1-xCuO-xFe2O3 composites where x = 0.05, 0.10, 0.15 and 0.20 have been synthesized using ball milling mixing method. The structural, microstructural, elemental analysis, magnetic and dielectric properties of prepared ceramic composites have been investigated using the advanced characterization techniques. The influence of sintering temperature on structural, dielectric and magnetic properties have been investigated. The structural phase analysis has been carried out using X-ray diffraction and effect of sintering temperature clearly depicted in graphs. As increase in sintering temperature from 700 °C to 900 °C, diffraction peaks shift towards higher angles, indicating changes in crystal lattice parameters and potential crystal structure distortions. However, after careful consideration of the XRD results and a comprehensive analysis, we concluded that a synthesis temperature of 700 °C is preferable. The SEM micrographs shows an increase in grain size of ceramic composites as concentration of Fe2O3 increases. The Energy Dispersive X-Ray spectroscopy affirms presence of elements according to stoichiometric proportion whereas S-shaped M vs. H. loop confirms presence of magnetic ordering. Variation of Real (ε') and Imaginary (ε") parts of dielectric permittivity with frequency shows general dielectric behavior.
采用球磨混合法合成了 1-xCuO-xFe2O3 复合材料,其中 x = 0.05、0.10、0.15 和 0.20。利用先进的表征技术研究了所制备陶瓷复合材料的结构、微观结构、元素分析、磁性和介电特性。研究了烧结温度对结构、介电和磁性能的影响。利用 X 射线衍射进行了结构相分析,烧结温度的影响在图中有清晰的描述。随着烧结温度从 700 °C 升至 900 °C,衍射峰向更高角度移动,表明晶格参数发生了变化,晶体结构可能发生畸变。然而,在仔细考虑 XRD 结果并进行综合分析后,我们得出结论:合成温度为 700 ℃ 较为可取。扫描电镜显微照片显示,随着 Fe2O3 浓度的增加,陶瓷复合材料的晶粒尺寸也在增大。能量色散 X 射线光谱证实了元素的存在符合化学计量学比例,而 S 型 M vs. H. 圈则证实了磁有序性的存在。介电常数的实部(ε')和虚部(ε")随频率的变化显示了一般的介电行为。
{"title":"Structural, microstructural, magnetic and dielectric properties of Fe2O3 modified CuO composite","authors":"Rajnish Grewal, Sunita Dahiya, Sunil Kumar, Naveen Kumar","doi":"10.62638/zasmat1136","DOIUrl":"https://doi.org/10.62638/zasmat1136","url":null,"abstract":"1-xCuO-xFe2O3 composites where x = 0.05, 0.10, 0.15 and 0.20 have been synthesized using ball milling mixing method. The structural, microstructural, elemental analysis, magnetic and dielectric properties of prepared ceramic composites have been investigated using the advanced characterization techniques. The influence of sintering temperature on structural, dielectric and magnetic properties have been investigated. The structural phase analysis has been carried out using X-ray diffraction and effect of sintering temperature clearly depicted in graphs. As increase in sintering temperature from 700 °C to 900 °C, diffraction peaks shift towards higher angles, indicating changes in crystal lattice parameters and potential crystal structure distortions. However, after careful consideration of the XRD results and a comprehensive analysis, we concluded that a synthesis temperature of 700 °C is preferable. The SEM micrographs shows an increase in grain size of ceramic composites as concentration of Fe2O3 increases. The Energy Dispersive X-Ray spectroscopy affirms presence of elements according to stoichiometric proportion whereas S-shaped M vs. H. loop confirms presence of magnetic ordering. Variation of Real (ε') and Imaginary (ε\") parts of dielectric permittivity with frequency shows general dielectric behavior.","PeriodicalId":23842,"journal":{"name":"Zastita materijala","volume":"2 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141336210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electrochemical investigations were carried out on the Ni-P/nano cubic-Boron Nitride (c-BN) coatings obtained by using sodium hypophosphite reduced electrolyte bath solution with complexing agents. The screening of complexing agents was carried out by UV-Visible spectrophotometric studies. The deposits obtained using optimized bath composition was tested by EDAX, SEM and XRD in order to understand the structural morphology of the coatings. Electrochemical studies conducted by Potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) reveled the greater stability of coatings in acidic and alkaline environment. To evaluate the behavior of the coatings in marine environment, Salt spray test was conducted using sodium chloride solution. Results indicate the improved resistance to corrosion with the incorporation of nano c-BN in the coatings.
