首页 > 最新文献

Water最新文献

英文 中文
Investigation of an Ensemble Inflow-Prediction System for Upstream Reservoirs in Sai River, Japan 日本西河上游水库流量集合预测系统研究
IF 3.4 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.3390/w16182577
Katsunori Tamakawa, Shigeru Nakamura, Cho Thanda Nyunt, Tomoki Ushiyama, Mohamed Rasmy, Keijiro Kubota, Asif Naseer, Eiji Ikoma, Toshihiro Nemoto, Masaru Kitsuregawa, Toshio Koike
In this study, an ensemble inflow-prediction system was developed for a hydropower-generation dam in the upper Sai River basin, and the accuracy of ensemble inflow prediction, which is important for efficient dam operation, was investigated. First, the Water and Energy Based Distributed Hydrological Model for Snow (WEB-DHM-S), a hydrological model developed for the Sai River basin, can represent the hydrological process from warm to cold seasons. Next, a system was developed on the Data Integration and Analysis System (DIAS) to predict inflows into the dam by inputting real-time meteorological data and ensemble rainfall forecast data into WEB-DHM-S. The WEB-DHM-S was calibrated and validated over a 3-year period from August 2015 to July 2018, and showed good agreement with observed inflows from base flow to peak flow and snowmelt runoff in each year. The results of inflow forecasting during frontal rainfall in August 2021 by inputting ensemble rainfall forecasts up to 39 h ahead showed that at the Inekoki Dam site, the total inflow (volume) to the peak was predicted with an accuracy of within 20% at 30 h, 24 h, 18 h, 12 h, and 6 h before the peak. These ensemble inflow forecasts can help optimize dam operations.
本研究为赛河流域上游的一个水力发电大坝开发了一个集合流入量预测系统,并研究了集合流入量预测的准确性,这对大坝的高效运行非常重要。首先,为赛河流域开发的水文模型 "基于水和能量的雪地分布式水文模型(WEB-DHM-S)"可代表从暖季到冷季的水文过程。接下来,在数据集成与分析系统(DIAS)上开发了一个系统,通过向 WEB-DHM-S 输入实时气象数据和集合降雨预报数据来预测流入大坝的流量。WEB-DHM-S 在 2015 年 8 月至 2018 年 7 月的 3 年期间进行了校核和验证,结果显示与每年从基流到峰值流量和融雪径流的观测流入量吻合良好。在 2021 年 8 月锋面降雨期间,通过提前 39 小时输入集合降雨预报进行流入量预报的结果表明,在伊内科基大坝站点,在峰值前 30 小时、24 小时、18 小时、12 小时和 6 小时预测峰值总流入量(体积)的准确率在 20% 以内。这些集合流入量预测有助于优化大坝运行。
{"title":"Investigation of an Ensemble Inflow-Prediction System for Upstream Reservoirs in Sai River, Japan","authors":"Katsunori Tamakawa, Shigeru Nakamura, Cho Thanda Nyunt, Tomoki Ushiyama, Mohamed Rasmy, Keijiro Kubota, Asif Naseer, Eiji Ikoma, Toshihiro Nemoto, Masaru Kitsuregawa, Toshio Koike","doi":"10.3390/w16182577","DOIUrl":"https://doi.org/10.3390/w16182577","url":null,"abstract":"In this study, an ensemble inflow-prediction system was developed for a hydropower-generation dam in the upper Sai River basin, and the accuracy of ensemble inflow prediction, which is important for efficient dam operation, was investigated. First, the Water and Energy Based Distributed Hydrological Model for Snow (WEB-DHM-S), a hydrological model developed for the Sai River basin, can represent the hydrological process from warm to cold seasons. Next, a system was developed on the Data Integration and Analysis System (DIAS) to predict inflows into the dam by inputting real-time meteorological data and ensemble rainfall forecast data into WEB-DHM-S. The WEB-DHM-S was calibrated and validated over a 3-year period from August 2015 to July 2018, and showed good agreement with observed inflows from base flow to peak flow and snowmelt runoff in each year. The results of inflow forecasting during frontal rainfall in August 2021 by inputting ensemble rainfall forecasts up to 39 h ahead showed that at the Inekoki Dam site, the total inflow (volume) to the peak was predicted with an accuracy of within 20% at 30 h, 24 h, 18 h, 12 h, and 6 h before the peak. These ensemble inflow forecasts can help optimize dam operations.","PeriodicalId":23788,"journal":{"name":"Water","volume":"36 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Distribution and Health Risk Assessment of Saline Water Intrusion and Potentially Hazardous Pollutants in a Coastal Groundwater Environment 沿海地下水环境中盐水入侵和潜在有害污染物的空间分布与健康风险评估
IF 3.4 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.3390/w16182573
Zengbing Sun, Xiao Yang, Sen Liu, Jiangbo Wang, Mingbo Li
In coastal plains, saline water intrusion (SWI) and potentially hazardous pollutants are harmful to local human health. The southern Laizhou Bay has become a typical representative of the northern silty coast due to its extensive silt sedimentation and the significant impact of human activities. This research focuses on a portion of the southern Laizhou Bay, using GIS-based spatial analysis, water quality index methods and health risk assessments to evaluate the impact of saltwater intrusion and potential hazardous pollutants. The results show that the groundwater in the study area is significantly impacted by saline water intrusion, leading to major ion concentrations that far exceed World Health Organization (WHO) standards. The groundwater chemical types of brine and brackish water in the study area are mainly Cl-Na, and the main chemical types of fresh water are HCO3-Ca·Na. The average concentration sequence of the main ions in groundwater is K+ > HCO3− > Cl− > Na+ > SO42− > Ca2+ > Mg2+. The average hazard quotient (HQ) sequence in typical pollutants is Cl− > F− > NO3-N > Se > Mn > NO2-N > Cu > Pb > Zn > Fe, and the carcinogenic risk (CR) sequence caused by carcinogenic heavy metals is Cd > As > Cr. The noncarcinogenic health risk area is mainly distributed in the northwest of the study area, while the potential carcinogenic risk area is in the central region. The Cl is the greatest noncarcinogenic risk to adults and children. The mean HQ values for adults and children were 95.69 and 146.98, indicating a significant noncarcinogenic risk. The mean CR values for adults and children were 0.00037 and 0.00057, suggesting a relatively low carcinogenic risk. SWI is the main influencing factor on human health; therefore, it is necessary to prevent and control SWI. Moreover, potentially hazardous pollutants are carcinogenic and noncarcinogenic risks and are caused by agriculture, industry and other human activities. The findings of this research offer scientific insights for groundwater pollution control and saline water intrusion management in similar coastal areas.
