首页 > 最新文献

Biochimie最新文献

英文 中文
Impact of ozone therapy on mouse liver mitochondrial function and antioxidant system 臭氧疗法对小鼠肝脏线粒体功能和抗氧化系统的影响
IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-26 DOI: 10.1016/j.biochi.2024.03.014
Maria M. Oliveira , Sofia Correia , Cecilia Peirone , Marques Magalhães , Paula Oliveira , Francisco Peixoto

Ozone therapy's efficacy might stem from the regulated and mild oxidative stress resulting from ozone's interactions with various biological elements. The present work aimed to characterize the hepatic mitochondrial response to ozone treatment and its relationship with the antioxidant system response. Two groups of mice were used: one control group and another injected intraperitoneally with an O3/O2 mixture (80 ml/kg) for 5 days. Mitochondrial respiration supported by different substrates was significantly inhibited, as well as complexes I and II/III, but not complex IV. The analysis of the electron transport chain complex activity showed significant inhibitions in complexes I and II/III but not in complex IV. These inhibitions can prevent mitochondrial reactive oxygen species (ROS) production. Additionally, there was a decline in glutathione content, unaccompanied by a rise in its oxidized form. The ozone-treated groups showed a significant increase in the activity of superoxide dismutase and glutathione peroxidase, while catalase and glutathione reductase experienced no significant alterations. Adenine nucleotides increased in the ozone group, but only the increase in adenosine diphosphate is significant, so the cell's energy charge is unaffected. This study shows that mitochondria may play a crucial role in ozone treatment. However, it also highlights the need for further studies to understand the molecular mechanism.

臭氧疗法的疗效可能源于臭氧与各种生物元素相互作用所产生的调节性轻微氧化应激。本研究旨在分析肝线粒体对臭氧治疗的反应及其与抗氧化系统反应的关系。研究使用了两组小鼠:一组为对照组,另一组为腹腔注射臭氧/二氧化硫混合物(80 毫升/千克)5 天组。不同底物支持的线粒体呼吸受到明显抑制,复合体 I 和 II/III 也受到抑制,但复合体 IV 不受抑制。对电子传递链复合物活性的分析表明,复合物 I 和 II/III 受到了明显的抑制,但复合物 IV 没有受到抑制。这些抑制作用可以阻止线粒体活性氧(ROS)的产生。此外,谷胱甘肽的含量也有所下降,但其氧化形式并未随之上升。臭氧处理组的超氧化物歧化酶和谷胱甘肽过氧化物酶的活性显著增加,而过氧化氢酶和谷胱甘肽还原酶没有发生显著变化。臭氧组中腺嘌呤核苷酸增加,但只有二磷酸腺苷增加显著,因此细胞的能量电荷未受影响。这项研究表明,线粒体可能在臭氧治疗中起着至关重要的作用。不过,它也强调了进一步研究以了解分子机制的必要性。
{"title":"Impact of ozone therapy on mouse liver mitochondrial function and antioxidant system","authors":"Maria M. Oliveira ,&nbsp;Sofia Correia ,&nbsp;Cecilia Peirone ,&nbsp;Marques Magalhães ,&nbsp;Paula Oliveira ,&nbsp;Francisco Peixoto","doi":"10.1016/j.biochi.2024.03.014","DOIUrl":"10.1016/j.biochi.2024.03.014","url":null,"abstract":"<div><p>Ozone therapy's efficacy might stem from the regulated and mild oxidative stress resulting from ozone's interactions with various biological elements. The present work aimed to characterize the hepatic mitochondrial response to ozone treatment and its relationship with the antioxidant system response. Two groups of mice were used: one control group and another injected intraperitoneally with an O<sub>3</sub>/O<sub>2</sub> mixture (80 ml/kg) for 5 days. Mitochondrial respiration supported by different substrates was significantly inhibited, as well as complexes I and II/III, but not complex IV. The analysis of the electron transport chain complex activity showed significant inhibitions in complexes I and II/III but not in complex IV. These inhibitions can prevent mitochondrial reactive oxygen species (ROS) production. Additionally, there was a decline in glutathione content, unaccompanied by a rise in its oxidized form. The ozone-treated groups showed a significant increase in the activity of superoxide dismutase and glutathione peroxidase, while catalase and glutathione reductase experienced no significant alterations. Adenine nucleotides increased in the ozone group, but only the increase in adenosine diphosphate is significant, so the cell's energy charge is unaffected. This study shows that mitochondria may play a crucial role in ozone treatment. However, it also highlights the need for further studies to understand the molecular mechanism.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"223 ","pages":"Pages 116-124"},"PeriodicalIF":3.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0300908424000725/pdfft?md5=ec8fe957fe9a87be5067c6dab43ed873&pid=1-s2.0-S0300908424000725-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of chemotherapy on adipose tissue remodeling: The molecular players involved in this tissue wasting 化疗对脂肪组织重塑的影响:参与组织损耗的分子角色。
IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-26 DOI: 10.1016/j.biochi.2024.03.016
Samuel Barbosa , Mafalda Barbosa Pedrosa , Rita Ferreira , Daniel Moreira-Gonçalves , Lúcio Lara Santos

