Pub Date : 2016-05-11DOI: 10.2174/1874155X01610010096
Yanjun Xiao, He Zhang, R. Liu, Yuxiang Liu, Yongcong Li
{"title":"Retraction Notice: Control System Design for Feeding Machine of Sound Absorption BoardProduction Line","authors":"Yanjun Xiao, He Zhang, R. Liu, Yuxiang Liu, Yongcong Li","doi":"10.2174/1874155X01610010096","DOIUrl":"https://doi.org/10.2174/1874155X01610010096","url":null,"abstract":"","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131849593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-05-11DOI: 10.2174/1874155X01610010093
Jun Fu, Yuanyou Tang, Wei Chen, Yi Ma, Z. Zhu
{"title":"Retraction Notice: Research on Engine Exhaust Energy Recovery by a Heat Pipe Exchangerwith a Semiconductor Thermoelectric Generator","authors":"Jun Fu, Yuanyou Tang, Wei Chen, Yi Ma, Z. Zhu","doi":"10.2174/1874155X01610010093","DOIUrl":"https://doi.org/10.2174/1874155X01610010093","url":null,"abstract":"","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130874742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-29DOI: 10.2174/1874155X01610010079
He Qiang, L. Lili, Ren Fengzhang, A. Alex
Based on the theory of hydrostatic bearings, this paper presents a study of replacing the rolling bearings in a cold drawing spindle with the liquid hydrostatic bearings. An unloading mechanism is designed, containing two hydrostatic radial bearings and a thrust bearing, according to the mechanical characteristics of the spindle. In this study, a mathematical model of the hydrostatic bearing oil pad is developed. The effects of the rotating speed on pressure and flow fields of the oil pad are simulated using the finite element analysis and verified experimentally. The pressure in all recesses decreases with the rotation speed. Oil velocity of the radial hydrostatic bearing recess increases with the rotation speed, while the fluid flow velocity has almost no correlation with the rotation speed of the thrust bearing. The numerical and experimental results of the pressure in the recesses are consistent, confirming the validity and feasibility of this design.
{"title":"Numerical Simulation and Experimental Study of the Hydrostatic Spindle with Orifice Restrictors","authors":"He Qiang, L. Lili, Ren Fengzhang, A. Alex","doi":"10.2174/1874155X01610010079","DOIUrl":"https://doi.org/10.2174/1874155X01610010079","url":null,"abstract":"Based on the theory of hydrostatic bearings, this paper presents a study of replacing the rolling bearings in a cold drawing spindle with the liquid hydrostatic bearings. An unloading mechanism is designed, containing two hydrostatic radial bearings and a thrust bearing, according to the mechanical characteristics of the spindle. In this study, a mathematical model of the hydrostatic bearing oil pad is developed. The effects of the rotating speed on pressure and flow fields of the oil pad are simulated using the finite element analysis and verified experimentally. The pressure in all recesses decreases with the rotation speed. Oil velocity of the radial hydrostatic bearing recess increases with the rotation speed, while the fluid flow velocity has almost no correlation with the rotation speed of the thrust bearing. The numerical and experimental results of the pressure in the recesses are consistent, confirming the validity and feasibility of this design.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134599597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-29DOI: 10.2174/1874155X01610010066
Muhammad Ilyas Khan, S. Ma
Measurement and verification are one of the prime stages in the entire course of geometrical products in new generation of geometrical product specifications (GPS) standard. Like other kinds of form tolerances, flatness error is one of the important characteristics affecting the functionality and quality of machined components; sufficient efforts have long been made to determine the flatness error close to the true value based on the minimum zone method (MZM) and still needs continual improvement. This paper presents real coded genetic algorithms referred as Efficient Genetic Algorithms (EGA) for flatness error based on minimum zone method having good precision, repeatability and fast convergence rate. This paper also presents evaluation procedure for measurement uncertainty in flatness error based on new generation geometrical product specifications (GPS). Uncertainty in flatness error has been determined and evaluation procedure is provided to prove the conformance or non-conformance by taking into account the uncertainty in measurement. The contributing factors in measurement uncertainties have been identified and then quantified. The flatness error and evaluation theory in this paper are in the framework of new generation GPS standard. Two practical examples have been presented to show the effectiveness of EGA and shed some light on the uncertainty evaluation theory based on new generation GPS standard.