在沿海平原,盐水入侵(SWI)和潜在的有害污染物对当地人类健康造成危害。莱州湾南部因其广泛的淤泥沉积和人类活动的重大影响,已成为北方淤泥质海岸的典型代表。本研究以莱州湾南部部分海域为研究对象,采用基于地理信息系统的空间分析、水质指数法和健康风险评估等方法,对海水入侵和潜在有害污染物的影响进行了评价。结果表明,研究区域的地下水受到盐水入侵的严重影响,导致主要离子浓度远远超过世界卫生组织(WHO)的标准。研究区地下水化学类型中盐水和咸水主要为 Cl-Na,淡水主要为 HCO3-Ca-Na。地下水中主要离子的平均浓度顺序为 K+ > HCO3- > Cl- > Na+ > SO42- > Ca2+ > Mg2+。典型污染物的平均危害商数(HQ)序列为 Cl- > F- > NO3-N > Se > Mn > NO2-N > Cu > Pb > Zn > Fe,致癌重金属的致癌风险(CR)序列为 Cd > As > Cr。非致癌健康风险区主要分布在研究区域的西北部,而潜在致癌风险区则在中部地区。Cl对成人和儿童的非致癌风险最大。成人和儿童的 HQ 平均值分别为 95.69 和 146.98,表明非致癌风险很大。成人和儿童的平均 CR 值分别为 0.00037 和 0.00057,表明致癌风险相对较低。SWI 是影响人类健康的主要因素,因此有必要预防和控制 SWI。此外,潜在有害污染物具有致癌和非致癌风险,是由农业、工业和其他人类活动造成的。本研究的结果为类似沿海地区的地下水污染控制和盐水入侵管理提供了科学依据。
{"title":"Spatial Distribution and Health Risk Assessment of Saline Water Intrusion and Potentially Hazardous Pollutants in a Coastal Groundwater Environment","authors":"Zengbing Sun, Xiao Yang, Sen Liu, Jiangbo Wang, Mingbo Li","doi":"10.3390/w16182573","DOIUrl":"https://doi.org/10.3390/w16182573","url":null,"abstract":"In coastal plains, saline water intrusion (SWI) and potentially hazardous pollutants are harmful to local human health. The southern Laizhou Bay has become a typical representative of the northern silty coast due to its extensive silt sedimentation and the significant impact of human activities. This research focuses on a portion of the southern Laizhou Bay, using GIS-based spatial analysis, water quality index methods and health risk assessments to evaluate the impact of saltwater intrusion and potential hazardous pollutants. The results show that the groundwater in the study area is significantly impacted by saline water intrusion, leading to major ion concentrations that far exceed World Health Organization (WHO) standards. The groundwater chemical types of brine and brackish water in the study area are mainly Cl-Na, and the main chemical types of fresh water are HCO3-Ca·Na. The average concentration sequence of the main ions in groundwater is K+ > HCO3− > Cl− > Na+ > SO42− > Ca2+ > Mg2+. The average hazard quotient (HQ) sequence in typical pollutants is Cl− > F− > NO3-N > Se > Mn > NO2-N > Cu > Pb > Zn > Fe, and the carcinogenic risk (CR) sequence caused by carcinogenic heavy metals is Cd > As > Cr. The noncarcinogenic health risk area is mainly distributed in the northwest of the study area, while the potential carcinogenic risk area is in the central region. The Cl is the greatest noncarcinogenic risk to adults and children. The mean HQ values for adults and children were 95.69 and 146.98, indicating a significant noncarcinogenic risk. The mean CR values for adults and children were 0.00037 and 0.00057, suggesting a relatively low carcinogenic risk. SWI is the main influencing factor on human health; therefore, it is necessary to prevent and control SWI. Moreover, potentially hazardous pollutants are carcinogenic and noncarcinogenic risks and are caused by agriculture, industry and other human activities. The findings of this research offer scientific insights for groundwater pollution control and saline water intrusion management in similar coastal areas.","PeriodicalId":23788,"journal":{"name":"Water","volume":"63 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Contaminants in Landfill Leachate and Groundwater: A Case Study of Hazardous Waste Landfill and Municipal Solid Waste Landfill in Northeastern China 垃圾填埋场渗滤液和地下水中的新污染物:中国东北地区危险废物填埋场和城市固体废物填埋场案例研究
IF 3.4 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.3390/w16182575
Nan Zhang, Zhihao Zhang, Chunyang Li, Jiani Yue, Yan Su, Weiguo Cheng, Shoushan Sun, Xi Chen, Deyu Shi, Bo Liu
Emerging contaminants (ECs) present a significant risk to both the ecological environment and human health. Landfill leachate (LL) often contains elevated EC levels, posing a potential risk to localized groundwater. This study aimed to characterize ECs in municipal solid waste landfills (MSWLs) and hazardous waste landfills (HWLs) in northeast (NE) China. One and three HWLs and MSWLs in NE China with varying types, operational years, and impermeable layers were selected as case studies, respectively. Statistical analysis of 62 indicators of nine ECs in leachate and the groundwater environment indicated the presence of perfluorinated compounds (PFCs), antibiotics, alkylphenols (APs), and bisphenol A (BPA). The leachates of the four landfills exhibited elevated concentrations of ECs of 21.03 μg/L, 40.04 μg/L, 14.54 μg/L, and 43.05 μg/L for PFCs, antibiotics, Aps, and BPA, respectively. There was a positive correlation between the highest concentrations of ECs in groundwater and those in leachate as well as with operational duration of the landfill; in contrast, groundwater EC was negatively correlated with the degree of impermeability. This study can guide future management of ECs in landfills and hazardous waste sites in China, particularly in NE China.