The depletion of visceral and subcutaneous adipose tissue (AT) during chemotherapy significantly correlates with diminished overall survival and progression-free survival. Despite its clinical significance, the intricate molecular mechanisms governing this AT loss and its chemotherapy-triggered initiation remain poorly understood. Notably, the evaluation of AT remodeling in most clinical trials has predominantly relied on computerized tomography scans or bioimpedance, with molecular studies often conducted using animal or in vitro models. To address this knowledge gap, a comprehensive narrative review was conducted. The findings underscore that chemotherapy serves as a key factor in inducing AT loss, exacerbating cachexia, a paraneoplastic syndrome that significantly compromises patient quality of life and survival. The mechanism driving AT loss appears intricately linked to alterations in AT metabolic remodeling, marked by heightened lipolysis and fatty acid oxidation, coupled with diminished lipogenesis. However, adipocyte stem cells' lost ability to divide due to chemotherapy also appears to be at the root of the loss of AT. Notably, chemotherapy seems to deactivate the mitochondrial antioxidant system by reducing key regulatory enzymes responsible for neutralizing reactive oxygen species (ROS), thereby impeding lipogenesis. Despite FDG-PET evidence of AT browning, no molecular evidence of thermogenesis was reported. Prospective investigations unraveling the molecular mechanisms modulated in AT by chemotherapy, along with therapeutic strategies aimed at preventing AT loss, promise to refine treatment paradigms and enhance patient outcomes.

化疗过程中内脏和皮下脂肪组织(AT)的消耗与总生存期和无进展生存期的缩短密切相关。尽管这具有重要的临床意义,但人们对控制内脏和皮下脂肪组织减少及其化疗引发的复杂分子机制仍然知之甚少。值得注意的是,大多数临床试验中对 AT 重塑的评估主要依赖于计算机断层扫描或生物阻抗,而分子研究通常使用动物或体外模型。为了填补这一知识空白,我们进行了一项全面的叙述性综述。研究结果强调,化疗是诱发AT丧失的关键因素,会加剧恶病质,而恶病质是一种副肿瘤综合征,会严重影响患者的生活质量和生存期。促使脂肪细胞减少的机制似乎与脂肪细胞代谢重塑的改变密切相关,其特点是脂肪分解和脂肪酸氧化增加,同时脂肪生成减少。然而,化疗导致脂肪细胞干细胞丧失分裂能力,似乎也是导致脂肪细胞干细胞丧失的根本原因。值得注意的是,化疗似乎通过减少负责中和活性氧(ROS)的关键调节酶,使线粒体抗氧化系统失活,从而阻碍脂肪生成。尽管有 FDG-PET 证据表明 AT 会褐变,但没有关于产热的分子证据的报道。前瞻性研究揭示了化疗对AT的分子调控机制,以及旨在预防AT丧失的治疗策略,有望完善治疗范式并改善患者预后。
{"title":"The impact of chemotherapy on adipose tissue remodeling: The molecular players involved in this tissue wasting","authors":"Samuel Barbosa ,&nbsp;Mafalda Barbosa Pedrosa ,&nbsp;Rita Ferreira ,&nbsp;Daniel Moreira-Gonçalves ,&nbsp;Lúcio Lara Santos","doi":"10.1016/j.biochi.2024.03.016","DOIUrl":"10.1016/j.biochi.2024.03.016","url":null,"abstract":"<div><p>The depletion of visceral and subcutaneous adipose tissue (AT) during chemotherapy significantly correlates with diminished overall survival and progression-free survival. Despite its clinical significance, the intricate molecular mechanisms governing this AT loss and its chemotherapy-triggered initiation remain poorly understood. Notably, the evaluation of AT remodeling in most clinical trials has predominantly relied on computerized tomography scans or bioimpedance, with molecular studies often conducted using animal or in vitro models. To address this knowledge gap, a comprehensive narrative review was conducted. The findings underscore that chemotherapy serves as a key factor in inducing AT loss, exacerbating cachexia, a paraneoplastic syndrome that significantly compromises patient quality of life and survival. The mechanism driving AT loss appears intricately linked to alterations in AT metabolic remodeling, marked by heightened lipolysis and fatty acid oxidation, coupled with diminished lipogenesis. However, adipocyte stem cells' lost ability to divide due to chemotherapy also appears to be at the root of the loss of AT. Notably, chemotherapy seems to deactivate the mitochondrial antioxidant system by reducing key regulatory enzymes responsible for neutralizing reactive oxygen species (ROS), thereby impeding lipogenesis. Despite FDG-PET evidence of AT browning, no molecular evidence of thermogenesis was reported. Prospective investigations unraveling the molecular mechanisms modulated in AT by chemotherapy, along with therapeutic strategies aimed at preventing AT loss, promise to refine treatment paradigms and enhance patient outcomes.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"223 ","pages":"Pages 1-12"},"PeriodicalIF":3.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0300908424000749/pdfft?md5=058b3ddc3df668c738a551bf6c562da4&pid=1-s2.0-S0300908424000749-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140308294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of soluble epoxide hydrolase as a therapeutic approach for blood-brain barrier dysfunction 将抑制可溶性环氧化物水解酶作为治疗血脑屏障功能障碍的一种方法。
IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-24 DOI: 10.1016/j.biochi.2024.03.015
Shuo Li, Huijia Song, Yanping Sun, Yongjun Sun, Huimin Zhang, Zibin Gao

