Keyan Wang, Chong Xie, K. Du, Chengxin Li, Xianqing Yin
Inner-surface laser cladding method has great potential on industry communities. A novel RILC (Rotatable Inner-surface Laser Cladding) equipment was developed to prepare inner-surface cladding layer for heavy or asymmetric work piece. Wear resistance cladding layer was prepared onto the inner-surface of aluminum cylinder by RILC method. The cladding layer greatly increased the hardness of inner-surface, and exhibited high wear resistance and relatively low friction coefficient based on pin-on-disk wear test. Thermocouples were applied to study the thermal cycling of the substrate during cladding process.
{"title":"A novel rotatable inner-surface laser cladding method","authors":"Keyan Wang, Chong Xie, K. Du, Chengxin Li, Xianqing Yin","doi":"10.1117/12.2604682","DOIUrl":"https://doi.org/10.1117/12.2604682","url":null,"abstract":"Inner-surface laser cladding method has great potential on industry communities. A novel RILC (Rotatable Inner-surface Laser Cladding) equipment was developed to prepare inner-surface cladding layer for heavy or asymmetric work piece. Wear resistance cladding layer was prepared onto the inner-surface of aluminum cylinder by RILC method. The cladding layer greatly increased the hardness of inner-surface, and exhibited high wear resistance and relatively low friction coefficient based on pin-on-disk wear test. Thermocouples were applied to study the thermal cycling of the substrate during cladding process.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"58 31","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131603661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The gas sensors based on organic thin-film transistor (OTFT) have drawn considerable attention due to the advantages of low-cost, flexible, and room-temperature operation. Herein, poly(3-hexylthiophene) (P3HT) blend with surfactants as an active layer for high-performance OTFT based nitrogen dioxide (NO2) sensors was reported. With the introduction of the surfactant (4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol, Triton), the gas sensors exhibited 7 times greater response to 30 ppm NO2 than pure P3HT films. The studies in morphology of the blend film reveal that a large number of grain boundaries (GBs) are formed by introduction of surfactants, which can promote the diffusion of NO2. In addition, the hydroxyl functional groups of the surfactants in blend films can efficiently adsorb polar molecules such as NO2, thus enhance the sensing performance. The gas sensors also showed great potential for ultralow concentration detection with a response of 61% to 500 ppb, which are important for the practical applications. This work demonstrates that the surfactants can be applied to improve the NO2 sensors with simple solution process, which expands the material choice of OTFT based gas sensors.
{"title":"P3HT/surfactant blend films in organic thin-film transistors for high-performance NO2 detection","authors":"S. Hou, Lin Gao, Junsheng Yu","doi":"10.1117/12.2604748","DOIUrl":"https://doi.org/10.1117/12.2604748","url":null,"abstract":"The gas sensors based on organic thin-film transistor (OTFT) have drawn considerable attention due to the advantages of low-cost, flexible, and room-temperature operation. Herein, poly(3-hexylthiophene) (P3HT) blend with surfactants as an active layer for high-performance OTFT based nitrogen dioxide (NO2) sensors was reported. With the introduction of the surfactant (4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol, Triton), the gas sensors exhibited 7 times greater response to 30 ppm NO2 than pure P3HT films. The studies in morphology of the blend film reveal that a large number of grain boundaries (GBs) are formed by introduction of surfactants, which can promote the diffusion of NO2. In addition, the hydroxyl functional groups of the surfactants in blend films can efficiently adsorb polar molecules such as NO2, thus enhance the sensing performance. The gas sensors also showed great potential for ultralow concentration detection with a response of 61% to 500 ppb, which are important for the practical applications. This work demonstrates that the surfactants can be applied to improve the NO2 sensors with simple solution process, which expands the material choice of OTFT based gas sensors.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126316430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hitherto, methods to generate optical vortex beams have been widely researched, ranging from mode conversion to diffractive optical elements. However, bulky-sized traditional methods are unsuitable for nanophotonic systems, metasurface has become an alternative option for generating optical vortices. In this paper, a metasurface combining dynamic and geometric phases is proposed. Under the incidence of circular polarized light, optical vortices with different topological charges can be generated simultaneously by a single metasurface. The dynamic phase makes the topological charge of the vortex light vary with distance. The intensity distribution and relative distance of the focused vortices can be manipulated with different focal length of the metasurface. This method provides a new design to generate different vortices in a single device and has potential applications in particle capture and integrated optical systems.