{"title":"Electrochemical investigations of Ni-P/nano c-BN deposited on aluminum alloy","authors":"Shashikala Aarudi Ranganath, Keerthi Kothakula, Sridhar Bangarpet Shankar","doi":"10.62638/zasmat1135","DOIUrl":"https://doi.org/10.62638/zasmat1135","url":null,"abstract":"Electrochemical investigations were carried out on the Ni-P/nano cubic-Boron Nitride (c-BN) coatings obtained by using sodium hypophosphite reduced electrolyte bath solution with complexing agents. The screening of complexing agents was carried out by UV-Visible spectrophotometric studies. The deposits obtained using optimized bath composition was tested by EDAX, SEM and XRD in order to understand the structural morphology of the coatings. Electrochemical studies conducted by Potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) reveled the greater stability of coatings in acidic and alkaline environment. To evaluate the behavior of the coatings in marine environment, Salt spray test was conducted using sodium chloride solution. Results indicate the improved resistance to corrosion with the incorporation of nano c-BN in the coatings.","PeriodicalId":23842,"journal":{"name":"Zastita materijala","volume":"2 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141337339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effect of cathodic polarization on the properties of the protective epoxy coating on X80 steel samples under cyclic changes in temperature from 20 to 75 оC over a period ~3.5 months was investigated. It is shown that in a 3% NaCl solution, with decreasing polarization potential from -1.05 to -0.85 V, the disbondment radius of the epoxy coating decreased by ~3.48 times (from 10.8 to 3.1 mm). At -0.75 V and in the absence of polarization, disbondment of the coating from the steel don’t observed. By potential -0.75 V coating retains its protective properties according to the transient specific electrical resistance indicator, and its aging is slowed down.
研究了在温度从 20 ℃ 到 75 ℃ 的约 3.5 个月周期性变化下,阴极极化对 X80 钢样品上环氧树脂保护涂层性能的影响。结果表明,在 3% 的 NaCl 溶液中,随着极化电位从 -1.05 V 下降到 -0.85 V,环氧涂层的脱粘半径下降了约 3.48 倍(从 10.8 mm 下降到 3.1 mm)。在 -0.75 V 和无极化条件下,没有观察到涂层与钢材的脱粘现象。根据瞬态比电阻指标,在电位为 -0.75 V 时,涂层仍保持其保护特性,而且老化速度减慢。
{"title":"Investigation of properties of epoxy coating on X80 steelunder cathodic polarization conditions","authors":"Lyudmila Nyrkova","doi":"10.62638/zasmat1130","DOIUrl":"https://doi.org/10.62638/zasmat1130","url":null,"abstract":"The effect of cathodic polarization on the properties of the protective epoxy coating on X80 steel samples under cyclic changes in temperature from 20 to 75 оC over a period ~3.5 months was investigated. It is shown that in a 3% NaCl solution, with decreasing polarization potential from -1.05 to -0.85 V, the disbondment radius of the epoxy coating decreased by ~3.48 times (from 10.8 to 3.1 mm). At -0.75 V and in the absence of polarization, disbondment of the coating from the steel don’t observed. By potential -0.75 V coating retains its protective properties according to the transient specific electrical resistance indicator, and its aging is slowed down.","PeriodicalId":23842,"journal":{"name":"Zastita materijala","volume":"27 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gayathri Thangavel, K. Balakrishnan, Nirmala Murugesan
Reduced Graphene oxide/Nickel oxide/Magnesium dioxide) RGO/NiO/MnO2 nanocomposite electrode was successfully prepared by simple co-precipitation method. The synthesised nanocomposite was characterised by XRD, FESEM, EDAX, FTIR, UV, CV, GCD, EIS. The RGO/NiO/MnO2 nanocomposite was pretreated by ultrasonication, followed by thermal annealing at 350 oC. The crystalline face and size of nanocomposite were analysed by X-Ray Diffraction (XRD). The sandwich-like structure of RGO/NiO/MnO2 was analysed by Scanning Electron Microscope (SEM). This structure promoted an efficient contact between electrolyte and active materials, and the distinct architecture could offer fast transfer channels of ion and electrons. The nanocomposite exhibited high conductivity owing to the presence of RGO. The electrochemical performance of prepared nanocomposite was done by Cyclic Voltammetry (CV), Galvanostatic charge discharge (GCD), Electrical Impedance Spectroscopy (EIS). The synthesised RGO/NiO/MnO2 nanocomposite acquired high specific capacitance of 1167F/g at current density of 1 A/g. The low cost, low temperature RGO/NiO/MnO2 nanocomposite electrode could be the promising electrode for Energy storage devices.