The blood-brain barrier (BBB) is a protective semi-permeable structure that regulates the exchange of biomolecules between the peripheral blood and the central nervous system (CNS). Due to its specialized tight junctions and low vesicle trafficking, the BBB strictly limits the paracellular passage and transcellular transport of molecules to maintain the physiological condition of brain tissues. BBB breakdown is associated with many CNS disorders. Soluble epoxide hydrolase (sEH) is a hydrolase enzyme that converts epoxy-fatty acids (EpFAs) to their corresponding diols and is involved in the onset and progression of multiple diseases. EpFAs play a protective role in the central nervous system via preventing neuroinflammation, making sEH a potential therapeutic target for CNS diseases. Recent studies showed that sEH inhibition prevented BBB impairment caused by stroke, hemorrhage, traumatic brain injury, hyperglycemia and sepsis via regulating the expression of tight junctions. In this review, the protective actions of sEH inhibition on BBB and potential mechanisms are summarized, and some important questions that remain to be resolved are also addressed.

血脑屏障(BBB)是一种半渗透性保护结构,负责调节外周血和中枢神经系统(CNS)之间的生物大分子交换。由于血脑屏障具有专门的紧密连接和较低的囊泡贩运,因此它严格限制分子的细胞旁通过和跨细胞转运,以维持脑组织的生理状态。BBB 的破坏与许多中枢神经系统疾病有关。可溶性环氧化物水解酶(sEH)是一种水解酶,能将环氧脂肪酸(EpFAs)转化为相应的二醇,与多种疾病的发生和发展有关。环氧脂肪酸通过防止神经炎症在中枢神经系统中发挥保护作用,使 sEH 成为中枢神经系统疾病的潜在治疗靶点。最近的研究表明,抑制 sEH 可通过调节紧密连接的表达,防止中风、出血、脑外伤、高血糖和败血症引起的 BBB 损伤。本综述总结了抑制 sEH 对 BBB 的保护作用及其潜在机制,并探讨了一些有待解决的重要问题。
{"title":"Inhibition of soluble epoxide hydrolase as a therapeutic approach for blood-brain barrier dysfunction","authors":"Shuo Li,&nbsp;Huijia Song,&nbsp;Yanping Sun,&nbsp;Yongjun Sun,&nbsp;Huimin Zhang,&nbsp;Zibin Gao","doi":"10.1016/j.biochi.2024.03.015","DOIUrl":"10.1016/j.biochi.2024.03.015","url":null,"abstract":"<div><p>The blood-brain barrier (BBB) is a protective semi-permeable structure that regulates the exchange of biomolecules between the peripheral blood and the central nervous system (CNS). Due to its specialized tight junctions and low vesicle trafficking, the BBB strictly limits the paracellular passage and transcellular transport of molecules to maintain the physiological condition of brain tissues. BBB breakdown is associated with many CNS disorders. Soluble epoxide hydrolase (sEH) is a hydrolase enzyme that converts epoxy-fatty acids (EpFAs) to their corresponding diols and is involved in the onset and progression of multiple diseases. EpFAs play a protective role in the central nervous system via preventing neuroinflammation, making sEH a potential therapeutic target for CNS diseases. Recent studies showed that sEH inhibition prevented BBB impairment caused by stroke, hemorrhage, traumatic brain injury, hyperglycemia and sepsis via regulating the expression of tight junctions. In this review, the protective actions of sEH inhibition on BBB and potential mechanisms are summarized, and some important questions that remain to be resolved are also addressed.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"223 ","pages":"Pages 13-22"},"PeriodicalIF":3.9,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin facts: Melatonin lacks immuno-inflammation boosting capacities at the molecular and cellular levels 褪黑素的事实:褪黑素在分子和细胞水平上缺乏促进免疫炎症的能力。
IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-18 DOI: 10.1016/j.biochi.2024.03.010
Jean A. Boutin , Valérie Hamon de Almeida , Nathalie Coussay , Céline Legros , Gilles Ferry , Karine Reybier