{"title":"Generation of optical vortices using the metasurface combining dynamic and geometric phases","authors":"Haoran Lv, Yihua Bai, J. Yao, Yuanjie Yang","doi":"10.1117/12.2604457","DOIUrl":"https://doi.org/10.1117/12.2604457","url":null,"abstract":"Hitherto, methods to generate optical vortex beams have been widely researched, ranging from mode conversion to diffractive optical elements. However, bulky-sized traditional methods are unsuitable for nanophotonic systems, metasurface has become an alternative option for generating optical vortices. In this paper, a metasurface combining dynamic and geometric phases is proposed. Under the incidence of circular polarized light, optical vortices with different topological charges can be generated simultaneously by a single metasurface. The dynamic phase makes the topological charge of the vortex light vary with distance. The intensity distribution and relative distance of the focused vortices can be manipulated with different focal length of the metasurface. This method provides a new design to generate different vortices in a single device and has potential applications in particle capture and integrated optical systems.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131925589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai-yang Ding, Jiyang Shang, Pei Li, Tao Yuan, Kexin Song, Yan Luo, Chongbin Yao
A photoconductive switch with 4H-SiC as the substrate material and the same-side electrode structure is developed. The test results show that when using a hundred picosecond laser pulse as the trigger source, the device can achieve an ultra-short electrical pulse response of hundred picoseconds, that is, it can output Gigahertz-level wide-spectrum signal. Through the experimental circuit built, under the condition of certain bias voltage and light pulse width, the pulse width of the electrical signal is tested when the energy of the light pulse changes within the range of 0.3-4.4 mJ. The experimental results show that the stronger the energy of the irradiated light pulse, the wider the pulse width of the response electrical signal of this switch.
{"title":"Research on response property of 4H-SiC photoconductive switches with the same-side electrode structure","authors":"Hai-yang Ding, Jiyang Shang, Pei Li, Tao Yuan, Kexin Song, Yan Luo, Chongbin Yao","doi":"10.1117/12.2603992","DOIUrl":"https://doi.org/10.1117/12.2603992","url":null,"abstract":"A photoconductive switch with 4H-SiC as the substrate material and the same-side electrode structure is developed. The test results show that when using a hundred picosecond laser pulse as the trigger source, the device can achieve an ultra-short electrical pulse response of hundred picoseconds, that is, it can output Gigahertz-level wide-spectrum signal. Through the experimental circuit built, under the condition of certain bias voltage and light pulse width, the pulse width of the electrical signal is tested when the energy of the light pulse changes within the range of 0.3-4.4 mJ. The experimental results show that the stronger the energy of the irradiated light pulse, the wider the pulse width of the response electrical signal of this switch.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115026946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bingcai Liu, Rui Niu, A. Tian, Hongjun Wang, Xueliang Zhu, Yuanying Wang
Digital holographic microscopy is an ideal non-invasive, non-contact, and fast-response 3D measurement method. The strong coherence of the laser leads to irregularly distributed speckle noise during the digital holographic recording process, which affects the 3D reconstruction of the digital holographic microscopy system. To solve this problem, the coherence of the laser is changed by diffusion glass rotation to achieve the suppression of the speckle noise in the digital holographic measurement system. Firstly, a theoretical model of a digital holographic microscopy system based on the diffusion glass rotation is established. Then, the influence of diffusion glass rotation speed on coherence time, speckle contrast, fringe contrast, signal-to-noise ratio are simulated and analyzed, the optimal rotation speed of the digital holographic microscopy system is obtained. Finally, The speckle noise suppression system based on the Mach-Zehnder interference model is established, and the optimal parameters of the diffusion glass rotation are set, which verifies that the method is suitable for high-precision measurement.
