperature for natural gas combustion products, since it is necessary to prevent condensation of water vapor in chimneys and chimney flue to ensure their operation conditions, especially during deep cooling. A simple method to calculate this value is proposed, and an example of its use is presented. The authors have analyzed the influence of such factors as the moisture content of air and natural gas, the absolute pressure of combustion products and the air flow coefficient per the dew point temperature. It is shown that the final refinement of the given value can be quite significant, and therefore the use of the method that allows considering these patterns is advisable when designing deep flue gas cooling systems. It is established that the proposed method is quite universal and can be used during combustion of natural gas of various compositions and various values of factors characterizing fuel combustion.
{"title":"Method to determine dew point temperature of natural gas combustion products","authors":"A.B. Biryukov, A.N. Lebedev, K.D. Kaminskii","doi":"10.17588/2072-2672.2023.6.043-049","DOIUrl":"https://doi.org/10.17588/2072-2672.2023.6.043-049","url":null,"abstract":"Currently, there are various methods to determine the dew point temperature of humid air and combustion products of distinct types of fuels. It is especially important when designing deep flue gas cooling systems in boiler plants that do not consider the composition of a particular type of fuel. In this regard, the urgent issue is the development of a simple method to calculate this value when using natural gas as fuel. The authors have used the methods of thermodynamic analysis of processes in humid air and fuel combustion products, and the results of thermal calculations of fuel combustion processes. The authors have conducted the analysis of existing methods to determine the dew point temperature for natural gas combustion products, since it is necessary to prevent condensation of water vapor in chimneys and chimney flue to ensure their operation conditions, especially during deep cooling. A simple method to calculate this value is proposed, and an example of its use is presented. The authors have analyzed the influence of such factors as the moisture content of air and natural gas, the absolute pressure of combustion products and the air flow coefficient per the dew point temperature. It is shown that the final refinement of the given value can be quite significant, and therefore the use of the method that allows considering these patterns is advisable when designing deep flue gas cooling systems. It is established that the proposed method is quite universal and can be used during combustion of natural gas of various compositions and various values of factors characterizing fuel combustion.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"38 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139151426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.17588/2072-2672.2023.6.005-012
G. Parfenov, N.N. Smirnov, V. Tyutikov, E.N. Bushuev, E.A. Shuina
ISPU scientists have developed energy-saving constructions of window units with heat-reflecting screens, have tested them in a climate chamber, and have carried out simulation modeling of the heat transfer process through these constructions. Despite a large number of scientific papers that consider experimental laboratory studies and numerical simulation of heat transfer processes through translucent constructions, there is no data on the effect of the application of low thermal conductivity gases in the gaps formed by glass and metal elements on increasing the thermal protection of window units with screens. The correct calculation of the reduced heat transfer resistance of window units with screens and low-thermal conductivity gases affects the correctness of the heat balance for premises and, consequently, the quality of the design of energy systems to ensure the indoor microclimate. Thus, the development of models of heat transfer process through a window unit with screens is an urgent task to ensure the indoor microclimate. Simulation numerical modeling is carried out using the finite element method based on the fundamental laws of heat transfer. The authors have developed a two-dimensional simulation model of heat transfer through a window unit with heat-reflecting screens, in which the gaps between the glass and aluminum foil are filled with argon and krypton. The distribution of resistance to heat transfer along the height of a translucent enclosing structure has been studied. The adequacy of the proposed simulation model is confirmed by comparison with data of other scientists and regulatory documentation. Filling the gaps between glass and metal foil with argon makes it possible to increase the zonal heat transfer resistance of a window unit with screens in relation to the base-case scenario (air) by 6–23 %, krypton by 8–58 % (depending on the measurement location and the number of screens). The application of the developed simulation model will make it possible to more accurately determine the potential to use heat-reflecting screens in windows for intermittent heating systems of buildings.