{"title":"NiO/MnO2 nanocomposite in addition of layered Reduced Graphene oxide (RGO) electrode for accountable supercapacitor application","authors":"Gayathri Thangavel, K. Balakrishnan, Nirmala Murugesan","doi":"10.62638/zasmat1120","DOIUrl":"https://doi.org/10.62638/zasmat1120","url":null,"abstract":"Reduced Graphene oxide/Nickel oxide/Magnesium dioxide) RGO/NiO/MnO2 nanocomposite electrode was successfully prepared by simple co-precipitation method. The synthesised nanocomposite was characterised by XRD, FESEM, EDAX, FTIR, UV, CV, GCD, EIS. The RGO/NiO/MnO2 nanocomposite was pretreated by ultrasonication, followed by thermal annealing at 350 oC. The crystalline face and size of nanocomposite were analysed by X-Ray Diffraction (XRD). The sandwich-like structure of RGO/NiO/MnO2 was analysed by Scanning Electron Microscope (SEM). This structure promoted an efficient contact between electrolyte and active materials, and the distinct architecture could offer fast transfer channels of ion and electrons. The nanocomposite exhibited high conductivity owing to the presence of RGO. The electrochemical performance of prepared nanocomposite was done by Cyclic Voltammetry (CV), Galvanostatic charge discharge (GCD), Electrical Impedance Spectroscopy (EIS). The synthesised RGO/NiO/MnO2 nanocomposite acquired high specific capacitance of 1167F/g at current density of 1 A/g. The low cost, low temperature RGO/NiO/MnO2 nanocomposite electrode could be the promising electrode for Energy storage devices.","PeriodicalId":23842,"journal":{"name":"Zastita materijala","volume":"4 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141336905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arunprasad Jaychandran, Murugan Ramaiyan, Christian Johnson Singaram, Anukarthika Balakrishnan
This research article presents a comprehensive investigation into the materials and corrosion resistance of angle components critical to infrastructure construction. The study focuses on two key angle materials: steel angles and Fiber-Reinforced Plastic (FRP) angles, selected based on project-specific requirements. The concrete mix design, incorporating crucial components like chemicals (Calcium Chloride, Sodium Hydroxide, Calcium Hydroxide), aggregates (M Sand and 20 mm Aggregate), and cement (Portland Pozzolana Cement - 43 grade), ensures that the structural integrity and performance meet desired standards. The research also involves advanced corrosion assessment techniques, including the Half-Cell Potential Test and the Applied Voltage Test (Holiday Test), which offer insights into material conductance, corrosion resistance, and protective coating integrity. Moreover, a Chemical Resistance Test examines the impact of various solutions on these materials, highlighting their suitability for diverse industrial applications. The results underscore the importance of tailored material selection, proactive corrosion management, and the critical role of protective coatings in ensuring infrastructure longevity and safety. This study contributes to the advancement of corrosion assessment methods, supporting the durability of critical infrastructure materials.