{"title":"Speckle noise suppression of digital holographic microscopy with diffusion glass rotation","authors":"Bingcai Liu, Rui Niu, A. Tian, Hongjun Wang, Xueliang Zhu, Yuanying Wang","doi":"10.1117/12.2605353","DOIUrl":"https://doi.org/10.1117/12.2605353","url":null,"abstract":"Digital holographic microscopy is an ideal non-invasive, non-contact, and fast-response 3D measurement method. The strong coherence of the laser leads to irregularly distributed speckle noise during the digital holographic recording process, which affects the 3D reconstruction of the digital holographic microscopy system. To solve this problem, the coherence of the laser is changed by diffusion glass rotation to achieve the suppression of the speckle noise in the digital holographic measurement system. Firstly, a theoretical model of a digital holographic microscopy system based on the diffusion glass rotation is established. Then, the influence of diffusion glass rotation speed on coherence time, speckle contrast, fringe contrast, signal-to-noise ratio are simulated and analyzed, the optimal rotation speed of the digital holographic microscopy system is obtained. Finally, The speckle noise suppression system based on the Mach-Zehnder interference model is established, and the optimal parameters of the diffusion glass rotation are set, which verifies that the method is suitable for high-precision measurement.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"49 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114092247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The functionality of simultaneous dichroism and wavefront manipulation of orthogonally polarized electromagnetic waves has attracted considerable attention in the fields of polarization imaging, polarization sensing, vector generation, and optical communication. However, the conventional methodology requires the combination of many optical components, which limits the integration and reduces the efficiency of optical systems. Although multilayer metasurfaces have been proposed to increase efficiency, complicated fabrication hinders its practical applications. Herein, we employ the monolithic all-dielectric metasurface to simultaneously implement linear dichroism and wavefront manipulation based on the principle of local polarization-selective constructive or destructive interference. The average transmittance exceeding 87.88% and polarization extinction ratio up to 23 dB are achieved by the all-dielectric metasurface at the central wavelength of 532 nm. It is believed that this high-performance metasurface may provide a novel scheme for the complex optical field manipulation and replace the bulk optical elements in polarization imaging or other optical domains.
{"title":"Monolithic all-dielectric metasurface for simultaneous linear dichroism and wavefront manipulation","authors":"Jixiang Cai, Honglin Yu","doi":"10.1117/12.2604170","DOIUrl":"https://doi.org/10.1117/12.2604170","url":null,"abstract":"The functionality of simultaneous dichroism and wavefront manipulation of orthogonally polarized electromagnetic waves has attracted considerable attention in the fields of polarization imaging, polarization sensing, vector generation, and optical communication. However, the conventional methodology requires the combination of many optical components, which limits the integration and reduces the efficiency of optical systems. Although multilayer metasurfaces have been proposed to increase efficiency, complicated fabrication hinders its practical applications. Herein, we employ the monolithic all-dielectric metasurface to simultaneously implement linear dichroism and wavefront manipulation based on the principle of local polarization-selective constructive or destructive interference. The average transmittance exceeding 87.88% and polarization extinction ratio up to 23 dB are achieved by the all-dielectric metasurface at the central wavelength of 532 nm. It is believed that this high-performance metasurface may provide a novel scheme for the complex optical field manipulation and replace the bulk optical elements in polarization imaging or other optical domains.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131980168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the widening of the application scenarios for target observation, the traditional ground-based fixed LAT system has been unable to meet the requirement of high precision tracking ,the LAT need to be installed on different motion platforms. In this case, a series of photoelectric tracking systems based on motion platforms have been derived. The combination of LAT and moving platform brings a new problem--Disturbance such as braking, vibrating, and shaking of the platform will cause the deflection and shaking of the LAT imaging screen, which will have a great impact on the LAT tracking. In this paper, a method to determine the change of the attitude angle θ of the target in the field of view caused by the movement of a moving platform is proposed to suppressed overcome the disturbance introduced caused by the application of LAT in moving platform carrier. According to the angular position data of the target tracking point acquired by the CCD system and the attitude information of the motion platform in the geodetic coordinate system provided by the inertial navigation system, the attitude angle of the target can be calculated by applying the proposed attitude estimation algorithm. This method not only, provides a specific estimation process of target attitude angle, but also offers principle information for tracking state decision, image processing, and fiducial direction calculation.