Among the properties melatonin is claimed to possess, are the immuno-inflammation inductive capacities that would be responsible of some of the paramount of activities melatonin is reported to have in most of the human pathological conditions. In the present paper, we measured the effect of melatonin on established cellular models of immuno-inflammation, and found none. The discrepancies are discussed, especially because those properties are reported at pharmacological concentration (1 μM and beyond) at which the melatonin receptors are desensitized by internalization, leading to putative non-receptor-dependent mechanism of action.

据称,褪黑素具有的特性之一是免疫炎症诱导能力,据报道,褪黑素在大多数人类病理情况下都具有一些重要的作用。在本文中,我们测量了褪黑激素对已建立的免疫炎症细胞模型的影响,但没有发现任何影响。本文对这些差异进行了讨论,特别是因为这些特性是在药理浓度(1 μM及以上)下报告的,在此浓度下褪黑素受体会因内化而脱敏,从而导致推测的非受体依赖性作用机制。
{"title":"Melatonin facts: Melatonin lacks immuno-inflammation boosting capacities at the molecular and cellular levels","authors":"Jean A. Boutin ,&nbsp;Valérie Hamon de Almeida ,&nbsp;Nathalie Coussay ,&nbsp;Céline Legros ,&nbsp;Gilles Ferry ,&nbsp;Karine Reybier","doi":"10.1016/j.biochi.2024.03.010","DOIUrl":"10.1016/j.biochi.2024.03.010","url":null,"abstract":"<div><p>Among the properties melatonin is claimed to possess, are the immuno-inflammation inductive capacities that would be responsible of some of the paramount of activities melatonin is reported to have in most of the human pathological conditions. In the present paper, we measured the effect of melatonin on established cellular models of immuno-inflammation, and found none. The discrepancies are discussed, especially because those properties are reported at pharmacological concentration (1 μM and beyond) at which the melatonin receptors are desensitized by internalization, leading to putative non-receptor-dependent mechanism of action.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"222 ","pages":"Pages 195-202"},"PeriodicalIF":3.9,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mutual and dynamic role of TSPO and ligands in their binding process: An example with PK-11195 TSPO 和配体在其结合过程中的相互和动态作用:以 PK-11195 为例。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-16 DOI: 10.1016/j.biochi.2024.03.009

Translocator protein (TSPO) is an 18 kDa transmembrane protein, localized primarily on the outer mitochondrial membrane. It has been found to be involved in various physiological processes and pathophysiological conditions. Though studies on its structure have been performed only recently, there is little information on the nature of dynamics and doubts about some structures referenced in the literature, especially the NMR structure of mouse TSPO. In the present work, we thoroughly study the dynamics of mouse TSPO protein by means of atomistic molecular dynamics simulations, in presence as well as in absence of the diagnostic ligand PKA. We considered two starting structures: the NMR structure and a homology model (HM) generated on the basis of X-ray structures from bacterial TSPO. We examine the conformational landscape in both the modes for both starting points, in presence and absence of the ligand, in order to measure its impact for both structures. The analysis highlights high flexibility of the protein globally, but NMR simulations show a surprisingly flexibility even in the presence of the ligand. Interestingly, this is not the case for HM calculations, to the point that the ligand seems not so stable as in the NMR system and an unbinding event process is partially sampled. All those results tend to show that the NMR structure of mTSPO seems not deficient but is just in another portion of the global conformation space of TSPO.

