Fingerprinting-based indoor localization involves building a signal strength radio map. This map is usually built manually by a person holding the mapping device, which results in orientation-dependent fingerprints due to signal attenuation by the human body. To offset this distortion, fingerprints are typically collected for multiple orientations, but this requires a high effort for large localization areas. In this paper, we propose an approach to reduce the mapping effort by modeling the WLAN signal attenuation caused by the human body. By applying the model to the captured signal to compensate for the attenuation, it is possible to generate an orientation-independent fingerprint. We demonstrate that our model is location and person independent and its output is comparable with manually created radio maps. By using the model, the WLAN scanning effort can be reduced by 75% to 87.5% (depending on the number of orientations).
{"title":"A model for WLAN signal attenuation of the human body","authors":"Ngewi Fet, M. Handte, P. Marrón","doi":"10.1145/2493432.2493459","DOIUrl":"https://doi.org/10.1145/2493432.2493459","url":null,"abstract":"Fingerprinting-based indoor localization involves building a signal strength radio map. This map is usually built manually by a person holding the mapping device, which results in orientation-dependent fingerprints due to signal attenuation by the human body. To offset this distortion, fingerprints are typically collected for multiple orientations, but this requires a high effort for large localization areas. In this paper, we propose an approach to reduce the mapping effort by modeling the WLAN signal attenuation caused by the human body. By applying the model to the captured signal to compensate for the attenuation, it is possible to generate an orientation-independent fingerprint. We demonstrate that our model is location and person independent and its output is comparable with manually created radio maps. By using the model, the WLAN scanning effort can be reduced by 75% to 87.5% (depending on the number of orientations).","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123153269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Public displays","authors":"N. Davies","doi":"10.1145/3254806","DOIUrl":"https://doi.org/10.1145/3254806","url":null,"abstract":"","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124448875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Positioning I","authors":"A. LaMarca","doi":"10.1145/3254789","DOIUrl":"https://doi.org/10.1145/3254789","url":null,"abstract":"","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123724084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yohan Chon, N. Lane, Yunjong Kim, Feng Zhao, H. Cha
Crowd-enabled place-centric systems gather and reason over large mobile sensor datasets and target everyday user locations (such as stores, workplaces, and restaurants). Such systems are transforming various consumer services (for example, local search) and data-driven organizations (city planning). As the demand for these systems increases, our understanding of how to design and deploy successful crowdsensing systems must improve. In this paper, we present a systematic study of the coverage and scaling properties of place-centric crowdsensing. During a two-month deployment, we collected smartphone sensor data from 85 participants using a representative crowdsensing system that captures 48,000 different place visits. Our analysis of this dataset examines issues of core interest to place-centric crowdsensing, including place-temporal coverage, the relationship between the user population and coverage, privacy concerns, and the characterization of the collected data. Collectively, our findings provide valuable insights to guide the building of future place-centric crowdsensing systems and applications.
{"title":"Understanding the coverage and scalability of place-centric crowdsensing","authors":"Yohan Chon, N. Lane, Yunjong Kim, Feng Zhao, H. Cha","doi":"10.1145/2493432.2493498","DOIUrl":"https://doi.org/10.1145/2493432.2493498","url":null,"abstract":"Crowd-enabled place-centric systems gather and reason over large mobile sensor datasets and target everyday user locations (such as stores, workplaces, and restaurants). Such systems are transforming various consumer services (for example, local search) and data-driven organizations (city planning). As the demand for these systems increases, our understanding of how to design and deploy successful crowdsensing systems must improve. In this paper, we present a systematic study of the coverage and scaling properties of place-centric crowdsensing. During a two-month deployment, we collected smartphone sensor data from 85 participants using a representative crowdsensing system that captures 48,000 different place visits. Our analysis of this dataset examines issues of core interest to place-centric crowdsensing, including place-temporal coverage, the relationship between the user population and coverage, privacy concerns, and the characterization of the collected data. Collectively, our findings provide valuable insights to guide the building of future place-centric crowdsensing systems and applications.","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121848142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Activity recognition","authors":"A. Ferscha","doi":"10.1145/3254790","DOIUrl":"https://doi.org/10.1145/3254790","url":null,"abstract":"","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124287938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Several algorithms to predict the next place visited by a user have been proposed in the literature. The accuracy of these algorithms -- measured as the ratio of the number of correct predictions and the number of all computed predictions -- is typically very high. In this paper, we show that this good performance is due to the high predictability intrinsic in human mobility. We also show that most algorithms fail to correctly predict transitions, i.e. situations in which users move between different places. To this end, we analyze the performance of 18 prediction algorithms focusing on their ability to predict transitions. We run our analysis on a data set of mobility traces of 37 users collected over a period of 1.5 years. Our results show that even algorithms achieving an overall high accuracy are unable to reliably predict the next location of the user if this is different from the current one. Building upon our analysis we then present a novel next-place prediction algorithm that can both achieve high overall accuracy and reliably predict transitions. Our approach combines all the 18 algorithms considered in our analysis and achieves its good performance at the cost of a higher computational and memory overhead.