{"title":"New Generation Geometrical Product Specification (GPS) Backed Flatness Error Estimation and Uncertainty Analysis","authors":"Muhammad Ilyas Khan, S. Ma","doi":"10.2174/1874155X01610010066","DOIUrl":"https://doi.org/10.2174/1874155X01610010066","url":null,"abstract":"Measurement and verification are one of the prime stages in the entire course of geometrical products in new generation of geometrical product specifications (GPS) standard. Like other kinds of form tolerances, flatness error is one of the important characteristics affecting the functionality and quality of machined components; sufficient efforts have long been made to determine the flatness error close to the true value based on the minimum zone method (MZM) and still needs continual improvement. This paper presents real coded genetic algorithms referred as Efficient Genetic Algorithms (EGA) for flatness error based on minimum zone method having good precision, repeatability and fast convergence rate. This paper also presents evaluation procedure for measurement uncertainty in flatness error based on new generation geometrical product specifications (GPS). Uncertainty in flatness error has been determined and evaluation procedure is provided to prove the conformance or non-conformance by taking into account the uncertainty in measurement. The contributing factors in measurement uncertainties have been identified and then quantified. The flatness error and evaluation theory in this paper are in the framework of new generation GPS standard. Two practical examples have been presented to show the effectiveness of EGA and shed some light on the uncertainty evaluation theory based on new generation GPS standard.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125724126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-21DOI: 10.2174/1874155X01610010051
R. Barsotti, S. Bennati, F. Quattrone
From the mechanical standpoint, wiper blades may be thought of as belonging to a category of systems in which some components are forced to slide with friction over each other or over some rough surface. Such systems, which are in widespread use in all areas of modern engineering, exhibit complex dynamic behavior, even when only a small number of degrees of freedom are involved. In this paper we reconsider a well-known, simple mechanical model in which a rigid block connected to a linear spring is free to slide over a rough surface. The surface moves according to a prescribed sinusoidal law. The model, despite its apparent simplicity, proves to be quite useful for studying the main dynamic features of such systems. In particular, herein the equations of motion are solved analytically and the exact sequence of sticking and sliding phases found. The influence on the solution of three dimensionless parameters chosen to describe the system is investigated, and some early indications provided on the set of possible long-term system responses. Lastly, a first evaluation of the different limit cycles for the block’s motion is illustrated.
{"title":"A Simple Mechanical Model for a Wiper Blade Sliding and Sticking Over a Windscreen","authors":"R. Barsotti, S. Bennati, F. Quattrone","doi":"10.2174/1874155X01610010051","DOIUrl":"https://doi.org/10.2174/1874155X01610010051","url":null,"abstract":"From the mechanical standpoint, wiper blades may be thought of as belonging to a category of systems in which some components are forced to slide with friction over each other or over some rough surface. Such systems, which are in widespread use in all areas of modern engineering, exhibit complex dynamic behavior, even when only a small number of degrees of freedom are involved. In this paper we reconsider a well-known, simple mechanical model in which a rigid block connected to a linear spring is free to slide over a rough surface. The surface moves according to a prescribed sinusoidal law. The model, despite its apparent simplicity, proves to be quite useful for studying the main dynamic features of such systems. In particular, herein the equations of motion are solved analytically and the exact sequence of sticking and sliding phases found. The influence on the solution of three dimensionless parameters chosen to describe the system is investigated, and some early indications provided on the set of possible long-term system responses. Lastly, a first evaluation of the different limit cycles for the block’s motion is illustrated.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132126952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-03-31DOI: 10.2174/1874155X01610010038
Joseph Carpenter, P. Mago, R. Luck, Heejin Cho
This paper evaluates the influence of several parameters on the potential of using increased thermal capacitance (ITC) as a passive energy management technique to decrease a building’s cooling load. ITC is implemented by circulating water from a storage tank through a piping system located in the building’s ceiling. The cooling load of the ITC enhanced building is compared to the cooling load of a reference building without ITC. TRNSYS, a transient system simulation software, is used to simulate both the ITC enhanced building and the reference building. The following parameters that affect the performance of the ITC are analyzed: tank size, specific heat, mass flow rate, initial temperature of the working fluid, pipe material and wall thickness, and location of the piping system in the ceiling. These parameters are also modified to achieve the best results for each of the climate conditions investigated. The simulations demonstrate that ITC has the potential to reduce the overall cooling load in a range between 4% to 8%, depending on the location and the month of the year.