转运蛋白(TSPO)是一种 18 kDa 跨膜蛋白,主要定位于线粒体外膜。研究发现,它参与了各种生理过程和病理生理状况。虽然对其结构的研究最近才开始,但有关其动力学性质的信息很少,文献中引用的一些结构,特别是小鼠 TSPO 的核磁共振结构也存在疑问。在本研究中,我们通过原子分子动力学模拟彻底研究了小鼠 TSPO 蛋白在诊断配体 PKA 存在和不存在时的动力学。我们考虑了两种起始结构:核磁共振结构和根据细菌 TSPO 的 X 射线结构生成的同源模型(HM)。我们研究了配体存在和不存在时两种起点模式下的构象景观,以衡量配体对两种结构的影响。分析结果表明,该蛋白质在总体上具有很高的灵活性,但核磁共振模拟结果表明,即使在有配体存在的情况下,其灵活性也令人惊讶。有趣的是,HM 计算的情况并非如此,配体似乎并不像 NMR 系统中那么稳定,而且部分采样还显示了解除结合的过程。所有这些结果都表明,mTSPO 的 NMR 结构似乎并不存在缺陷,而只是处于 TSPO 全局构象空间的另一部分。
{"title":"The mutual and dynamic role of TSPO and ligands in their binding process: An example with PK-11195","authors":"","doi":"10.1016/j.biochi.2024.03.009","DOIUrl":"10.1016/j.biochi.2024.03.009","url":null,"abstract":"<div><p>Translocator protein (TSPO) is an 18 kDa transmembrane protein, localized primarily on the outer mitochondrial membrane. It has been found to be involved in various physiological processes and pathophysiological conditions. Though studies on its structure have been performed only recently, there is little information on the nature of dynamics and doubts about some structures referenced in the literature, especially the NMR structure of mouse TSPO. In the present work, we thoroughly study the dynamics of mouse TSPO protein by means of atomistic molecular dynamics simulations, in presence as well as in absence of the diagnostic ligand PKA. We considered two starting structures: the NMR structure and a homology model (HM) generated on the basis of X-ray structures from bacterial TSPO. We examine the conformational landscape in both the modes for both starting points, in presence and absence of the ligand, in order to measure its impact for both structures. The analysis highlights high flexibility of the protein globally, but NMR simulations show a surprisingly flexibility even in the presence of the ligand. Interestingly, this is not the case for HM calculations, to the point that the ligand seems not so stable as in the NMR system and an unbinding event process is partially sampled. All those results tend to show that the NMR structure of mTSPO seems not deficient but is just in another portion of the global conformation space of TSPO.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"224 ","pages":"Pages 29-40"},"PeriodicalIF":3.3,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0300908424000671/pdfft?md5=b7784e0a84b2e69202dea04a8e4b84c0&pid=1-s2.0-S0300908424000671-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity 蛋白酶的多方面作用以及研究其催化活性的现代分析方法。
IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-15 DOI: 10.1016/j.biochi.2024.03.006
Tatiana A. Filippova , Rami A. Masamrekh , Yulia Yu. Khudoklinova , Victoria V. Shumyantseva , Alexey V. Kuzikov

We discuss the diverse functions of proteases in the context of their biotechnological and medical significance, as well as analytical approaches used to determine the functional activity of these enzymes. An insight into modern approaches to studying the kinetics and specificity of proteases, based on spectral (absorption, fluorescence), mass spectrometric, immunological, calorimetric, and electrochemical methods of analysis is given. We also examine in detail electrochemical systems for determining the activity and specificity of proteases. Particular attention is given to exploring innovative electrochemical systems based on the detection of the electrochemical oxidation signal of amino acid residues, thereby eliminating the need for extra redox labels in the process of peptide synthesis. In the review, we highlight the main prospects for the further development of electrochemical systems for the study of biotechnologically and medically significant proteases, which will enable the miniaturization of the analytical process for determining the catalytic activity of these enzymes.

我们结合蛋白酶的生物技术和医学意义,讨论了蛋白酶的各种功能,以及用于确定这些酶的功能活性的分析方法。我们将深入介绍基于光谱(吸收、荧光)、质谱、免疫学、量热和电化学分析方法研究蛋白酶动力学和特异性的现代方法。我们还详细研究了确定蛋白酶活性和特异性的电化学系统。我们特别关注探索基于氨基酸残基电化学氧化信号检测的创新电化学系统,从而消除了多肽合成过程中对额外氧化还原标记的需求。在综述中,我们强调了进一步开发用于研究具有生物技术和医学意义的蛋白酶的电化学系统的主要前景,这将使确定这些酶的酶活性的分析过程微型化。
{"title":"The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity","authors":"Tatiana A. Filippova ,&nbsp;Rami A. Masamrekh ,&nbsp;Yulia Yu. Khudoklinova ,&nbsp;Victoria V. Shumyantseva ,&nbsp;Alexey V. Kuzikov","doi":"10.1016/j.biochi.2024.03.006","DOIUrl":"10.1016/j.biochi.2024.03.006","url":null,"abstract":"<div><p>We discuss the diverse functions of proteases in the context of their biotechnological and medical significance, as well as analytical approaches used to determine the functional activity of these enzymes. An insight into modern approaches to studying the kinetics and specificity of proteases, based on spectral (absorption, fluorescence), mass spectrometric, immunological, calorimetric, and electrochemical methods of analysis is given. We also examine in detail electrochemical systems for determining the activity and specificity of proteases. Particular attention is given to exploring innovative electrochemical systems based on the detection of the electrochemical oxidation signal of amino acid residues, thereby eliminating the need for extra redox labels in the process of peptide synthesis. In the review, we highlight the main prospects for the further development of electrochemical systems for the study of biotechnologically and medically significant proteases, which will enable the miniaturization of the analytical process for determining the catalytic activity of these enzymes.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"222 ","pages":"Pages 169-194"},"PeriodicalIF":3.9,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the impact of the p.R107L mutation on the structure and function of human αB-Crystallin: Implications for cataract formation 揭示 p.R107L 突变对人类 αB-Crystallin 结构和功能的影响:对白内障形成的影响。
IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-15 DOI: 10.1016/j.biochi.2024.03.004
Farid Nasiri , Parisa Ebrahimi , Mohammad Bagher Shahsavani , Anis Barati , Issa Zarei , Jun Hong , Masaru Hoshino , Ali Akbar Moosavi-Movahedi , Reza Yousefi

