S. Shasthri, V. Kausalyah, Q. Shah, K. Abdullah, M. Idres, S. V. Wong
The effects of bullet vehicle crash impact angle, child restraint system design, and restraint harness slack at side impact speed of 32.2 km/h (20 mph) on moments sustained at the neck by a three-year-old child are investigated. Mathematical models are built using the response surface method based on simulation results whereby good fitness is achieved. The singular and cross interactive effect of each predictor on the neck moment are analyzed. The number of significant parameters affecting the neck moment is shown to be the largest for wide impact angles and the impact angle parameter is largely revealed to be the most sensitive. An ideal safe range for low neck moment has been established to be within angles 45° and 65°. It is further shown that the nature of all parameters effect on the neck moment is highly dependent on the impact angle range.
研究了在32.2 km/h (20 mph)侧碰撞速度下,子弹车碰撞角度、儿童约束系统设计和约束束松弛对一名3岁儿童颈部承受力矩的影响。根据仿真结果,采用响应面法建立数学模型,获得了较好的适应度。分析了各预测器对颈矩的奇异效应和交叉交互效应。宽冲击角下影响颈矩的重要参数数量最多,且冲击角参数在很大程度上是最敏感的。低颈矩的理想安全范围是在45°和65°之间。进一步表明,各参数对颈矩影响的性质与冲击角范围高度相关。
{"title":"Neck moment characterization of restrained child occupant at realistic nontest standard higher impact speed of 32.2 km/h","authors":"S. Shasthri, V. Kausalyah, Q. Shah, K. Abdullah, M. Idres, S. V. Wong","doi":"10.1155/2014/528125","DOIUrl":"https://doi.org/10.1155/2014/528125","url":null,"abstract":"The effects of bullet vehicle crash impact angle, child restraint system design, and restraint harness slack at side impact speed of 32.2 km/h (20 mph) on moments sustained at the neck by a three-year-old child are investigated. Mathematical models are built using the response surface method based on simulation results whereby good fitness is achieved. The singular and cross interactive effect of each predictor on the neck moment are analyzed. The number of significant parameters affecting the neck moment is shown to be the largest for wide impact angles and the impact angle parameter is largely revealed to be the most sensitive. An ideal safe range for low neck moment has been established to be within angles 45° and 65°. It is further shown that the nature of all parameters effect on the neck moment is highly dependent on the impact angle range.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124465484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although various carrier aggregation deployment scenarios (CADSs) have been introduced in the LTE-Advanced system, issues related to insufficient eNB coverage that leads to low throughput and high drop call have yet to be solved. This paper proposes a new deployment scenario called coordinated contiguous-CADS (CC-CADS), which utilizes two-component carriers (CCs) that operate on two frequencies located in a contiguous band. Each CC antenna is directed to a cell boundary of the other CC. The handover performance of users with various mobility speeds under CC-CADS has been investigated and compared with various deployment scenarios proposed by 3GPP. Simulation results show that the received signal reference power (RSRP) enhancement and performed handover, ping-pong, drop call, and outage probabilities reductions in CC-CADS outperformed the 3GPP’s CADSs, thus leading to reduced interruption time, improved spectral efficiency, and seamless handover.
{"title":"Handover Performance over a Coordinated Contiguous Carrier Aggregation Deployment Scenario in the LTE-Advanced System","authors":"Ibraheem Shayea, M. Ismail, R. Nordin, H. Mohamad","doi":"10.1155/2014/971297","DOIUrl":"https://doi.org/10.1155/2014/971297","url":null,"abstract":"Although various carrier aggregation deployment scenarios (CADSs) have been introduced in the LTE-Advanced system, issues related to insufficient eNB coverage that leads to low throughput and high drop call have yet to be solved. This paper proposes a new deployment scenario called coordinated contiguous-CADS (CC-CADS), which utilizes two-component carriers (CCs) that operate on two frequencies located in a contiguous band. Each CC antenna is directed to a cell boundary of the other CC. The handover performance of users with various mobility speeds under CC-CADS has been investigated and compared with various deployment scenarios proposed by 3GPP. Simulation results show that the received signal reference power (RSRP) enhancement and performed handover, ping-pong, drop call, and outage probabilities reductions in CC-CADS outperformed the 3GPP’s CADSs, thus leading to reduced interruption time, improved spectral efficiency, and seamless handover.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115157113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The increasing number of traffic accidents is principally caused by fatigue. In fact, the fatigue presents a real danger on road since it reduces driver capacity to react and analyze information. In this paper we propose an efficient and nonintrusive system for monitoring driver fatigue using yawning extraction. The proposed scheme uses face extraction based support vector machine (SVM) and a new approach for mouth detection, based on circular Hough transform (CHT), applied on mouth extracted regions. Our system does not require any training data at any step or special cameras. Some experimental results showing system performance are reported. These experiments are applied over real video sequences acquired by low cost web camera and recorded in various lighting conditions.