新出现的污染物(ECs)对生态环境和人类健康都构成重大风险。垃圾填埋场沥滤液(LL)中的EC含量通常较高,对局部地下水构成潜在风险。本研究旨在分析中国东北地区城市固体废物填埋场(MSWL)和危险废物填埋场(HWL)的导电率特征。研究分别选取了中国东北地区不同类型、不同运营年限和不同防渗层的 1 个和 3 个危险废物填埋场和城市固体废物填埋场作为案例。对渗滤液和地下水环境中的九项ECs的62个指标进行统计分析,结果表明存在全氟化合物(PFCs)、抗生素、烷基酚(APs)和双酚A(BPA)。四个垃圾填埋场渗滤液中的全氟化合物、抗生素、烷基酚和双酚 A 的 ECs 浓度分别为 21.03 μg/L、40.04 μg/L、14.54 μg/L 和 43.05 μg/L。地下水中氨基甲酸乙酯的最高浓度与沥滤液中氨基甲酸乙酯的最高浓度以及垃圾填埋场的运行时间呈正相关;相反,地下水氨基甲酸乙酯与防渗程度呈负相关。这项研究可为今后中国(尤其是东北地区)垃圾填埋场和危险废物场地的导电率管理提供指导。
{"title":"Emerging Contaminants in Landfill Leachate and Groundwater: A Case Study of Hazardous Waste Landfill and Municipal Solid Waste Landfill in Northeastern China","authors":"Nan Zhang, Zhihao Zhang, Chunyang Li, Jiani Yue, Yan Su, Weiguo Cheng, Shoushan Sun, Xi Chen, Deyu Shi, Bo Liu","doi":"10.3390/w16182575","DOIUrl":"https://doi.org/10.3390/w16182575","url":null,"abstract":"Emerging contaminants (ECs) present a significant risk to both the ecological environment and human health. Landfill leachate (LL) often contains elevated EC levels, posing a potential risk to localized groundwater. This study aimed to characterize ECs in municipal solid waste landfills (MSWLs) and hazardous waste landfills (HWLs) in northeast (NE) China. One and three HWLs and MSWLs in NE China with varying types, operational years, and impermeable layers were selected as case studies, respectively. Statistical analysis of 62 indicators of nine ECs in leachate and the groundwater environment indicated the presence of perfluorinated compounds (PFCs), antibiotics, alkylphenols (APs), and bisphenol A (BPA). The leachates of the four landfills exhibited elevated concentrations of ECs of 21.03 μg/L, 40.04 μg/L, 14.54 μg/L, and 43.05 μg/L for PFCs, antibiotics, Aps, and BPA, respectively. There was a positive correlation between the highest concentrations of ECs in groundwater and those in leachate as well as with operational duration of the landfill; in contrast, groundwater EC was negatively correlated with the degree of impermeability. This study can guide future management of ECs in landfills and hazardous waste sites in China, particularly in NE China.","PeriodicalId":23788,"journal":{"name":"Water","volume":"27 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal Dynamics of Ecosystem Water Yield Services and Responses to Future Land Use Scenarios in Henan Province, China 中国河南省生态系统水产服务的时空动态及对未来土地利用情景的响应
IF 3.4 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-09 DOI: 10.3390/w16172544
Shuxue Wang, Tianyi Cai, Qian Wen, Chaohui Yin, Jing Han, Zhichao Zhang
Water yield (WY) service is the cornerstone of ecosystem functionality. Predicting and assessing the impact of land use/land cover (LULC) changes on WY is imperative for a nation’s food security, regional economic development, and ecological environmental protection. This study aimed to evaluate the water yield (WY) service in Henan Province, China, using high-resolution (30 m) remote sensing land use monitoring data from four study years: 1990, 2000, 2010, and 2020. It also utilized the PLUS model to predict the characteristics of LULC evolution and the future trends of WY service under four different development scenarios (for 2030 and 2050). The study’s results indicated the following: (1) From 1990 to 2020, the Henan Province’s WY first increased and then decreased, ranging from 398.56 × 108 m3 to 482.95 × 108 m3. The southern and southeastern parts of Henan Province were high-value WY areas, while most of its other regions were deemed low-value WY areas. (2) The different land use types were ranked in terms of their WY capacity, from strongest to weakest, as follows: unused land, cultivated land, grassland, construction land, woodland, and water. (3) The four abovementioned scenarios were ranked, from highest to lowest, based on the Henan’s total WY (in 2050) in each of them: high-quality development scenario (HDS), business-as-usual scenario (BAU), cultivated land protection scenario (CPS), and ecological protection scenario (ES). This study contributes to the advancement of ecosystem services research. Its results can provide scientific support for water resource management, sustainable regional development, and comprehensive land-use planning in Henan Province.