To date, several pathogenic mutations have been identified in the primary structure of human α-Crystallin, frequently involving the substitution of arginine with a different amino acid. These mutations can lead to the incidence of cataracts and myopathy. Recently, an important cataract-associated mutation has been reported in the functional α-Crystallin domain (ACD) of human αB-Crystallin protein, where arginine 107 (R107) is replaced by a leucine. In this study, we investigated the structure, chaperone function, stability, oligomerization, and amyloidogenic properties of the p.R107L human αB-Crystallin using a number of different techniques. Our results suggest that the p.R107L mutation can cause significant changes in the secondary, tertiary, and quaternary structures of αB-Crystallin. This cataractogenic mutation led to the formation of protein oligomers with larger sizes than the wild-type protein and reduced the chemical and thermal stability of the mutant chaperone. Both fluorescence and microscopic assessments indicated that this mutation significantly altered the amyloidogenic properties of human αB-Crystallin. Furthermore, the mutant protein indicated an attenuated in vitro chaperone activity. The molecular dynamics (MD) simulation confirmed the experimental results and indicated that p.R107L mutation could alter the proper conformation of human αB-Crystallin dimers. In summary, our results indicated that the p.R107L mutation could promote the formation of larger oligomers, diminish the stability and chaperone activity of human αB-Crystallin, and these changes, in turn, can play a crucial role in the development of cataract disorder.

迄今为止,已在人类α-结晶素的初级结构中发现了几种致病突变,这些突变经常涉及精氨酸与不同氨基酸的置换。这些突变可导致白内障和肌病的发生。最近,在人类αB-结晶素蛋白的功能α-结晶素结构域(ACD)中发现了一个重要的白内障相关突变,精氨酸107(R107)被亮氨酸取代。在本研究中,我们使用多种不同技术研究了 p.R107L 人类 αB-Crystallin 蛋白的结构、伴侣功能、稳定性、寡聚化和淀粉样蛋白生成特性。我们的研究结果表明,p.R107L 突变可导致 αB-Crystallin 的二级、三级和四级结构发生显著变化。这种白内障突变导致形成比野生型蛋白质更大的蛋白质寡聚体,并降低了突变伴侣蛋白的化学稳定性和热稳定性。荧光和显微评估都表明,这种突变显著改变了人类αB-结晶素的淀粉样蛋白生成特性。此外,突变蛋白的体外伴侣活性也有所减弱。分子动力学(MD)模拟证实了实验结果,并表明p.R107L突变可改变人αB-结晶素二聚体的正常构象。综上所述,我们的研究结果表明,p.R107L突变可促进较大寡聚体的形成,降低人αB-结晶素的稳定性和伴侣活性,而这些变化反过来又会在白内障疾病的发生发展中起到关键作用。
{"title":"Unraveling the impact of the p.R107L mutation on the structure and function of human αB-Crystallin: Implications for cataract formation","authors":"Farid Nasiri ,&nbsp;Parisa Ebrahimi ,&nbsp;Mohammad Bagher Shahsavani ,&nbsp;Anis Barati ,&nbsp;Issa Zarei ,&nbsp;Jun Hong ,&nbsp;Masaru Hoshino ,&nbsp;Ali Akbar Moosavi-Movahedi ,&nbsp;Reza Yousefi","doi":"10.1016/j.biochi.2024.03.004","DOIUrl":"10.1016/j.biochi.2024.03.004","url":null,"abstract":"<div><p>To date, several pathogenic mutations have been identified in the primary structure of human α-Crystallin, frequently involving the substitution of arginine with a different amino acid. These mutations can lead to the incidence of cataracts and myopathy. Recently, an important cataract-associated mutation has been reported in the functional α-Crystallin domain (ACD) of human αB-Crystallin protein, where arginine 107 (R107) is replaced by a leucine. In this study, we investigated the structure, chaperone function, stability, oligomerization, and amyloidogenic properties of the p.R107L human αB-Crystallin using a number of different techniques. Our results suggest that the p.R107L mutation can cause significant changes in the secondary, tertiary, and quaternary structures of αB-Crystallin. This cataractogenic mutation led to the formation of protein oligomers with larger sizes than the wild-type protein and reduced the chemical and thermal stability of the mutant chaperone. Both fluorescence and microscopic assessments indicated that this mutation significantly altered the amyloidogenic properties of human αB-Crystallin. Furthermore, the mutant protein indicated an attenuated <em>in vitro</em> chaperone activity. The molecular dynamics (MD) simulation confirmed the experimental results and indicated that p.R107L mutation could alter the proper conformation of human αB-Crystallin dimers. In summary, our results indicated that the p.R107L mutation could promote the formation of larger oligomers, diminish the stability and chaperone activity of human αB-Crystallin, and these changes, in turn, can play a crucial role in the development of cataract disorder.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"222 ","pages":"Pages 151-168"},"PeriodicalIF":3.9,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The molecular crosstalk of the hippo cascade in breast cancer: A potential central susceptibility 乳腺癌中希波级联的分子串联:潜在的中心易感性。
IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-15 DOI: 10.1016/j.biochi.2024.03.008
Sulfath Thottungal Parambil, Gisha Rose Antony, Ajeesh Babu Littleflower, Lakshmi Subhadradevi