{"title":"Driver's fatigue detection based on yawning extraction","authors":"Nawal Alioua, A. Amine, M. Rziza","doi":"10.1155/2014/678786","DOIUrl":"https://doi.org/10.1155/2014/678786","url":null,"abstract":"The increasing number of traffic accidents is principally caused by fatigue. In fact, the fatigue presents \u0000a real danger on road since it reduces driver capacity to react and analyze information. In this paper we propose an efficient and nonintrusive system for monitoring driver fatigue using yawning extraction. The proposed scheme uses face extraction based support vector machine (SVM) and a new approach for mouth detection, based on circular Hough transform (CHT), applied on mouth extracted regions. Our system does not require any training data at any step or special cameras. Some experimental results showing system performance are reported. These experiments are applied over real video sequences acquired by low cost web camera and recorded in various lighting conditions.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"128 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121744423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We have developed a method of managing vacancy information of a large parking lot in a distributed manner using only intervehicle communication. A group of parking spaces is defined as a cluster. Vacancy information of a cluster is managed by a vehicle in it. This vehicle is called a cluster head. The proposed method generates a communication path topology between cluster heads. The topology is a tree structure with the cluster head of the cluster nearest to the parking lot entrance as the root node. Cluster heads are ranked in order of the number of vacant spaces and the distance to the shop entrance. The vehicle entering the parking lot collects vacancy information of clusters. This information is transmitted along the tree structure from the lowest ranking cluster head. We have developed a simulation model for a parking lot that can accommodate nearly 1,000 vehicles and used it to evaluate the proposed method. We have confirmed that the proposed method generates less communication traffic and enables the vehicle entering a parking lot to collect vacancy information about the area near the shop entrance with a higher probability and in a shorter time.
{"title":"Autonomous, Distributed Parking Lot Vacancy Management Using Intervehicle Communication","authors":"Shohei Yamashita, K. Takami","doi":"10.1155/2014/647487","DOIUrl":"https://doi.org/10.1155/2014/647487","url":null,"abstract":"We have developed a method of managing vacancy information of a large parking lot in a distributed manner using only intervehicle communication. A group of parking spaces is defined as a cluster. Vacancy information of a cluster is managed by a vehicle in it. This vehicle is called a cluster head. The proposed method generates a communication path topology between cluster heads. The topology is a tree structure with the cluster head of the cluster nearest to the parking lot entrance as the root node. Cluster heads are ranked in order of the number of vacant spaces and the distance to the shop entrance. The vehicle entering the parking lot collects vacancy information of clusters. This information is transmitted along the tree structure from the lowest ranking cluster head. We have developed a simulation model for a parking lot that can accommodate nearly 1,000 vehicles and used it to evaluate the proposed method. We have confirmed that the proposed method generates less communication traffic and enables the vehicle entering a parking lot to collect vacancy information about the area near the shop entrance with a higher probability and in a shorter time.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123207893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ram Shringar Rao, S. Soni, Nanhay Singh, Omprakash Kaiwartya
In recent years, various routing metrics such as throughput, end-to-end delay, packet delivery ratio, path duration, and so forth have been used to evaluate the performance of routing protocols in VANETs. Among these routing metrics, path duration is one of the most influential metrics. Highly mobile vehicles cause frequent topology change in vehicular network environment that ultimately affects the path duration. In this paper, we have derived a mathematical model to estimate path duration using border node-based most forward progress within radius (B-MFR), a position based routing protocol. The mathematical model for estimation of path duration consists of probability of finding next-hop node in forwarding region, estimation of expected number of hops, probability distribution of velocity of nodes, and link duration between each intermediate pair of nodes. The analytical results for the path duration estimation model have been obtained using MATLAB. The model for path duration estimation has been simulated in NS2. Each of the analytical results has been verified through respective simulation results. The result analysis clearly reveals that path duration increases with the increase in transmission range and node density and decreases with the increase in the number of hops in the path and velocity of the nodes.