{"title":"Non-destructive evaluation of subsurface corrosion on hot steel angle sections embedded in concrete and its repair by cement slurry and nitozinc coating","authors":"Arunprasad Jaychandran, Murugan Ramaiyan, Christian Johnson Singaram, Anukarthika Balakrishnan","doi":"10.62638/zasmat1129","DOIUrl":"https://doi.org/10.62638/zasmat1129","url":null,"abstract":"This research article presents a comprehensive investigation into the materials and corrosion resistance of angle components critical to infrastructure construction. The study focuses on two key angle materials: steel angles and Fiber-Reinforced Plastic (FRP) angles, selected based on project-specific requirements. The concrete mix design, incorporating crucial components like chemicals (Calcium Chloride, Sodium Hydroxide, Calcium Hydroxide), aggregates (M Sand and 20 mm Aggregate), and cement (Portland Pozzolana Cement - 43 grade), ensures that the structural integrity and performance meet desired standards. The research also involves advanced corrosion assessment techniques, including the Half-Cell Potential Test and the Applied Voltage Test (Holiday Test), which offer insights into material conductance, corrosion resistance, and protective coating integrity. Moreover, a Chemical Resistance Test examines the impact of various solutions on these materials, highlighting their suitability for diverse industrial applications. The results underscore the importance of tailored material selection, proactive corrosion management, and the critical role of protective coatings in ensuring infrastructure longevity and safety. This study contributes to the advancement of corrosion assessment methods, supporting the durability of critical infrastructure materials.","PeriodicalId":23842,"journal":{"name":"Zastita materijala","volume":"93 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141337566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper reports the first-time synthesis of Sr0.99Zr(PO4)2:0.01Eu3+ ceramic glass were synthesized via solution combustion using glycine as fuel (1:1 fuel-to-oxidizer ratio). X-ray diffraction confirmed the desired crystalline phase, while Scherrer analysis indicated an average particle size of approximately 60 nm. This was further supported by scanning electron microscopy, which revealed a particle size around 75 nm. Notably, the material exhibited a characteristic mesoporous structure, a signature feature of the solution combustion technique. Dielectric studies revealed a double exponential decay profile, signifying the presence of voids within the material. Importantly, the significantly smaller time constant (t2) compared to t1 highlights the material's suitability for long-term energy storage applications.
{"title":"A novel Sr0.99Zr(PO4)2:0.01Eu3+ ceramic glass viable for long term energy storage applications","authors":"N. Thiruveni, Muthammal Ramu, Dhanapal Prakash Babu, Sadasivam Ponkumar, Ramasamy Jayavell","doi":"10.62638/zasmat1133","DOIUrl":"https://doi.org/10.62638/zasmat1133","url":null,"abstract":"This paper reports the first-time synthesis of Sr0.99Zr(PO4)2:0.01Eu3+ ceramic glass were synthesized via solution combustion using glycine as fuel (1:1 fuel-to-oxidizer ratio). X-ray diffraction confirmed the desired crystalline phase, while Scherrer analysis indicated an average particle size of approximately 60 nm. This was further supported by scanning electron microscopy, which revealed a particle size around 75 nm. Notably, the material exhibited a characteristic mesoporous structure, a signature feature of the solution combustion technique. Dielectric studies revealed a double exponential decay profile, signifying the presence of voids within the material. Importantly, the significantly smaller time constant (t2) compared to t1 highlights the material's suitability for long-term energy storage applications.","PeriodicalId":23842,"journal":{"name":"Zastita materijala","volume":"16 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141336093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vijayalakshmi K. Arumugam, Judith Fennila, Thangavel K. Maheswari
The waste biomass in the form of eucalyptus globulus seeds activated carbon, which is employed as the electrode material and is environmentally acceptable, provides the good specific capacitance in the current work which is used for the energy storage application. A sample carbonization and physical activation procedure was used to create the activated carbon from the eucalyptus seeds. As prepared activated carbon was exposed to a DC glow discharge plasma, which modifies the surface of the material without altering its core characteristics. The investigation of the activated carbon was done utilizing structural, morphological, and electrochemical techniques of both pure and plasma treated. The increasing intensity of the X-ray diffraction indicates the carbon's amorphous and disorderly character. More oxygen-containing functional groups are present, according to an FTIR analysis. The FESEM/EDAX investigation has demonstrated the less appearance and more graphitic porosity with random orientation. Moreover, the electrochemical investigations were examined for utilization of the material of Electrochemical Impedance Spectroscopy (EIS) and Galvanostatic charge-discharge (GCD) which has a specific capacitance of 150F/g for a 1.5mA/g current density. The results revealed that the activated carbon made from Eucalyptus seeds after plasma treatment has good surface characteristics, improved specific capacitance, and is a low-cost electrode material for fabrication of energy storage device.