产水量(WY)服务是生态系统功能的基石。预测和评估土地利用/土地覆盖(LULC)变化对水产量的影响对于国家粮食安全、区域经济发展和生态环境保护至关重要。本研究旨在利用四个研究年份的高分辨率(30 米)遥感土地利用监测数据,对中国河南省的水资源产量(WY)服务进行评估:本研究旨在利用 1990、2000、2010 和 2020 这四个研究年份的高分辨率(30 米)土地利用遥感监测数据,对河南省的水资源产量服务进行评估。研究还利用 PLUS 模型预测了四种不同发展情景下(2030 年和 2050 年)土地利用、土地利用变化和水产服务的演变特征及未来趋势。研究结果如下(1)从 1990 年到 2020 年,河南省的 WY 量先增后减,从 398.56×108 m3 增至 482.95×108 m3。河南省南部和东南部为高 WY 值地区,其他大部分地区为低 WY 值地区。(2) 不同土地利用类型的水源涵养能力从强到弱依次为:未利用地、耕地、草地、建设用地、林地和水域。(3) 根据河南省 2050 年的总 WY,对上述四种情景进行了从高到低的排序:高质量发展情景 (HDS)、一切照旧情景(BAU)、耕地保护情景(CPS)和生态保护情景(ES)。本研究有助于推动生态系统服务研究。研究结果可为河南省水资源管理、区域可持续发展和土地利用综合规划提供科学支持。
{"title":"Spatiotemporal Dynamics of Ecosystem Water Yield Services and Responses to Future Land Use Scenarios in Henan Province, China","authors":"Shuxue Wang, Tianyi Cai, Qian Wen, Chaohui Yin, Jing Han, Zhichao Zhang","doi":"10.3390/w16172544","DOIUrl":"https://doi.org/10.3390/w16172544","url":null,"abstract":"Water yield (WY) service is the cornerstone of ecosystem functionality. Predicting and assessing the impact of land use/land cover (LULC) changes on WY is imperative for a nation’s food security, regional economic development, and ecological environmental protection. This study aimed to evaluate the water yield (WY) service in Henan Province, China, using high-resolution (30 m) remote sensing land use monitoring data from four study years: 1990, 2000, 2010, and 2020. It also utilized the PLUS model to predict the characteristics of LULC evolution and the future trends of WY service under four different development scenarios (for 2030 and 2050). The study’s results indicated the following: (1) From 1990 to 2020, the Henan Province’s WY first increased and then decreased, ranging from 398.56 × 108 m3 to 482.95 × 108 m3. The southern and southeastern parts of Henan Province were high-value WY areas, while most of its other regions were deemed low-value WY areas. (2) The different land use types were ranked in terms of their WY capacity, from strongest to weakest, as follows: unused land, cultivated land, grassland, construction land, woodland, and water. (3) The four abovementioned scenarios were ranked, from highest to lowest, based on the Henan’s total WY (in 2050) in each of them: high-quality development scenario (HDS), business-as-usual scenario (BAU), cultivated land protection scenario (CPS), and ecological protection scenario (ES). This study contributes to the advancement of ecosystem services research. Its results can provide scientific support for water resource management, sustainable regional development, and comprehensive land-use planning in Henan Province.","PeriodicalId":23788,"journal":{"name":"Water","volume":"33 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution and Analysis of Water Yield under the Change of Land Use and Climate Change Based on the PLUS-InVEST Model: A Case Study of the Yellow River Basin in Henan Province 基于 PLUS-InVEST 模型的土地利用变化和气候变化下的产水量演变与分析:河南省黄河流域案例研究
IF 3.4 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-09 DOI: 10.3390/w16172551
Xiaoyu Ma, Shasha Liu, Lin Guo, Junzheng Zhang, Chen Feng, Mengyuan Feng, Yilun Li
Understanding the interrelationships between land use, climate change, and regional water yield is critical for effective water resource management and ecosystem protection. However, comprehensive insights into how water yield evolves under different land use scenarios and climate change remain elusive. This study employs the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) models, Patch-generating Land Use Simulation (PLUS) model, and Geodetector within a unified framework to evaluate the dynamics of land use, water yield, and their relationships with various factors (meteorological, social, economic, etc.). To forecast the land use/cover change (LUCC) pattern of the Yellow River Basin by 2030, three scenarios were considered: economic development priority (Scenario 1), ecological development priority (Scenario 2), and cropland development priority (Scenario 3). Climate change scenarios were constructed using CMIP6 data, representing low-stress (SSP119), medium-stress (SSP245), and high-stress (SSP585) conditions. The results show the following: (1) from 2000 to 2020, cropland was predominant in the Yellow River Basin, Henan Province, with significant land conversion to impervious land (construction land) and forest land; (2) water yield changes during this period were primarily influenced by meteorological factors, with land use changes having negligible impact; (3) by 2030, the water yield of Scenario 1 is highest among different land use scenarios, marginally surpassing Scenario 2 by 1.60 × 108 m3; (4) climate scenarios reveal significant disparities, with SSP126 yielding 54.95 × 108 m3 higher water yield than SSP245, driven predominantly by precipitation; (5) Geodetector analysis identifies precipitation as the most influential single factor, with significant interactions among meteorological and socio-economic factors. These findings offer valuable insights for policymakers and researchers in formulating land use and water resource management strategies.