{"title":"A Probabilistic Analysis of Path Duration Using Routing Protocol in VANETs","authors":"Ram Shringar Rao, S. Soni, Nanhay Singh, Omprakash Kaiwartya","doi":"10.1155/2014/495036","DOIUrl":"https://doi.org/10.1155/2014/495036","url":null,"abstract":"In recent years, various routing metrics such as throughput, end-to-end delay, packet delivery ratio, path duration, and so forth have been used to evaluate the performance of routing protocols in VANETs. Among these routing metrics, path duration is one of the most influential metrics. Highly mobile vehicles cause frequent topology change in vehicular network environment that ultimately affects the path duration. In this paper, we have derived a mathematical model to estimate path duration using border node-based most forward progress within radius (B-MFR), a position based routing protocol. The mathematical model for estimation of path duration consists of probability of finding next-hop node in forwarding region, estimation of expected number of hops, probability distribution of velocity of nodes, and link duration between each intermediate pair of nodes. The analytical results for the path duration estimation model have been obtained using MATLAB. The model for path duration estimation has been simulated in NS2. Each of the analytical results has been verified through respective simulation results. The result analysis clearly reveals that path duration increases with the increase in transmission range and node density and decreases with the increase in the number of hops in the path and velocity of the nodes.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129969843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. K. Aripin, Y. M. Sam, K. Danapalasingam, K. Peng, N. Hamzah, M. F. Ismail
Yaw stability control system plays a significant role in vehicle lateral dynamics in order to improve the vehicle handling and stability performances. However, not many researches have been focused on the transient performances improvement of vehicle yaw rate and sideslip tracking control. This paper reviews the vital elements for control system design of an active yaw stability control system; the vehicle dynamic models, control objectives, active chassis control, and control strategies with the focus on identifying suitable criteria for improved transient performances. Each element is discussed and compared in terms of their underlying theory, strengths, weaknesses, and applicability. Based on this, we conclude that the sliding mode control with nonlinear sliding surface based on composite nonlinear feedback is a potential control strategy for improving the transient performances of yaw rate and sideslip tracking control.
{"title":"A Review of Active Yaw Control System for Vehicle Handling and Stability Enhancement","authors":"M. K. Aripin, Y. M. Sam, K. Danapalasingam, K. Peng, N. Hamzah, M. F. Ismail","doi":"10.1155/2014/437515","DOIUrl":"https://doi.org/10.1155/2014/437515","url":null,"abstract":"Yaw stability control system plays a significant role in vehicle lateral dynamics in order to improve the vehicle handling and stability performances. However, not many researches have been focused on the transient performances improvement of vehicle yaw rate and sideslip tracking control. This paper reviews the vital elements for control system design of an active yaw stability control system; the vehicle dynamic models, control objectives, active chassis control, and control strategies with the focus on identifying suitable criteria for improved transient performances. Each element is discussed and compared in terms of their underlying theory, strengths, weaknesses, and applicability. Based on this, we conclude that the sliding mode control with nonlinear sliding surface based on composite nonlinear feedback is a potential control strategy for improving the transient performances of yaw rate and sideslip tracking control.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"216 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128857188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Two nonlinear controllers are proposed for a light-weighted all-electric vehicle: Chebyshev neural network based backstepping controller and Chebyshev neural network based optimal adaptive controller. The electric vehicle (EV) is driven by DC motor. Both the controllers use Chebyshev neural network (CNN) to estimate the unknown nonlinearities. The unknown nonlinearities arise as it is not possible to precisely model the dynamics of an EV. Mass of passengers, resistance in the armature winding of the DC motor, aerodynamic drag coefficient and rolling resistance coefficient are assumed to be varying with time. The learning algorithms are derived from Lyapunov stability analysis, so that system-tracking stability and error convergence can be assured in the closed-loop system. The control algorithms for the EV system are developed and a driving cycle test is performed to test the control performance. The effectiveness of the proposed controllers is shown through simulation results.
{"title":"Nonlinear Controllers for a Light-Weighted All-Electric Vehicle Using Chebyshev Neural Network","authors":"Vikas Sharma, S. Purwar","doi":"10.1155/2014/867209","DOIUrl":"https://doi.org/10.1155/2014/867209","url":null,"abstract":"Two nonlinear controllers are proposed for a light-weighted all-electric vehicle: Chebyshev neural network based backstepping controller and Chebyshev neural network based optimal adaptive controller. The electric vehicle (EV) is driven by DC motor. Both the controllers use Chebyshev neural network (CNN) to estimate the unknown nonlinearities. The unknown nonlinearities arise as it is not possible to precisely model the dynamics of an EV. Mass of passengers, resistance in the armature winding of the DC motor, aerodynamic drag coefficient and rolling resistance coefficient are assumed to be varying with time. The learning algorithms are derived from Lyapunov stability analysis, so that system-tracking stability and error convergence can be assured in the closed-loop system. The control algorithms for the EV system are developed and a driving cycle test is performed to test the control performance. The effectiveness of the proposed controllers is shown through simulation results.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133599626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The availability of natural gas and crude oil resources has been declining over the years. In automobile sector, the consumption of crude oil is 63% of total crude oil production in the world. Hence, automobile industries are placing more emphasis on energy efficient hydraulic hybrid systems, which can replace their conventional transmission systems. Series hydraulic hybrid system (SHHS) is a multidomain mechatronics system with two distinct power sources that includes prime mover and hydropneumatic accumulator. It replaces the conventional transmission system to drive the vehicle. The sizing of the subsystems in SHHS plays a major role in improving the energy efficiency of the vehicle. In this paper, a power bond graph approach is used to model the dynamics of the SHHS. The obtained simulation results indicate the energy flow during various modes of operations. It also includes the dynamic response of hydropneumatic accumulator, prime mover, and system output speed. Further, design optimization of the system is carried out to optimize the process parameters for maximizing the system energy efficiency. This leads to increase in fuel economy and environmentally friendly vehicle.