{"title":"Influence of filling gaps with low thermal conductivity gases on thermal protection of window units with screens","authors":"G. Parfenov, N.N. Smirnov, V. Tyutikov, E.N. Bushuev, E.A. Shuina","doi":"10.17588/2072-2672.2023.6.005-012","DOIUrl":"https://doi.org/10.17588/2072-2672.2023.6.005-012","url":null,"abstract":"ISPU scientists have developed energy-saving constructions of window units with heat-reflecting screens, have tested them in a climate chamber, and have carried out simulation modeling of the heat transfer process through these constructions. Despite a large number of scientific papers that consider experimental laboratory studies and numerical simulation of heat transfer processes through translucent constructions, there is no data on the effect of the application of low thermal conductivity gases in the gaps formed by glass and metal elements on increasing the thermal protection of window units with screens. The correct calculation of the reduced heat transfer resistance of window units with screens and low-thermal conductivity gases affects the correctness of the heat balance for premises and, consequently, the quality of the design of energy systems to ensure the indoor microclimate. Thus, the development of models of heat transfer process through a window unit with screens is an urgent task to ensure the indoor microclimate. Simulation numerical modeling is carried out using the finite element method based on the fundamental laws of heat transfer. The authors have developed a two-dimensional simulation model of heat transfer through a window unit with heat-reflecting screens, in which the gaps between the glass and aluminum foil are filled with argon and krypton. The distribution of resistance to heat transfer along the height of a translucent enclosing structure has been studied. The adequacy of the proposed simulation model is confirmed by comparison with data of other scientists and regulatory documentation. Filling the gaps between glass and metal foil with argon makes it possible to increase the zonal heat transfer resistance of a window unit with screens in relation to the base-case scenario (air) by 6–23 %, krypton by 8–58 % (depending on the measurement location and the number of screens). The application of the developed simulation model will make it possible to more accurately determine the potential to use heat-reflecting screens in windows for intermittent heating systems of buildings.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"232 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139152868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.17588/2072-2672.2023.6.082-087
V. Zhukov, A. Barochkin, А.N. Belyakov, E. Barochkin, E.A. Shuina, A.K. Sokolov
One of the priority areas of the development of science, technology, and engineering in the Russian Federation is energy saving issues. One of the promising areas to solve the problem of energy saving is to reduce waste heat losses of power plants. The designs of condensing heat exchangers used in industry and energy sector allow both to reduce waste heat losses and to significantly reduce moisture losses. Despite the substantial number of scientific publications on this issue and the positive experience of using the developed designs of condensing heat exchangers, most gas boiler houses and thermal power plants currently continue to operate without deep heat recovery units. To a great extent, it is due to the lack of the universal methods to calculate and optimize heat exchanger modes. Thus, to effective selection of the optimal structure and operating mode of the equipment, the development of mathematical models of power plants with condensing heat exchangers and software packages for their computer implementation is an urgent task. To design a model of a condensing boiler, equations of energy and mass balances are used. To solve the problem of optimal choice of structure and operating mode of the equipment, mathematical programming methods are used. A model and a method to solve the problem of choosing the optimal structure and operating mode of condensation heat exchangers have been developed. As a target optimization function, it is proposed to use the amount of fuel required to provide pre-set heat load. A computer program has been developed for optimal distribution of load between operating units. Analysis of the results obtained has showed an adequate description of real equipment model and the possibility to generate computer mode maps. Application of these maps allows significant savings of energy resources due to the optimal choice of mode and load distribution between operating equipment. The proposed approach allows us to formulate and solve inverse problems of diagnosing the state of condensing heat exchangers.