{"title":"Blend of low cost electrode material for energy storage device under DC glow discharge plasma exposed ESAC","authors":"Vijayalakshmi K. Arumugam, Judith Fennila, Thangavel K. Maheswari","doi":"10.62638/zasmat1123","DOIUrl":"https://doi.org/10.62638/zasmat1123","url":null,"abstract":"The waste biomass in the form of eucalyptus globulus seeds activated carbon, which is employed as the electrode material and is environmentally acceptable, provides the good specific capacitance in the current work which is used for the energy storage application. A sample carbonization and physical activation procedure was used to create the activated carbon from the eucalyptus seeds. As prepared activated carbon was exposed to a DC glow discharge plasma, which modifies the surface of the material without altering its core characteristics. The investigation of the activated carbon was done utilizing structural, morphological, and electrochemical techniques of both pure and plasma treated. The increasing intensity of the X-ray diffraction indicates the carbon's amorphous and disorderly character. More oxygen-containing functional groups are present, according to an FTIR analysis. The FESEM/EDAX investigation has demonstrated the less appearance and more graphitic porosity with random orientation. Moreover, the electrochemical investigations were examined for utilization of the material of Electrochemical Impedance Spectroscopy (EIS) and Galvanostatic charge-discharge (GCD) which has a specific capacitance of 150F/g for a 1.5mA/g current density. The results revealed that the activated carbon made from Eucalyptus seeds after plasma treatment has good surface characteristics, improved specific capacitance, and is a low-cost electrode material for fabrication of energy storage device.","PeriodicalId":23842,"journal":{"name":"Zastita materijala","volume":"91 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141337719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Prakash, S. Srividhya, P. Neelamegam, Karuppasamy Mukilan, Rajagopal Premkumar, Muthu Vinod Kumar
The development of a country's infrastructure relies heavily on the use of cement concrete as the major building material. The cement industry significantly contributes to global warming due to its substantial carbon dioxide (CO2) emissions. Reducing the consumption of cement in concrete while maintaining its essential features can lead to a more cost-effective and environmentally friendly advancement of the construction sector. By looking at a new concrete mix that includes fly ash (FA) and Ground Granulated Blast Furnace Slag (GGBFS), this study aims to develop cement less concrete. An Alkali-Activated Solution (AAS) was used as the liquid binder along with a dry mix of FA and GGBFS. This study examines the utilization and impact of liquid and solid binders in the production of alkali-activated GGBFS-based Geopolymer Concrete (GPC), as well as the optimal quantities required for their incorporation. Various ratios of AAS to GSB were experimented with to determine the optimum mixture. To find optimum mixture of GGBFS for the GPC, different amounts of GGBFS were utlised as a Partial substitution for fly ash. At 28 days, test specimens, such as cubes, cylinders, and beams, were cast and put to the test. The GPC has also decided to use heat curing to get good results. It is found that the ratio 0.5 between AAS and GSB and a makeup of 75% GGBFS made the strongest material. The results of the study show that using AAS and GGBFS in geopolymer concrete makes a better product, which could be used in places where there is not enough water
{"title":"Fresh and hardened characteristics of a novel alkali-activated geopolymer concrete with GGBFS","authors":"R. Prakash, S. Srividhya, P. Neelamegam, Karuppasamy Mukilan, Rajagopal Premkumar, Muthu Vinod Kumar","doi":"10.62638/zasmat1121","DOIUrl":"https://doi.org/10.62638/zasmat1121","url":null,"abstract":"The development of a country's infrastructure relies heavily on the use of cement concrete as the major building material. The cement industry significantly contributes to global warming due to its substantial carbon dioxide (CO2) emissions. Reducing the consumption of cement in concrete while maintaining its essential features can lead to a more cost-effective and environmentally friendly advancement of the construction sector.