{"title":"Dynamic Analysis and Design Optimization of Series Hydraulic Hybrid System through Power Bond Graph Approach","authors":"R. Ramakrishnan, S. Hiremath, M. Singaperumal","doi":"10.1155/2014/972049","DOIUrl":"https://doi.org/10.1155/2014/972049","url":null,"abstract":"The availability of natural gas and crude oil resources has been declining over the years. In automobile sector, the consumption of crude oil is 63% of total crude oil production in the world. Hence, automobile industries are placing more emphasis on energy efficient hydraulic hybrid systems, which can replace their conventional transmission systems. Series hydraulic hybrid system (SHHS) is a multidomain mechatronics system with two distinct power sources that includes prime mover and hydropneumatic accumulator. It replaces the conventional transmission system to drive the vehicle. The sizing of the subsystems in SHHS plays a major role in improving the energy efficiency of the vehicle. In this paper, a power bond graph approach is used to model the dynamics of the SHHS. The obtained simulation results indicate the energy flow during various modes of operations. It also includes the dynamic response of hydropneumatic accumulator, prime mover, and system output speed. Further, design optimization of the system is carried out to optimize the process parameters for maximizing the system energy efficiency. This leads to increase in fuel economy and environmentally friendly vehicle.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124609627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For the stability control and slowing down the vehicle to a safe speed after tire failure, an emergency automatic braking system with independent intellectual property is developed. After the system has received a signal of tire blowout, the automatic braking mode of the vehicle is determined according to the position of the failure tire and the motion state of vehicle, and a control strategy for resisting tire blowout additional yaw torque and deceleration is designed to slow down vehicle to a safe speed in an expected trajectory. The simulating test system is also designed, and the testing results show that the vehicle can be quickly stabilized and kept in the original track after tire blowout with the emergency braking system described in the paper.
{"title":"Stability Control of Vehicle Emergency Braking with Tire Blowout","authors":"Qingzhang Chen, Youhua Liu, Xuezhi Li","doi":"10.1155/2014/436175","DOIUrl":"https://doi.org/10.1155/2014/436175","url":null,"abstract":"For the stability control and slowing down the vehicle to a safe speed after tire failure, an emergency automatic braking system with independent intellectual property is developed. After the system has received a signal of tire blowout, the automatic braking mode of the vehicle is determined according to the position of the failure tire and the motion state of vehicle, and a control strategy for resisting tire blowout additional yaw torque and deceleration is designed to slow down vehicle to a safe speed in an expected trajectory. The simulating test system is also designed, and the testing results show that the vehicle can be quickly stabilized and kept in the original track after tire blowout with the emergency braking system described in the paper.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126075759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper starts with an overview of vehicular ad hoc networks (VANETs) and their characteristics. Then this paper reviews diverse applications of VANETs and the requirements of these applications. In addition it reviews VANETs standards, different broadcasting presented in a variety of studies, and also associated issues with data dissemination in connected and fragmented vehicular networks to solve broadcast storm problem and temporary disconnected VANETs. The discussion will be about the encountered challenges and presented solutions with respect to the related issues, based on the literature and strength and weakness of each protocol.
{"title":"Broadcasting in Connected and Fragmented Vehicular Ad Hoc Networks","authors":"S. Najafzadeh, N. Ithnin, S. Razak","doi":"10.1155/2014/969076","DOIUrl":"https://doi.org/10.1155/2014/969076","url":null,"abstract":"This paper starts with an overview of vehicular ad hoc networks (VANETs) and their characteristics. Then this paper reviews diverse applications of VANETs and the requirements of these applications. In addition it reviews VANETs standards, different broadcasting presented in a variety of studies, and also associated issues with data dissemination in connected and fragmented vehicular networks to solve broadcast storm problem and temporary disconnected VANETs. The discussion will be about the encountered challenges and presented solutions with respect to the related issues, based on the literature and strength and weakness of each protocol.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126271306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}