{"title":"Mathematical modeling, optimization of structure and operating mode of condensing boiler equipment","authors":"V. Zhukov, A. Barochkin, А.N. Belyakov, E. Barochkin, E.A. Shuina, A.K. Sokolov","doi":"10.17588/2072-2672.2023.6.082-087","DOIUrl":"https://doi.org/10.17588/2072-2672.2023.6.082-087","url":null,"abstract":"One of the priority areas of the development of science, technology, and engineering in the Russian Federation is energy saving issues. One of the promising areas to solve the problem of energy saving is to reduce waste heat losses of power plants. The designs of condensing heat exchangers used in industry and energy sector allow both to reduce waste heat losses and to significantly reduce moisture losses. Despite the substantial number of scientific publications on this issue and the positive experience of using the developed designs of condensing heat exchangers, most gas boiler houses and thermal power plants currently continue to operate without deep heat recovery units. To a great extent, it is due to the lack of the universal methods to calculate and optimize heat exchanger modes. Thus, to effective selection of the optimal structure and operating mode of the equipment, the development of mathematical models of power plants with condensing heat exchangers and software packages for their computer implementation is an urgent task. To design a model of a condensing boiler, equations of energy and mass balances are used. To solve the problem of optimal choice of structure and operating mode of the equipment, mathematical programming methods are used. A model and a method to solve the problem of choosing the optimal structure and operating mode of condensation heat exchangers have been developed. As a target optimization function, it is proposed to use the amount of fuel required to provide pre-set heat load. A computer program has been developed for optimal distribution of load between operating units. Analysis of the results obtained has showed an adequate description of real equipment model and the possibility to generate computer mode maps. Application of these maps allows significant savings of energy resources due to the optimal choice of mode and load distribution between operating equipment. The proposed approach allows us to formulate and solve inverse problems of diagnosing the state of condensing heat exchangers.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"316 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139149012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.17588/2072-2672.2023.6.057-068
A. Anisimov, M. E. Sorokovnin, S. Tararykin
High potential capabilities of control systems with state controllers can be realized only if automatic tuning tools are available. Since the tuning is carried out in real-time mode, which places increased demands on performance, it is proposed to use an artificial neural network to reduce its duration. However, under the conditions of noise in the measurement channels, the quality of identification of the parameters of the control object is significantly reduced. In this regard, the aim of the study is to find the optimal composition of measurement channels at the network input, which allows minimizing the influence of noise on the estimates of object parameters to improve the quality of tuning. During the study, state space methods are used to design a vector-matrix model of an object and synthesize a state controller. A radial artificial neural network is used to solve the problem of identifying the parameters of a vector-matrix model. The training of networks, the study of the effectiveness of their work, as well as the development of models is carried out using the tools of the MatLab software package. The authors have developed the method to select the optimal composition of measurement channels which gives the maximum signal-to-noise ratio and forming the corresponding structure of a radial artificial neural network to solve the problems of object parameters identification and control system tuning with state controller. It is proposed to use the sensitivity functions of the state coordinates of control object parameters variation to estimate power of information signals at the inputs of neural network. The results of the conducted computational experiments have confirmed the effectiveness of the developed method, which makes it possible to increase the accuracy of identification and tuning of systems with state regulators under noise conditions. The obtained results can be used to ensure a given quality of control with parametric uncertainty of the object.