{"title":"Parametric Analysis of a Passive Energy Management Through Increased Thermal Capacitance","authors":"Joseph Carpenter, P. Mago, R. Luck, Heejin Cho","doi":"10.2174/1874155X01610010038","DOIUrl":"https://doi.org/10.2174/1874155X01610010038","url":null,"abstract":"This paper evaluates the influence of several parameters on the potential of using increased thermal capacitance (ITC) as a passive energy management technique to decrease a building’s cooling load. ITC is implemented by circulating water from a storage tank through a piping system located in the building’s ceiling. The cooling load of the ITC enhanced building is compared to the cooling load of a reference building without ITC. TRNSYS, a transient system simulation software, is used to simulate both the ITC enhanced building and the reference building. The following parameters that affect the performance of the ITC are analyzed: tank size, specific heat, mass flow rate, initial temperature of the working fluid, pipe material and wall thickness, and location of the piping system in the ceiling. These parameters are also modified to achieve the best results for each of the climate conditions investigated. The simulations demonstrate that ITC has the potential to reduce the overall cooling load in a range between 4% to 8%, depending on the location and the month of the year.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121807274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-03-28DOI: 10.2174/1874155X01610010023
A. Borboni, Diego De Santis, L. Solazzi, J. Villafañe, R. Faglia
The aim of this paper is to calculate the horizontal and vertical displacements of a cantilever beam in large deflections. The proposed structure is composed with Ludwick material exhibiting a different behavior to tensile and compressive actions. The geometry of the cross-section is constant and rectangular, while the external action is a vertical constant load applied at the free end. The problem is nonlinear due to the constitutive model and to the large deflections. The associated computational problem is related to the solution of a set of equation in conjunction with an ODE. An approximated approach is proposed here based on the application Newton-Raphson approach on a custom mesh and in cascade with an Eulerian method for the differential equation.
{"title":"Ludwick Cantilever Beam in Large Deflection Under Vertical Constant Load","authors":"A. Borboni, Diego De Santis, L. Solazzi, J. Villafañe, R. Faglia","doi":"10.2174/1874155X01610010023","DOIUrl":"https://doi.org/10.2174/1874155X01610010023","url":null,"abstract":"The aim of this paper is to calculate the horizontal and vertical displacements of a cantilever beam in large deflections. The proposed structure is composed with Ludwick material exhibiting a different behavior to tensile and compressive actions. The geometry of the cross-section is constant and rectangular, while the external action is a vertical constant load applied at the free end. The problem is nonlinear due to the constitutive model and to the large deflections. The associated computational problem is related to the solution of a set of equation in conjunction with an ODE. An approximated approach is proposed here based on the application Newton-Raphson approach on a custom mesh and in cascade with an Eulerian method for the differential equation.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131096683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-03-15DOI: 10.2174/1874155X01610010013
Qingyang Xu
Adaptive Resonance Theory (ART) model is a special neural network based on unsupervised learning which simulates the cognitive process of human. However, ART1 can be only used for binary input, and ART2 can be used for binary and analog vectors which have complex structures and complicated calculations. In order to improve the real-time performance of the network, a minimal structural ART is proposed which combines the merits of the two models by subsuming the bottom-up and top-down weight. The vector similarity test is used instead of vigilance test. Therefore, this algorithm has a simple structure like ART1 and good performance as ART2 which can be used for both binary and analog vector classification, and it has a high efficiency. Finally, a gas turbine fault diagnosis experiment exhibits the validity of the new network.