了解土地利用、气候变化和区域产水量之间的相互关系对于有效的水资源管理和生态系统保护至关重要。然而,对于水资源产量在不同土地利用方案和气候变化情况下如何演变的全面见解仍然难以捉摸。本研究在一个统一的框架内采用生态系统服务和权衡综合评估(InVEST)模型、斑块生成土地利用模拟(PLUS)模型和 Geodetector,以评估土地利用、产水量的动态及其与各种因素(气象、社会、经济等)的关系。为了预测黄河流域到 2030 年的土地利用/植被变化(LUCC)模式,考虑了三种情景:经济优先发展(情景 1)、生态优先发展(情景 2)和耕地优先发展(情景 3)。利用 CMIP6 数据构建了气候变化情景,分别代表低压力(SSP119)、中压力(SSP245)和高压力(SSP585)条件。结果显示如下(1) 2000-2020 年,河南省黄河流域以耕地为主,大量土地向不透水土地(建设用地)和林地转化;(2) 这一时期的产水量变化主要受气象因素影响,土地利用变化的影响可以忽略不计;(3) 到 2030 年,在不同土地利用方案中,方案 1 的产水量最高,略微超过方案 2 1.60 × 108 立方米;(4) 气候情景显示出显著差异,SSP126 的产水量比 SSP245 高 54.95 × 108 立方米,主要受降水驱动;(5) Geodetector 分析认为降水是影响最大的单一因素,气象和社会经济因素之间存在显著的相互作用。这些发现为决策者和研究人员制定土地利用和水资源管理战略提供了宝贵的见解。
{"title":"Evolution and Analysis of Water Yield under the Change of Land Use and Climate Change Based on the PLUS-InVEST Model: A Case Study of the Yellow River Basin in Henan Province","authors":"Xiaoyu Ma, Shasha Liu, Lin Guo, Junzheng Zhang, Chen Feng, Mengyuan Feng, Yilun Li","doi":"10.3390/w16172551","DOIUrl":"https://doi.org/10.3390/w16172551","url":null,"abstract":"Understanding the interrelationships between land use, climate change, and regional water yield is critical for effective water resource management and ecosystem protection. However, comprehensive insights into how water yield evolves under different land use scenarios and climate change remain elusive. This study employs the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) models, Patch-generating Land Use Simulation (PLUS) model, and Geodetector within a unified framework to evaluate the dynamics of land use, water yield, and their relationships with various factors (meteorological, social, economic, etc.). To forecast the land use/cover change (LUCC) pattern of the Yellow River Basin by 2030, three scenarios were considered: economic development priority (Scenario 1), ecological development priority (Scenario 2), and cropland development priority (Scenario 3). Climate change scenarios were constructed using CMIP6 data, representing low-stress (SSP119), medium-stress (SSP245), and high-stress (SSP585) conditions. The results show the following: (1) from 2000 to 2020, cropland was predominant in the Yellow River Basin, Henan Province, with significant land conversion to impervious land (construction land) and forest land; (2) water yield changes during this period were primarily influenced by meteorological factors, with land use changes having negligible impact; (3) by 2030, the water yield of Scenario 1 is highest among different land use scenarios, marginally surpassing Scenario 2 by 1.60 × 108 m3; (4) climate scenarios reveal significant disparities, with SSP126 yielding 54.95 × 108 m3 higher water yield than SSP245, driven predominantly by precipitation; (5) Geodetector analysis identifies precipitation as the most influential single factor, with significant interactions among meteorological and socio-economic factors. These findings offer valuable insights for policymakers and researchers in formulating land use and water resource management strategies.","PeriodicalId":23788,"journal":{"name":"Water","volume":"78 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive Zoning Strategies for Flood Disasters in China 中国洪水灾害综合分区战略
IF 3.4 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-09 DOI: 10.3390/w16172546
Huipan Li, Yuan Wang, Liying Ping, Na Li, Peng Zhao
The frequency of global floods has increased, posing significant threats to economic development and human safety. Existing flood risk zoning studies in disaster prevention lack integration of the natural–economic–social chain and urban resilience factors. This study addresses this gap by constructing flood disaster risk and intensity indices using data from 31 provinces and 295 prefectural-level cities in China from 2011 to 2022. These indices incorporate natural (rainfall), economic (GDP), and social (population, built-up area) indicators to assess the flood likelihood and loss degree, providing comprehensive risk and intensity ratings. The study also examines the impact of resilience factors—environmental (green space), infrastructural (rainwater pipeline density), and natural resource (watershed areas)—on flood intensity. Findings reveal that high-risk regions are mainly in the Yangtze River Basin and southern regions, while high-intensity regions are primarily in the middle and lower Yangtze River and certain northwestern cities. Increasing rainwater pipeline density mitigates flood impacts in high-risk, high-intensity areas, while expanding green spaces and pipelines are effective in high-risk, low-intensity regions. This paper proposes a comprehensive flood hazard zoning mechanism integrating natural, economic, and social factors with urban resilience, offering insights and a scientific basis for urban flood management.
全球洪灾的频率不断增加,对经济发展和人类安全构成了重大威胁。现有的防灾洪水风险区划研究缺乏对自然-经济-社会链和城市抗灾能力因素的整合。为弥补这一不足,本研究利用 2011 年至 2022 年中国 31 个省和 295 个地级市的数据,构建了洪水灾害风险和强度指数。这些指数综合了自然(降雨量)、经济(GDP)和社会(人口、建成区面积)指标,评估了洪水发生的可能性和损失程度,提供了全面的风险和强度评级。研究还探讨了环境(绿地)、基础设施(雨水管道密度)和自然资源(流域面积)等复原力因素对洪水强度的影响。研究结果表明,高风险地区主要位于长江流域和南方地区,而高强度地区主要位于长江中下游和某些西北城市。在高风险、高强度地区,增加雨水管道密度可减轻洪水影响,而在高风险、低强度地区,扩大绿地和管道可有效减轻洪水影响。本文提出了一种将自然、经济和社会因素与城市抗灾能力相结合的综合洪水灾害分区机制,为城市洪水管理提供了启示和科学依据。
{"title":"Comprehensive Zoning Strategies for Flood Disasters in China","authors":"Huipan Li, Yuan Wang, Liying Ping, Na Li, Peng Zhao","doi":"10.3390/w16172546","DOIUrl":"https://doi.org/10.3390/w16172546","url":null,"abstract":"The frequency of global floods has increased, posing significant threats to economic development and human safety. Existing flood risk zoning studies in disaster prevention lack integration of the natural–economic–social chain and urban resilience factors. This study addresses this gap by constructing flood disaster risk and intensity indices using data from 31 provinces and 295 prefectural-level cities in China from 2011 to 2022. These indices incorporate natural (rainfall), economic (GDP), and social (population, built-up area) indicators to assess the flood likelihood and loss degree, providing comprehensive risk and intensity ratings. The study also examines the impact of resilience factors—environmental (green space), infrastructural (rainwater pipeline density), and natural resource (watershed areas)—on flood intensity. Findings reveal that high-risk regions are mainly in the Yangtze River Basin and southern regions, while high-intensity regions are primarily in the middle and lower Yangtze River and certain northwestern cities. Increasing rainwater pipeline density mitigates flood impacts in high-risk, high-intensity areas, while expanding green spaces and pipelines are effective in high-risk, low-intensity regions. This paper proposes a comprehensive flood hazard zoning mechanism integrating natural, economic, and social factors with urban resilience, offering insights and a scientific basis for urban flood management.","PeriodicalId":23788,"journal":{"name":"Water","volume":"221 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interrelationship between Wall and Beach Erosion in Loc An, Vietnam: Remote Sensing and Numerical Modeling Approaches 越南禄安的围墙与海滩侵蚀之间的相互关系:遥感和数值模拟方法