{"title":"Improving the accuracy of identification and tuning of linear systems with state controllers using an artificial neural network","authors":"A. Anisimov, M. E. Sorokovnin, S. Tararykin","doi":"10.17588/2072-2672.2023.6.057-068","DOIUrl":"https://doi.org/10.17588/2072-2672.2023.6.057-068","url":null,"abstract":"High potential capabilities of control systems with state controllers can be realized only if automatic tuning tools are available. Since the tuning is carried out in real-time mode, which places increased demands on performance, it is proposed to use an artificial neural network to reduce its duration. However, under the conditions of noise in the measurement channels, the quality of identification of the parameters of the control object is significantly reduced. In this regard, the aim of the study is to find the optimal composition of measurement channels at the network input, which allows minimizing the influence of noise on the estimates of object parameters to improve the quality of tuning. During the study, state space methods are used to design a vector-matrix model of an object and synthesize a state controller. A radial artificial neural network is used to solve the problem of identifying the parameters of a vector-matrix model. The training of networks, the study of the effectiveness of their work, as well as the development of models is carried out using the tools of the MatLab software package. The authors have developed the method to select the optimal composition of measurement channels which gives the maximum signal-to-noise ratio and forming the corresponding structure of a radial artificial neural network to solve the problems of object parameters identification and control system tuning with state controller. It is proposed to use the sensitivity functions of the state coordinates of control object parameters variation to estimate power of information signals at the inputs of neural network. The results of the conducted computational experiments have confirmed the effectiveness of the developed method, which makes it possible to increase the accuracy of identification and tuning of systems with state regulators under noise conditions. The obtained results can be used to ensure a given quality of control with parametric uncertainty of the object.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"108 11‐12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139149215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.17588/2072-2672.2023.6.088-094
K. Trubitsyn, T. E. Gavrilova, E. V. Kotova, K. V. Kolotilkina, S. V. Zaitsev, V. A. Kudinov
It is exceedingly difficult to obtain mathematically accurate analytical solutions of heat conduction problems with a variable initial condition. Known solutions of these problems are expressed by cumbersome functional series that converge poorly in the range of small values of time and space variables. Thus, to obtain simpler and more effective solutions of these problems is an urgent issue. The authors have used an additional required function and additional boundary conditions to obtain solutions of the problem. Application of the additional required function allows us to reduce the original partial differential equation to the integration of an ordinary differential equation. Additional boundary conditions are in such a form that their fulfillment using the resulting solution is equivalent to the fulfillment of the equation at the boundary points. The authors have developed a technique to obtain an analytical solution of the heat conduction problem under a linear change of the initial condition, based on an additional required function and additional boundary conditions. Solution of an ordinary differential equation with respect to the additional required function determines the eigenvalues. In classical methods these eigenvalues are found in the solution of the Sturm–Liouville boundary value problem. The authors have proposed another, simpler solution to determine eigenvalues. An accurate analytical solution of the heat conduction problem for an unbounded plate with a coordinate-variable initial condition is obtained. The scientific and practical value of the proposed analytical solution is the development of an innovative approach to determine eigenvalues, as well as elimination of complex integrals when we solve the equation and initial conditions of the boundary value problem. It makes possible to simplify the use of the solution obtained in engineering applications.
{"title":"Additional boundary conditions in heat conduction problems with coordinate variable initial condition","authors":"K. Trubitsyn, T. E. Gavrilova, E. V. Kotova, K. V. Kolotilkina, S. V. Zaitsev, V. A. Kudinov","doi":"10.17588/2072-2672.2023.6.088-094","DOIUrl":"https://doi.org/10.17588/2072-2672.2023.6.088-094","url":null,"abstract":"It is exceedingly difficult to obtain mathematically accurate analytical solutions of heat conduction problems with a variable initial condition. Known solutions of these problems are expressed by cumbersome functional series that converge poorly in the range of small values of time and space variables. Thus, to obtain simpler and more effective solutions of these problems is an urgent issue. The authors have used an additional required function and additional boundary conditions to obtain solutions of the problem. Application of the additional required function allows us to reduce the original partial differential equation to the integration of an ordinary differential equation. Additional boundary conditions are in such a form that their fulfillment using the resulting solution is equivalent to the fulfillment of the equation at the boundary points. The authors have developed a technique to obtain an analytical solution of the heat conduction problem under a linear change of the initial condition, based on an additional required function and additional boundary conditions. Solution of an ordinary differential equation with respect to the additional required function determines the eigenvalues. In classical methods these eigenvalues are found in the solution of the Sturm–Liouville boundary value problem. The authors have proposed another, simpler solution to determine eigenvalues. An accurate analytical solution of the heat conduction problem for an unbounded plate with a coordinate-variable initial condition is obtained. The scientific and practical value of the proposed analytical solution is the development of an innovative approach to determine eigenvalues, as well as elimination of complex integrals when we solve the equation and initial conditions of the boundary value problem. It makes possible to simplify the use of the solution obtained in engineering applications.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"23 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139150133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.17588/2072-2672.2023.6.038-042