The incidence of breast cancer is perpetually growing globally, and it remains a major public health problem and the leading cause of mortality in women. Though the aberrant activities of the Hippo pathway have been reported to be associated with cancer, constructive knowledge of the pathway connecting the various elements of breast cancer remains to be elucidated. The Hippo transducers, yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ), are reported to be either tumor suppressors, oncogenes, or independent prognostic markers in breast cancer. Thus, there is further need for an explicative evaluation of the dilemma with this molecular contribution of Hippo transducers in modulating breast malignancy. In this review, we summarize the intricate crosstalk of the Hippo pathway in different aspects of breast malignancy, including stem-likeness, cellular signaling, metabolic adaptations, tumor microenvironment, and immune responses. The collective data shows that Hippo transducers play an indispensable role in mammary tumor formation, progression, and dissemination. However, the cellular functions of YAP/TAZ in tumorigenesis might be largely dependent on the mechanical and biophysical cues they interact with, as well as on the cell phenotype. This review provides a glimpse into the plausible biological contributions of the cascade to the inward progression of breast carcinoma and suggests potential therapeutic prospects.

乳腺癌的发病率在全球范围内持续增长,它仍然是一个重大的公共卫生问题,也是妇女死亡的主要原因。尽管有报道称 Hippo 通路的异常活动与癌症有关,但对连接乳腺癌各种因素的通路的建设性认识仍有待阐明。据报道,希波转导因子、是相关蛋白(YAP)和具有 PDZ 结合基调的转录共激活因子(TAZ)是乳腺癌的肿瘤抑制因子、致癌因子或独立预后标志物。因此,有必要进一步对 Hippo 转导因子在调节乳腺恶性肿瘤中的分子贡献这一困境进行解释性评估。在这篇综述中,我们总结了Hippo通路在乳腺恶性肿瘤不同方面错综复杂的相互作用,包括干相似性、细胞信号传导、代谢适应、肿瘤微环境和免疫反应。大量数据表明,Hippo 转导因子在乳腺肿瘤的形成、发展和扩散过程中发挥着不可或缺的作用。然而,YAP/TAZ 在肿瘤发生过程中的细胞功能可能在很大程度上取决于它们相互作用的机械和生物物理线索以及细胞表型。本综述介绍了该级联对乳腺癌向内发展的可能生物学贡献,并提出了潜在的治疗前景。
{"title":"The molecular crosstalk of the hippo cascade in breast cancer: A potential central susceptibility","authors":"Sulfath Thottungal Parambil,&nbsp;Gisha Rose Antony,&nbsp;Ajeesh Babu Littleflower,&nbsp;Lakshmi Subhadradevi","doi":"10.1016/j.biochi.2024.03.008","DOIUrl":"10.1016/j.biochi.2024.03.008","url":null,"abstract":"<div><p>The incidence of breast cancer is perpetually growing globally, and it remains a major public health problem and the leading cause of mortality in women. Though the aberrant activities of the Hippo pathway have been reported to be associated with cancer, constructive knowledge of the pathway connecting the various elements of breast cancer remains to be elucidated. The Hippo transducers, yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ), are reported to be either tumor suppressors, oncogenes, or independent prognostic markers in breast cancer. Thus, there is further need for an explicative evaluation of the dilemma with this molecular contribution of Hippo transducers in modulating breast malignancy. In this review, we summarize the intricate crosstalk of the Hippo pathway in different aspects of breast malignancy, including stem-likeness, cellular signaling, metabolic adaptations, tumor microenvironment, and immune responses. The collective data shows that Hippo transducers play an indispensable role in mammary tumor formation, progression, and dissemination. However, the cellular functions of YAP/TAZ in tumorigenesis might be largely dependent on the mechanical and biophysical cues they interact with, as well as on the cell phenotype. This review provides a glimpse into the plausible biological contributions of the cascade to the inward progression of breast carcinoma and suggests potential therapeutic prospects.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"222 ","pages":"Pages 132-150"},"PeriodicalIF":3.9,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inside front cover-EDB 封面内页-EDB
IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-11 DOI: 10.1016/S0300-9084(24)00056-7
{"title":"Inside front cover-EDB","authors":"","doi":"10.1016/S0300-9084(24)00056-7","DOIUrl":"https://doi.org/10.1016/S0300-9084(24)00056-7","url":null,"abstract":"","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"219 ","pages":"Page IFC"},"PeriodicalIF":3.9,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0300908424000567/pdfft?md5=9c8f1f39e68c91653a1a517c0dd0bc0e&pid=1-s2.0-S0300908424000567-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring ligand interactions with human phosphomannomutases using recombinant bacterial thermal shift assay and biochemical validation 利用重组细菌热转移分析和生化验证探索配体与人类磷酸甘露聚糖酶的相互作用
IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-06 DOI: 10.1016/j.biochi.2024.02.011
Maria Monticelli , Bruno Hay Mele , Demi Marie Wright , Simone Guerriero , Giuseppina Andreotti , Maria Vittoria Cubellis