IF 3.4 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-09 DOI: 10.3390/w16172553
Dinh Van Duy, Nguyen Quang Duc Anh, Nguyen Trung Viet, Hitoshi Tanaka
Beach erosion and coastal protection are complex and interconnected phenomena that have a substantial impact on coastal environments worldwide. Among the various coastal protection measures, seawalls have been widely implemented to mitigate erosion and protect coastal assets. However, the interrelationship between beach erosion and seawalls remains a critical topic for investigation to ensure effective and sustainable coastal management strategies. Seawalls impact the shoreline, particularly through the “end effect”, where the seawall functions similarly to a groin, causing erosion on the downdrift side relative to the direction of wave approach. This study provides a detailed analysis of the interplay between beach erosion and seawall structures in Loc An, Vietnam, employing both remote sensing and numerical approaches. Sentinel-2 images were employed together with an analytical solution to observe the shoreline change at the Loc An sand spit and to determine input values for the numerical model. Based on the shoreline dynamics, a numerical scheme was employed to study the shoreline evolution after the construction of a seawall. Our findings show that the shoreline evolution can be divided into three stages: (1) The first stage corresponds to the elongation of the sand spit without interference from coastal structures. (2) The second stage shows the effect of jetties on the shoreline, as signaled by the buildup of sand updrift of the jetties. (3) The third stage shows the effectiveness of the seawall, where the shoreline reaches its equilibrium condition. The study provides a quick and simple method for estimating shoreline diffusivity (ε) in situations where measured data is scarce.
海滩侵蚀和海岸保护是一种复杂而又相互关联的现象,对全世界的海岸环境都有重大 影响。在各种海岸保护措施中,海堤已被广泛采用来减缓侵蚀和保护海岸资产。然而,海滩侵蚀与海堤之间的相互关系仍然是一个重要的研究课题,以确保有效和 可持续的海岸管理策略。海堤对海岸线的影响,特别是通过 "端部效应",即海堤的功能类似于海槽,会造成相对于海浪侵袭方向的下漂一侧的侵蚀。本研究采用遥感和数值方法,对越南禄安的海滩侵蚀和海堤结构之间的相互作用进行了详细分析。通过使用哨兵-2 图像和分析解决方案,观测了 Loc An 沙嘴的海岸线变化,并确定了数值模型的输入值。在海岸线动态变化的基础上,采用数值方案研究了修建海堤后的海岸线演变。研究结果表明,海岸线演变可分为三个阶段:(1) 第一阶段为沙嘴伸长阶段,不受海岸建筑物的干扰。(2) 第二阶段是防波堤对海岸线的影响,表现为防波堤上游的沙粒堆积。(3) 第三阶段显示海堤的效果,即海岸线达到平衡状态。这项研究为在测量数据缺乏的情况下估算海岸线扩散率 (ε)提供了一种快速而简单的方法。
{"title":"Interrelationship between Wall and Beach Erosion in Loc An, Vietnam: Remote Sensing and Numerical Modeling Approaches","authors":"Dinh Van Duy, Nguyen Quang Duc Anh, Nguyen Trung Viet, Hitoshi Tanaka","doi":"10.3390/w16172553","DOIUrl":"https://doi.org/10.3390/w16172553","url":null,"abstract":"Beach erosion and coastal protection are complex and interconnected phenomena that have a substantial impact on coastal environments worldwide. Among the various coastal protection measures, seawalls have been widely implemented to mitigate erosion and protect coastal assets. However, the interrelationship between beach erosion and seawalls remains a critical topic for investigation to ensure effective and sustainable coastal management strategies. Seawalls impact the shoreline, particularly through the “end effect”, where the seawall functions similarly to a groin, causing erosion on the downdrift side relative to the direction of wave approach. This study provides a detailed analysis of the interplay between beach erosion and seawall structures in Loc An, Vietnam, employing both remote sensing and numerical approaches. Sentinel-2 images were employed together with an analytical solution to observe the shoreline change at the Loc An sand spit and to determine input values for the numerical model. Based on the shoreline dynamics, a numerical scheme was employed to study the shoreline evolution after the construction of a seawall. Our findings show that the shoreline evolution can be divided into three stages: (1) The first stage corresponds to the elongation of the sand spit without interference from coastal structures. (2) The second stage shows the effect of jetties on the shoreline, as signaled by the buildup of sand updrift of the jetties. (3) The third stage shows the effectiveness of the seawall, where the shoreline reaches its equilibrium condition. The study provides a quick and simple method for estimating shoreline diffusivity (ε) in situations where measured data is scarce.","PeriodicalId":23788,"journal":{"name":"Water","volume":"5 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of GIS Spatial Analysis for the Assessment of Storm Surge Inundation Risks in the Guangdong–Macao–Hong Kong Great Bay Area 应用 GIS 空间分析评估粤港澳大湾区风暴潮淹没风险
IF 3.4 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-09 DOI: 10.3390/w16172554
Juan Zhang, Weiming Xu, Boliang Xu, Junpeng Zhao, Changxia Liang, Wenjing Zhang, Junjie Deng
This study evaluates the storm surge inundation risk in three anthropogenically infilled estuaries—Xichong, Renshan, and Kaozhouyang—located in the Guangdong–Macao–Hong Kong Great Bay Area, China. By integrating GIS spatial analysis with storm surge modeling, we conducted 204 numerical experiments to simulate storm surge inundation under varying typhoon intensities and astronomical tide conditions. Results revealed that coastal terrain plays a crucial role in influencing storm surge levels and inundation extents. Specifically, the pocket-shaped terrain in the Renshan and Kaozhouyang estuaries amplified storm surges, resulting in higher inundation levels compared to the relatively open terrain of Xichong. Furthermore, anthropogenically reclaimed land in these estuaries appear to be particularly vulnerable to storm-induced inundation. Overall, this study underscores the importance of considering coastline morphology and the anthropogenic modifications of coastal terrain in storm surge risk assessments, offering valuable insights for disaster prevention and mitigation strategies. The use of ArcGIS spatial analysis coupled with storm surge modeling, facilitated by high-resolution DEMs, provides a statistical risk assessment of inundation. However, more complex flooding dynamics models need to be developed, particularly when terrestrial bottom friction information, which is heavily modified by human activities, can be accurately incorporated.