E.V. Gusev, A. Sokolsky, A. A. Sergienkova, E.A. Shuina
The intensification of drying of wet capillary-porous bodies and their structural and deformation transformations is determined by the internal mechanism of moisture transfer in the material being dried. The scientific papers of A.V. Lykova, S.P. Rudobashty, B.S. Sazhina, E.N. Ochneva, N.V. Churaeva are devoted to the study of mass conductivity of various bodies. They confirm the importance to determine the characteristics of internal moisture transfer in the form of liquid and vapor to calculate the intensity of moisture exchange between the surface of a wet material and the coolant and to establish the ratio of moisture and heat flows not only during the drying process, but also during storage of materials. For dispersed and sheet capillary-porous materials of different composition and porous structure, determining the intensity of internal moisture transfer during their interaction with the environment is a relevant area of the research. It determines the drying method, thermal treatment conditions and energy efficiency. Dispersed and sheet capillary-porous materials of various shapes, sizes, structures, and humidity have been used as the objects of the study. To determine the mass conductivity parameters of a wet body during its interaction with a coolant, a thermodynamic method is used. It is based on the use of experimental desorption isotherms and calculated parameters characterizing the porous structure of the material. The authors have applied the method to calculate the mass conductivity coefficients of dispersed and sheet materials based on experimental data obtained under conditions of thermodynamic equilibrium of a wet body and gas. Calculated curves of the dependence of effective mass conductivity coefficients and the moisture content of the dried material are obtained considering environmental parameters. The data obtained on the patterns and the changes in mass conductivity coefficients makes it possible to establish the types of relationships between moisture and the material with the mechanisms of its transfer for a number of dispersed and sheet bodies. The data obtained can be used for the kinetic calculation of the drying process and to determine the conditions of their storage, as well as to identify the conditions for increasing the energy efficiency of dryers with convective supply.
{"title":"Mass conductivity of dispersed and sheet materials under thermodynamic equilibrium conditions","authors":"E.V. Gusev, A. Sokolsky, A. A. Sergienkova, E.A. Shuina","doi":"10.17588/2072-2672.2023.6.038-042","DOIUrl":"https://doi.org/10.17588/2072-2672.2023.6.038-042","url":null,"abstract":"The intensification of drying of wet capillary-porous bodies and their structural and deformation transformations is determined by the internal mechanism of moisture transfer in the material being dried. The scientific papers of A.V. Lykova, S.P. Rudobashty, B.S. Sazhina, E.N. Ochneva, N.V. Churaeva are devoted to the study of mass conductivity of various bodies. They confirm the importance to determine the characteristics of internal moisture transfer in the form of liquid and vapor to calculate the intensity of moisture exchange between the surface of a wet material and the coolant and to establish the ratio of moisture and heat flows not only during the drying process, but also during storage of materials. For dispersed and sheet capillary-porous materials of different composition and porous structure, determining the intensity of internal moisture transfer during their interaction with the environment is a relevant area of the research. It determines the drying method, thermal treatment conditions and energy efficiency. Dispersed and sheet capillary-porous materials of various shapes, sizes, structures, and humidity have been used as the objects of the study. To determine the mass conductivity parameters of a wet body during its interaction with a coolant, a thermodynamic method is used. It is based on the use of experimental desorption isotherms and calculated parameters characterizing the porous structure of the material. The authors have applied the method to calculate the mass conductivity coefficients of dispersed and sheet materials based on experimental data obtained under conditions of thermodynamic equilibrium of a wet body and gas. Calculated curves of the dependence of effective mass conductivity coefficients and the moisture content of the dried material are obtained considering environmental parameters. The data obtained on the patterns and the changes in mass conductivity coefficients makes it possible to establish the types of relationships between moisture and the material with the mechanisms of its transfer for a number of dispersed and sheet bodies. The data obtained can be used for the kinetic calculation of the drying process and to determine the conditions of their storage, as well as to identify the conditions for increasing the energy efficiency of dryers with convective supply.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"7 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139150243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}