\u0000By looking at a new concrete mix that includes fly ash (FA) and Ground Granulated Blast Furnace Slag (GGBFS), this study aims to develop cement less concrete. An Alkali-Activated Solution (AAS) was used as the liquid binder along with a dry mix of FA and GGBFS. This study examines the utilization and impact of liquid and solid binders in the production of alkali-activated GGBFS-based Geopolymer Concrete (GPC), as well as the optimal quantities required for their incorporation. Various ratios of AAS to GSB were experimented with to determine the optimum mixture. To find optimum mixture of GGBFS for the GPC, different amounts of GGBFS were utlised as a Partial substitution for fly ash. At 28 days, test specimens, such as cubes, cylinders, and beams, were cast and put to the test. The GPC has also decided to use heat curing to get good results. It is found that the ratio 0.5 between AAS and GSB and a makeup of 75% GGBFS made the strongest material. The results of the study show that using AAS and GGBFS in geopolymer concrete makes a better product, which could be used in places where there is not enough water","PeriodicalId":23842,"journal":{"name":"Zastita materijala","volume":"5 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141336832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emmanuel Rieborue Khama, Emmanuel Zeneboebi Loyibo, W. Okologume, S. Ekwueme, Chukwudi Victor Okafor, N. Ohia
This study investigates the potential of activated carbon derived from ripe plantain peels (PPAC) for carbon dioxide (CO2) capture. PPAC was prepared through carbonization and activation using H3PO4, and its unique properties were extensively characterized which revealed irregular sponge-like protrusions and well-defined pores under Scanning Electron Microscopy (SEM). Elemental analysis identified carbon, silicon, and oxygen as major components, corroborated by X-ray Diffraction (XRD) analysis indicating the presence of silicon oxide (SiO2), potassium oxide (K2O), and calcium oxide (CaO). Fourier Transform Infrared (FTIR) spectroscopy highlighted diverse functional groups on PPAC's surface. CO2 adsorption tests were conducted at 27°C and 40°C with varying pressures on PPAC particles of 150µm and 845µm sizes. Results revealed that CO2 adsorption capacity increased with escalating pressures. Remarkably, at 27°C, PPAC exhibited superior performance than at 40°C, attributed to a higher-pressure drop enhancing the driving force for CO2 adsorption. Larger particles (845µm) demonstrated higher adsorption capacity due to increased surface area, enhanced pore accessibility, and faster mass transfer. The Response Surface Methodology (RSM) conducted gave 2FI model as the most representative of the design data and showed high accuracy (R2=0.9973) and low error metrics (MSE=0.01697, RMSE=0.130269, MAE=0.109, MAPE=2.7244). The Adeq Precision value of 76.26 validated the model's reliability. Optimization using RSM yielded optimal CO2 adsorption values (9.69 mmol/g) at 27°C and 100 bars. PPAC emerges as a promising solution for CO2 capture, offering valuable prospects in mitigating emissions and addressing climate change challenges.
{"title":"Investigation of the performance of activated carbon derived from ripe plantain peels for CO2 capture: Modelling and optimisation using response surface methodology","authors":"Emmanuel Rieborue Khama, Emmanuel Zeneboebi Loyibo, W. Okologume, S. Ekwueme, Chukwudi Victor Okafor, N. Ohia","doi":"10.62638/zasmat1149","DOIUrl":"https://doi.org/10.62638/zasmat1149","url":null,"abstract":"This study investigates the potential of activated carbon derived from ripe plantain peels (PPAC) for carbon dioxide (CO2) capture. PPAC was prepared through carbonization and activation using H3PO4, and its unique properties were extensively characterized which revealed irregular sponge-like protrusions and well-defined pores under Scanning Electron Microscopy (SEM). Elemental analysis identified carbon, silicon, and oxygen as major components, corroborated by X-ray Diffraction (XRD) analysis indicating the presence of silicon oxide (SiO2), potassium oxide (K2O), and calcium oxide (CaO). Fourier Transform Infrared (FTIR) spectroscopy highlighted diverse functional groups on PPAC's surface. CO2 adsorption tests were conducted at 27°C and 40°C with varying pressures on PPAC particles of 150µm and 845µm sizes. Results revealed that CO2 adsorption capacity increased with escalating pressures. Remarkably, at 27°C, PPAC exhibited superior performance than at 40°C, attributed to a higher-pressure drop enhancing the driving force for CO2 adsorption. Larger particles (845µm) demonstrated higher adsorption capacity due to increased surface area, enhanced pore accessibility, and faster mass transfer. The Response Surface Methodology (RSM) conducted gave 2FI model as the most representative of the design data and showed high