{"title":"The influence of temporal and spatial features on the performance of next-place prediction algorithms","authors":"Paul Baumann, Wilhelm Kleiminger, S. Santini","doi":"10.1145/2493432.2493467","DOIUrl":"https://doi.org/10.1145/2493432.2493467","url":null,"abstract":"Several algorithms to predict the next place visited by a user have been proposed in the literature. The accuracy of these algorithms -- measured as the ratio of the number of correct predictions and the number of all computed predictions -- is typically very high. In this paper, we show that this good performance is due to the high predictability intrinsic in human mobility. We also show that most algorithms fail to correctly predict transitions, i.e. situations in which users move between different places. To this end, we analyze the performance of 18 prediction algorithms focusing on their ability to predict transitions. We run our analysis on a data set of mobility traces of 37 users collected over a period of 1.5 years. Our results show that even algorithms achieving an overall high accuracy are unable to reliably predict the next location of the user if this is different from the current one. Building upon our analysis we then present a novel next-place prediction algorithm that can both achieve high overall accuracy and reliably predict transitions. Our approach combines all the 18 algorithms considered in our analysis and achieves its good performance at the cost of a higher computational and memory overhead.","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125553927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Smartphone adoption has increased significantly and, with the increase in smartphone capabilities, this means that users can access the Internet, communicate, and entertain themselves anywhere and anytime. However, there is growing evidence of problematic use of smartphones that impacts both social and heath aspects of users' lives. Currently, assessment of overuse or problematic use depends on one-time, self-reported behavioral information about phone use. Due to the known issues with self-reports in such types of assessments, we explore an automated, objective and repeatable approach for assessing problematic usage. We collect a wide range of phone usage data from smartphones, identify a number of usage features that are relevant to this assessment, and build detection models based on Adaboost with machine learning algorithms automatically detecting problematic use. We found that the number of apps used per day, the ratio of SMSs to calls, the number of event-initiated sessions, the number of apps used per event initiated session, and the length of non-event-initiated sessions are useful for detecting problematic usage. With these, a detection model can identify users with problematic usage with 89.6% accuracy (F-score of .707).
{"title":"Automatically detecting problematic use of smartphones","authors":"Choonsung Shin, A. Dey","doi":"10.1145/2493432.2493443","DOIUrl":"https://doi.org/10.1145/2493432.2493443","url":null,"abstract":"Smartphone adoption has increased significantly and, with the increase in smartphone capabilities, this means that users can access the Internet, communicate, and entertain themselves anywhere and anytime. However, there is growing evidence of problematic use of smartphones that impacts both social and heath aspects of users' lives. Currently, assessment of overuse or problematic use depends on one-time, self-reported behavioral information about phone use. Due to the known issues with self-reports in such types of assessments, we explore an automated, objective and repeatable approach for assessing problematic usage. We collect a wide range of phone usage data from smartphones, identify a number of usage features that are relevant to this assessment, and build detection models based on Adaboost with machine learning algorithms automatically detecting problematic use. We found that the number of apps used per day, the ratio of SMSs to calls, the number of event-initiated sessions, the number of apps used per event initiated session, and the length of non-event-initiated sessions are useful for detecting problematic usage. With these, a detection model can identify users with problematic usage with 89.6% accuracy (F-score of .707).","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"306 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129343982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Home heating","authors":"J. Crowley","doi":"10.1145/3254780","DOIUrl":"https://doi.org/10.1145/3254780","url":null,"abstract":"","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128688798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
People-Nearby applications are becoming a popular way for individuals to search for new social relations in their physical vicinity. This paper presents the results of a qualitative study, based on 25 interviews, examining how privacy and locality are managed in these applications. We describe how location is used as a grounding mechanism, providing a platform for honest and truthful signals in the challenging process of forming new social relations. We discuss our findings by suggesting theoretical frameworks that can be used to analyze the social space induced by the applications, as well as to inform the design of new technologies that foster the creation of new social ties.
{"title":"Locality and privacy in people-nearby applications","authors":"Eran Toch, Inbal Levi","doi":"10.1145/2493432.2493485","DOIUrl":"https://doi.org/10.1145/2493432.2493485","url":null,"abstract":"People-Nearby applications are becoming a popular way for individuals to search for new social relations in their physical vicinity. This paper presents the results of a qualitative study, based on 25 interviews, examining how privacy and locality are managed in these applications. We describe how location is used as a grounding mechanism, providing a platform for honest and truthful signals in the challenging process of forming new social relations. We discuss our findings by suggesting theoretical frameworks that can be used to analyze the social space induced by the applications, as well as to inform the design of new technologies that foster the creation of new social ties.","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121282032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Social computing I","authors":"Irina Shklovski","doi":"10.1145/3254801","DOIUrl":"https://doi.org/10.1145/3254801","url":null,"abstract":"","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127404907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}