PMM2-CDG, a disease caused by mutations in phosphomannomutase-2, is the most common congenital disorder of glycosylation. Yet, it still lacks a cure. Targeting phosphomannomutase-2 with pharmacological chaperones or inhibiting the phosphatase activity of phosphomannomutase-1 to enhance intracellular glucose-1,6-bisphosphate have been proposed as therapeutical approaches.

We used Recombinant Bacterial Thermal Shift Assay to assess the binding of a substrate analog to phosphomannomutase-2 and the specific binding to phosphomannomutase-1 of an FDA-approved drug - clodronate. We also deepened the clodronate binding by enzyme activity assays and in silico docking. Our results confirmed the selective binding of clodronate to phosphomannomutase-1 and shed light on such binding.

PMM2-CDG 是一种由磷酸甘露聚糖酶-2 突变引起的疾病,是最常见的先天性糖基化紊乱。然而,这种疾病仍然无法治愈。有人提出用药理合剂靶向磷酸甘露聚糖酶-2,或抑制磷酸甘露聚糖酶-1的磷酸酶活性,以提高细胞内葡萄糖-1,6-二磷酸的含量,作为治疗方法。
{"title":"Exploring ligand interactions with human phosphomannomutases using recombinant bacterial thermal shift assay and biochemical validation","authors":"Maria Monticelli ,&nbsp;Bruno Hay Mele ,&nbsp;Demi Marie Wright ,&nbsp;Simone Guerriero ,&nbsp;Giuseppina Andreotti ,&nbsp;Maria Vittoria Cubellis","doi":"10.1016/j.biochi.2024.02.011","DOIUrl":"10.1016/j.biochi.2024.02.011","url":null,"abstract":"<div><p>PMM2-CDG, a disease caused by mutations in phosphomannomutase-2, is the most common congenital disorder of glycosylation. Yet, it still lacks a cure. Targeting phosphomannomutase-2 with pharmacological chaperones or inhibiting the phosphatase activity of phosphomannomutase-1 to enhance intracellular glucose-1,6-bisphosphate have been proposed as therapeutical approaches.</p><p>We used Recombinant Bacterial Thermal Shift Assay to assess the binding of a substrate analog to phosphomannomutase-2 and the specific binding to phosphomannomutase-1 of an FDA-approved drug - clodronate. We also deepened the clodronate binding by enzyme activity assays and <em>in silico</em> docking. Our results confirmed the selective binding of clodronate to phosphomannomutase-1 and shed light on such binding.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"222 ","pages":"Pages 123-131"},"PeriodicalIF":3.9,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030090842400049X/pdfft?md5=3d4e1ffa2e9f2fa432974a1e9e45362e&pid=1-s2.0-S030090842400049X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140056835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biochimie
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1