本研究评估了位于中国粤港澳大湾区的西冲、仁山和高洲洋三个人为填海河口的风暴潮淹没风险。通过将 GIS 空间分析与风暴潮建模相结合,我们进行了 204 次数值试验,模拟不同台风强度和天文潮汐条件下的风暴潮淹没情况。结果表明,沿岸地形对风暴潮水平和淹没范围有重要影响。具体而言,与西充相对开阔的地形相比,仁山口和高洲洋河口的袋状地形放大了风暴潮,导致更高的淹没水平。此外,这些河口人为开垦的土地似乎特别容易受到风暴引起的淹没。总之,这项研究强调了在风暴潮风险评估中考虑海岸线形态和沿海地形人为改变的重要性,为防灾减灾战略提供了宝贵的启示。在高分辨率 DEM 的帮助下,使用 ArcGIS 空间分析与风暴潮模型相结合,可以对淹没进行统计风险评估。不过,还需要开发更复杂的洪水动态模型,特别是在能够准确纳入受人类活动严重影响的陆地底部摩擦力信息时。
{"title":"Application of GIS Spatial Analysis for the Assessment of Storm Surge Inundation Risks in the Guangdong–Macao–Hong Kong Great Bay Area","authors":"Juan Zhang, Weiming Xu, Boliang Xu, Junpeng Zhao, Changxia Liang, Wenjing Zhang, Junjie Deng","doi":"10.3390/w16172554","DOIUrl":"https://doi.org/10.3390/w16172554","url":null,"abstract":"This study evaluates the storm surge inundation risk in three anthropogenically infilled estuaries—Xichong, Renshan, and Kaozhouyang—located in the Guangdong–Macao–Hong Kong Great Bay Area, China. By integrating GIS spatial analysis with storm surge modeling, we conducted 204 numerical experiments to simulate storm surge inundation under varying typhoon intensities and astronomical tide conditions. Results revealed that coastal terrain plays a crucial role in influencing storm surge levels and inundation extents. Specifically, the pocket-shaped terrain in the Renshan and Kaozhouyang estuaries amplified storm surges, resulting in higher inundation levels compared to the relatively open terrain of Xichong. Furthermore, anthropogenically reclaimed land in these estuaries appear to be particularly vulnerable to storm-induced inundation. Overall, this study underscores the importance of considering coastline morphology and the anthropogenic modifications of coastal terrain in storm surge risk assessments, offering valuable insights for disaster prevention and mitigation strategies. The use of ArcGIS spatial analysis coupled with storm surge modeling, facilitated by high-resolution DEMs, provides a statistical risk assessment of inundation. However, more complex flooding dynamics models need to be developed, particularly when terrestrial bottom friction information, which is heavily modified by human activities, can be accurately incorporated.","PeriodicalId":23788,"journal":{"name":"Water","volume":"6 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness of Collars and Hooked-Collars in Mitigating Scour around Different Abutment Shapes 套环和钩环在减轻不同形状基台周围冲刷方面的效果
IF 3.4 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-09 DOI: 10.3390/w16172550
Zaka Ullah Khan, Afzal Ahmed, Manousos Valyrakis, Ghufran Ahmed Pasha, Rashid Farooq, Nadir Murtaza, Diyar Khan
Abutment scour is a major cause of bridge failures worldwide, leading to disruptions, economic losses, and loss of life. The present experimental study examines countermeasures against abutment scour using hooked-collar protections on vertical-wall and wing-wall abutments (at 45° and 60°) under different flow conditions. All 60 experiments were performed under sub-critical flow conditions by investigating scour around an abutment 20 cm long, 20 cm wide, and 25 cm tall. Two distinct values of the Froude number, 0.154 and 0.179, and a sediment particle diameter (d50) of 0.88 mm were used throughout the experimental phase. The resulting equilibrium scour around the abutments was compared to those with collar and hooked-collar protections. It was determined that the maximum abutment scour depth reduction was 83.89% when hooked collars were placed on vertical wall abutments beneath the bed surface level, and for wing-wall abutments at 45° and 60°, it was 74.2% and 73.5%, respectively, at the bed surface level. Regression analysis was conducted to assess the non-dimensional scour depth (Ds/Yf) and scour reduction (RDs/Yf), with a high enough coefficient of determination (R2 values of 0.96 and 0.93, respectively), indicating high confidence in the analysis. The sensitivity analysis findings demonstrate that the width of the collar (Wc) and La are the most influencing factors affecting Ds/Yf and RDs/Yf.