{"title":"Target attitude estimation for motional Large Aperture Telescope (LAT)","authors":"Jiaming Lei, Rongqi Ma, Yunxia Xia, Xiang Liu, Qiang Wang, Qiongyan Wu, Dong He, Jinying Li, Xijun Zhao, Chao Peng, Liangzhu Yuan, Yongmei Huang, Ge Ren","doi":"10.1117/12.2604004","DOIUrl":"https://doi.org/10.1117/12.2604004","url":null,"abstract":"With the widening of the application scenarios for target observation, the traditional ground-based fixed LAT system has been unable to meet the requirement of high precision tracking ,the LAT need to be installed on different motion platforms. In this case, a series of photoelectric tracking systems based on motion platforms have been derived. The combination of LAT and moving platform brings a new problem--Disturbance such as braking, vibrating, and shaking of the platform will cause the deflection and shaking of the LAT imaging screen, which will have a great impact on the LAT tracking. In this paper, a method to determine the change of the attitude angle θ of the target in the field of view caused by the movement of a moving platform is proposed to suppressed overcome the disturbance introduced caused by the application of LAT in moving platform carrier. According to the angular position data of the target tracking point acquired by the CCD system and the attitude information of the motion platform in the geodetic coordinate system provided by the inertial navigation system, the attitude angle of the target can be calculated by applying the proposed attitude estimation algorithm. This method not only, provides a specific estimation process of target attitude angle, but also offers principle information for tracking state decision, image processing, and fiducial direction calculation.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133172642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Convolutional neural networks (CNN) has significant advantages in processing image classification and was widely used in image analysis in the fields of autonomous driving, aerospace, and biomedicine. However, image classification and analysis need large matrix multiplication, which imposes many challenges to the realization of high performance and low power consumption of CNNS. Here, a photoelectric hybrid neural network (PHNN) was developed to reduce the CNN’s power consumption. The optical interference unit (OIU) composed of Mach-Zehnder interferometers (MZI) arrays, used as convolution kernel, performs multiplication and accumulation operations. The convolution kernel is split and reorganized effectively to form a new unitary matrix to reduce the number of MZIs. Simultaneously, this method can modularize the OIU, which is beneficial to field-programmable gate array (FPGA) encoding and modulation. FPGA realizes nonlinear calculation, data scheduling and storage, and phase encoding and modulation. Our PHNN has an accuracy rate of 93.3%, which reduces power consumption by 3 times of magnitude compared with traditional electronic products.
{"title":"Convolutional neural networks with coherent nanophotonic circuits","authors":"Xiaofeng Xu, Lianqing Zhu, Wei Zhuang","doi":"10.1117/12.2604731","DOIUrl":"https://doi.org/10.1117/12.2604731","url":null,"abstract":"Convolutional neural networks (CNN) has significant advantages in processing image classification and was widely used in image analysis in the fields of autonomous driving, aerospace, and biomedicine. However, image classification and analysis need large matrix multiplication, which imposes many challenges to the realization of high performance and low power consumption of CNNS. Here, a photoelectric hybrid neural network (PHNN) was developed to reduce the CNN’s power consumption. The optical interference unit (OIU) composed of Mach-Zehnder interferometers (MZI) arrays, used as convolution kernel, performs multiplication and accumulation operations. The convolution kernel is split and reorganized effectively to form a new unitary matrix to reduce the number of MZIs. Simultaneously, this method can modularize the OIU, which is beneficial to field-programmable gate array (FPGA) encoding and modulation. FPGA realizes nonlinear calculation, data scheduling and storage, and phase encoding and modulation. Our PHNN has an accuracy rate of 93.3%, which reduces power consumption by 3 times of magnitude compared with traditional electronic products.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133454630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyuan Liu, Zhuangzhuang Qu, Yuanyuan Fan, Yan Qi, Lujun Bai, Weihu Zhou, Jianming Lu, Yu Wang, Chunrui Han
The readily accessible commercial electron beam lithography (EBL) has high-accuracy and mask-free characteristics which enable fast exploration of novel on-chip devices. However, current EBL technique would be challenging to solve the dilemma between high accuracy and large writing field. Here we report an effective recipe to fabricate such multiscale photonic devices. It is realized by improving the standard procedure of stitching small writing fields with alignment markers. The key is the small patterns stitching and exposure alignment process. We divide the large design structure into several small patterns and take pictures of their corresponding alignment markers by the EBL instrument itself with exactly the same parameters used in the subsequent e-beam exposure. As such, the exposure alignment errors caused by calibration procedures are completely eliminated. We precisely write the divided patterns to desired locations by their surrounding markers and finally achieve gapless and precise stitching within the whole photonic circuit. The protocol is demonstrated by a Mach-Zehnder Interferometer (MZI) structure on a 200nm thick Si3N4 chip, in which nano-scale grating coupler have been clearly developed. Compared with traditional EBL technique, the connection accuracy of a waveguide between adjacent writing fields has been significantly improved to be less than 10 nm even without a laser interferometric stage. Moreover, due to the stitching mechanism, the maximum chip size for exposure becomes limitless and could reach up to the entire wafer. Our technique greatly expands the fabrication size of EBL while maintaining its high resolution and opens more opportunities to the development of integrated photonic circuits.