accuracy (R2=0.9973) and low error metrics (MSE=0.01697, RMSE=0.130269, MAE=0.109, MAPE=2.7244). The Adeq Precision value of 76.26 validated the model's reliability. Optimization using RSM yielded optimal CO2 adsorption values (9.69 mmol/g) at 27°C and 100 bars. PPAC emerges as a promising solution for CO2 capture, offering valuable prospects in mitigating emissions and addressing climate change challenges.","PeriodicalId":23842,"journal":{"name":"Zastita materijala","volume":"5 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141337106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite the tremendous progress in understanding the molecular basis of the disease, cancer still remains one of the leading causes of deaths. Recently, advances in nanotechnology are rapidly enabling the development of novel, multifunctional materials with combined cancer specific targeting, therapeutic and diagnostic functions within a single nanocomplex (NP) that address the shortcomings of traditional disease diagnostic and therapeutic agents. Among the myriad of nanocarriers, magnetic nanoparticles (MNPs) have sparked extensive promise as novel theranostic applications as these MNPs can be directly targeted to the diseased cells with effective therapeutic efficiency. For this, these MNPs should be modified with some highly biocompatible polymers (specially polysaccharides) exhibiting the cancer targeting properties that can strongly interact with receptors expressed on the target cancer to facilitate accurate detection of the specific cancer and enhanced delivery to the target site while reducing unintended tside effects. Over the last few years, many groups have reported hyaluronic acid (HA) as the targeting agent as it directly delivers targeted MNPs to CD44 overexpressed cancer cells. In most of the cases, doxorubicin (DOX) has been used as the anticancer drug as it is largely utilized for treating a broad spectrum of cancers. In our work, we have designed a novel, intravenously injectable, CD44 receptor targeted MNP formulation, where the HA moiety of MNPs facilitate easy detection of cancer cells via receptor specific interactions, DOX can regress the cancer cells with simultaneous imaging efficacy. This theranostic MNPs led to the formation of novel nanoformulation, capable of performing concomitant detection, regression and imaging in in vitro CD44 over expressing cancer cells.
{"title":"Development of hyaluronate tethered magnetic nanoparticlesfor targeted anti-cancer drug delivery","authors":"Dipsikha Bhattacharya","doi":"10.62638/zasmat1041","DOIUrl":"https://doi.org/10.62638/zasmat1041","url":null,"abstract":"Despite the tremendous progress in understanding the molecular basis of the disease, cancer still remains one of the leading causes of deaths. Recently, advances in nanotechnology are rapidly enabling the development of novel, multifunctional materials with combined cancer specific targeting, therapeutic and diagnostic functions within a single nanocomplex (NP) that address the shortcomings of traditional disease diagnostic and therapeutic agents. Among the myriad of nanocarriers, magnetic nanoparticles (MNPs) have sparked extensive promise as novel theranostic applications as these MNPs can be directly targeted to the diseased cells with effective therapeutic efficiency. For this, these MNPs should be modified with some highly biocompatible polymers (specially polysaccharides) exhibiting the cancer targeting properties that can strongly interact with receptors expressed on the target cancer to facilitate accurate detection of the specific cancer and enhanced delivery to the target site while reducing unintended tside effects. Over the last few years, many groups have reported hyaluronic acid (HA) as the targeting agent as it directly delivers targeted MNPs to CD44 overexpressed cancer cells. In most of the cases, doxorubicin (DOX) has been used as the anticancer drug as it is largely utilized for treating a broad spectrum of cancers. In our work, we have designed a novel, intravenously injectable, CD44 receptor targeted MNP formulation, where the HA moiety of MNPs facilitate easy detection of cancer cells via receptor specific interactions, DOX can regress the cancer cells with simultaneous imaging efficacy. This theranostic MNPs led to the formation of novel nanoformulation, capable of performing concomitant detection, regression and imaging in in vitro CD44 over expressing cancer cells.","PeriodicalId":23842,"journal":{"name":"Zastita materijala","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140239734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}