桥墩冲刷是全球桥梁垮塌的主要原因,会导致交通中断、经济损失和人员伤亡。本实验研究探讨了在不同的水流条件下,在垂直墙和翼墙桥墩(45° 和 60°)上使用钩环保护装置防止桥墩冲刷的对策。所有 60 项实验都是在亚临界流条件下进行的,对长 20 厘米、宽 20 厘米、高 25 厘米的基台周围的冲刷情况进行了研究。整个实验阶段使用了两个不同的弗劳德数值 0.154 和 0.179,以及 0.88 毫米的沉积物颗粒直径 (d50)。实验结果将桥墩周围的平衡冲刷情况与有领和有钩保护的桥墩进行了比较。结果表明,在基床表面以下的垂直墙基墩上安装钩形领时,基墩冲刷深度的最大缩减率为 83.89%,而在基床表面呈 45° 和 60° 的翼墙基墩上安装钩形领时,基墩冲刷深度的最大缩减率分别为 74.2% 和 73.5%。回归分析用于评估非尺寸冲刷深度(Ds/Yf)和冲刷减少量(RDs/Yf),其决定系数足够高(R2 值分别为 0.96 和 0.93),表明分析可信度高。敏感性分析结果表明,领口宽度(Wc)和 La 是影响 Ds/Yf 和 RDs/Yf 的最大影响因素。
{"title":"Effectiveness of Collars and Hooked-Collars in Mitigating Scour around Different Abutment Shapes","authors":"Zaka Ullah Khan, Afzal Ahmed, Manousos Valyrakis, Ghufran Ahmed Pasha, Rashid Farooq, Nadir Murtaza, Diyar Khan","doi":"10.3390/w16172550","DOIUrl":"https://doi.org/10.3390/w16172550","url":null,"abstract":"Abutment scour is a major cause of bridge failures worldwide, leading to disruptions, economic losses, and loss of life. The present experimental study examines countermeasures against abutment scour using hooked-collar protections on vertical-wall and wing-wall abutments (at 45° and 60°) under different flow conditions. All 60 experiments were performed under sub-critical flow conditions by investigating scour around an abutment 20 cm long, 20 cm wide, and 25 cm tall. Two distinct values of the Froude number, 0.154 and 0.179, and a sediment particle diameter (d50) of 0.88 mm were used throughout the experimental phase. The resulting equilibrium scour around the abutments was compared to those with collar and hooked-collar protections. It was determined that the maximum abutment scour depth reduction was 83.89% when hooked collars were placed on vertical wall abutments beneath the bed surface level, and for wing-wall abutments at 45° and 60°, it was 74.2% and 73.5%, respectively, at the bed surface level. Regression analysis was conducted to assess the non-dimensional scour depth (Ds/Yf) and scour reduction (RDs/Yf), with a high enough coefficient of determination (R2 values of 0.96 and 0.93, respectively), indicating high confidence in the analysis. The sensitivity analysis findings demonstrate that the width of the collar (Wc) and La are the most influencing factors affecting Ds/Yf and RDs/Yf.","PeriodicalId":23788,"journal":{"name":"Water","volume":"6 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving a 1D Hydraulic Model to Include Bridges as Internal Boundary Conditions 改进一维水力模型,将桥梁纳入内部边界条件
IF 3.4 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-09 DOI: 10.3390/w16172555
Gabriella Petaccia, Elisabetta Persi
The paper describes the implementation of internal boundary conditions in the 1D ORSADEM hydraulic model to simulate the effect of a hydraulic in-line structure. The proposed model introduces a simplified representation of the bridge geometry by imposing an equivalent narrowing, computed according to the opening size and characteristics, combined with the mass and energy balance at the structure. The model is then applied to a series of experimental tests concerning the propagation of shock waves through different types of bridges, representing different flow conditions, from free surface flow to overflow. The tests are also simulated with the original 1D ORSADEM model, including the standard head losses and the cross-section narrowing due to the presence of a structure. The comparison with the experimental measurements shows that the proposed model can simulate the shock wave flow through the bridges with a higher accuracy than the standard formulation. These findings highlight the possibility of properly evaluating the backwater effect at bridges even with a simple 1D model if the physical narrowing of the cross-section is modeled.
本文介绍了如何在一维 ORSADEM 水力模型中实施内部边界条件,以模拟水力直排结构的影响。所提议的模型根据开口尺寸和特征,结合结构的质量和能量平衡,通过施加等效缩窄,引入了桥梁几何形状的简化表示。然后,将该模型应用于一系列有关冲击波通过不同类型桥梁传播的实验测试,这些测试代表了从自由表面流到溢流的不同流动条件。这些试验也使用原始的一维 ORSADEM 模型进行了模拟,包括标准水头损失和由于结构的存在而导致的横截面变窄。与实验测量结果的比较表明,与标准公式相比,所提出的模型能够以更高的精度模拟冲击波流过桥梁的情况。这些发现突出表明,如果对横截面的物理变窄进行建模,即使使用简单的一维模型,也有可能正确评估桥梁的回水效应。
{"title":"Improving a 1D Hydraulic Model to Include Bridges as Internal Boundary Conditions","authors":"Gabriella Petaccia, Elisabetta Persi","doi":"10.3390/w16172555","DOIUrl":"https://doi.org/10.3390/w16172555","url":null,"abstract":"The paper describes the implementation of internal boundary conditions in the 1D ORSADEM hydraulic model to simulate the effect of a hydraulic in-line structure. The proposed model introduces a simplified representation of the bridge geometry by imposing an equivalent narrowing, computed according to the opening size and characteristics, combined with the mass and energy balance at the structure. The model is then applied to a series of experimental tests concerning the propagation of shock waves through different types of bridges, representing different flow conditions, from free surface flow to overflow. The tests are also simulated with the original 1D ORSADEM model, including the standard head losses and the cross-section narrowing due to the presence of a structure. The comparison with the experimental measurements shows that the proposed model can simulate the shock wave flow through the bridges with a higher accuracy than the standard formulation. These findings highlight the possibility of properly evaluating the backwater effect at bridges even with a simple 1D model if the physical narrowing of the cross-section is modeled.","PeriodicalId":23788,"journal":{"name":"Water","volume":"13 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Water
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1