{"title":"Multiscale fabrication of integrated photonic chips by electron beam lithography","authors":"Siyuan Liu, Zhuangzhuang Qu, Yuanyuan Fan, Yan Qi, Lujun Bai, Weihu Zhou, Jianming Lu, Yu Wang, Chunrui Han","doi":"10.1117/12.2604003","DOIUrl":"https://doi.org/10.1117/12.2604003","url":null,"abstract":"The readily accessible commercial electron beam lithography (EBL) has high-accuracy and mask-free characteristics which enable fast exploration of novel on-chip devices. However, current EBL technique would be challenging to solve the dilemma between high accuracy and large writing field. Here we report an effective recipe to fabricate such multiscale photonic devices. It is realized by improving the standard procedure of stitching small writing fields with alignment markers. The key is the small patterns stitching and exposure alignment process. We divide the large design structure into several small patterns and take pictures of their corresponding alignment markers by the EBL instrument itself with exactly the same parameters used in the subsequent e-beam exposure. As such, the exposure alignment errors caused by calibration procedures are completely eliminated. We precisely write the divided patterns to desired locations by their surrounding markers and finally achieve gapless and precise stitching within the whole photonic circuit. The protocol is demonstrated by a Mach-Zehnder Interferometer (MZI) structure on a 200nm thick Si3N4 chip, in which nano-scale grating coupler have been clearly developed. Compared with traditional EBL technique, the connection accuracy of a waveguide between adjacent writing fields has been significantly improved to be less than 10 nm even without a laser interferometric stage. Moreover, due to the stitching mechanism, the maximum chip size for exposure becomes limitless and could reach up to the entire wafer. Our technique greatly expands the fabrication size of EBL while maintaining its high resolution and opens more opportunities to the development of integrated photonic circuits.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133395911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laser projectors are more and more widely used because of their large screen, and high brightness. However, the stray light outside the screen affects the user's viewing effect dramatically. In some cases, it looks like there's a halo on the top, or loos like some light outside the picture in the black. Since the stray light comes from the reflection of mechanical structural parts in the lens, and some stray light is launched by the light on digital micromirror device (DMD) off state in the illumination system, how to carry out theoretical analysis effectively is a difficult problem. On the other hand, how to trace stray light back to the source after it hits the screen and reduce it is also a challenge. Herein, some effective theoretic analysis methods and practical analysis methods are put forward, and effective countermeasures are given. Through experiments, the stray light situation is effectively improved.
{"title":"Control and optimization of the stray light in laser projectors","authors":"Shuihai Peng, Dayong Zhang, Genjie Yang, Junsheng Yu","doi":"10.1117/12.2605146","DOIUrl":"https://doi.org/10.1117/12.2605146","url":null,"abstract":"Laser projectors are more and more widely used because of their large screen, and high brightness. However, the stray light outside the screen affects the user's viewing effect dramatically. In some cases, it looks like there's a halo on the top, or loos like some light outside the picture in the black. Since the stray light comes from the reflection of mechanical structural parts in the lens, and some stray light is launched by the light on digital micromirror device (DMD) off state in the illumination system, how to carry out theoretical analysis effectively is a difficult problem. On the other hand, how to trace stray light back to the source after it hits the screen and reduce it is also a challenge. Herein, some effective theoretic analysis methods and practical analysis methods are put forward, and effective countermeasures are given. Through experiments, the stray light situation is effectively improved.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125974031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}