{"title":"Minimal Structural ART Neural Network and Fault Diagnosis Application of Gas Turbine","authors":"Qingyang Xu","doi":"10.2174/1874155X01610010013","DOIUrl":"https://doi.org/10.2174/1874155X01610010013","url":null,"abstract":"Adaptive Resonance Theory (ART) model is a special neural network based on unsupervised learning which simulates the cognitive process of human. However, ART1 can be only used for binary input, and ART2 can be used for binary and analog vectors which have complex structures and complicated calculations. In order to improve the real-time performance of the network, a minimal structural ART is proposed which combines the merits of the two models by subsuming the bottom-up and top-down weight. The vector similarity test is used instead of vigilance test. Therefore, this algorithm has a simple structure like ART1 and good performance as ART2 which can be used for both binary and analog vector classification, and it has a high efficiency. Finally, a gas turbine fault diagnosis experiment exhibits the validity of the new network.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127942689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-03-15DOI: 10.2174/1874155X01610010001
Qun Sun, Ying Zhao, A. Guo, Dongjie Zhao, Chong Wang
A grafting robot based on cleft grafting method has been developed to improve efficiency of grafting solanaceae vegetables. This robot consists of four parts including a clamping manipulator and carrying, cutting, feeding mechanisms. These not only enable the robot to conveniently perform clamping, carrying, positioning, cutting, joining, and binding rootstock and scion, but also improve the grafting efficiency. The average success rates for cutting rootstock, cutting scion and conjugation are 98.7%, 99.0% and 59.6% respectively. The developed robot was able to perform steady operations, suggesting potential value for practical applications.
{"title":"Design and Test of a Solanaceae Grafting Robot","authors":"Qun Sun, Ying Zhao, A. Guo, Dongjie Zhao, Chong Wang","doi":"10.2174/1874155X01610010001","DOIUrl":"https://doi.org/10.2174/1874155X01610010001","url":null,"abstract":"A grafting robot based on cleft grafting method has been developed to improve efficiency of grafting solanaceae vegetables. This robot consists of four parts including a clamping manipulator and carrying, cutting, feeding mechanisms. These not only enable the robot to conveniently perform clamping, carrying, positioning, cutting, joining, and binding rootstock and scion, but also improve the grafting efficiency. The average success rates for cutting rootstock, cutting scion and conjugation are 98.7%, 99.0% and 59.6% respectively. The developed robot was able to perform steady operations, suggesting potential value for practical applications.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123496646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-12-31DOI: 10.2174/1874155X01509011109
Zhang Li-guo
*Address correspondence to this author at the Department of Science and Technology, Guilin University of Aerospace Technology, Jinji Road No. 2, Guilin, Postcard: 541004, China; Tel: 0086-773-2295513; E-mail: zhangliguotony@163.com RETRACTION The Publisher and Editor have retracted this article [1] in accordance with good ethical practices. After a thorough investigations we believe that the peer review process was compromised. The article was published on-line on -201 .
{"title":"Retraction Note: Measurement and Analysis of Logistics Energy Efficiency in China from Perspective of Total Factor Productivity","authors":"Zhang Li-guo","doi":"10.2174/1874155X01509011109","DOIUrl":"https://doi.org/10.2174/1874155X01509011109","url":null,"abstract":"*Address correspondence to this author at the Department of Science and Technology, Guilin University of Aerospace Technology, Jinji Road No. 2, Guilin, Postcard: 541004, China; Tel: 0086-773-2295513; E-mail: zhangliguotony@163.com RETRACTION The Publisher and Editor have retracted this article [1] in accordance with good ethical practices. After a thorough investigations we believe that the peer review process was compromised. The article was published on-line on -201 .","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115294001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}