This paper discusses a concept for enhanced active safety by introducing a driver warning system based on vehicle dynamics that predicts a potential loss of control condition prior to stability control activation. This real-time warning algorithm builds on available technologies such as the Electronic Stability Control (ESC). The driver warning system computes several indices based on yaw rate, side-slip velocity, and vehicle understeer using ESC sensor suite. An arbitrator block arbitrates between the different indices and determines the status index of the driving vehicle. The status index is compared to predetermined stability levels which correspond to high and low stability levels. If the index exceeds the high stability level, a warning signal (haptic, acoustic, or visual) is issued to alert the driver of a potential loss of control and ESC activation. This alert will remain in effect until the index is less than the low stability level at which time the warning signal will be terminated. A vehicle speed advisory algorithm is integrated with the warning algorithm to provide a desired vehicle speed of a vehicle traveling on a curve. Simulation results and vehicle tests were conducted to illustrate the effectiveness of the warning algorithm.
{"title":"Vehicle Dynamics Approach to Driver Warning","authors":"Y. Ghoneim","doi":"10.1155/2013/109650","DOIUrl":"https://doi.org/10.1155/2013/109650","url":null,"abstract":"This paper discusses a concept for enhanced active safety by introducing a driver warning system based on vehicle dynamics that predicts a potential loss of control condition prior to stability control activation. This real-time warning algorithm builds on available technologies such as the Electronic Stability Control (ESC). The driver warning system computes several indices based on yaw rate, side-slip velocity, and vehicle understeer using ESC sensor suite. An arbitrator block arbitrates between the different indices and determines the status index of the driving vehicle. The status index is compared to predetermined stability levels which correspond to high and low stability levels. If the index exceeds the high stability level, a warning signal (haptic, acoustic, or visual) is issued to alert the driver of a potential loss of control and ESC activation. This alert will remain in effect until the index is less than the low stability level at which time the warning signal will be terminated. A vehicle speed advisory algorithm is integrated with the warning algorithm to provide a desired vehicle speed of a vehicle traveling on a curve. Simulation results and vehicle tests were conducted to illustrate the effectiveness of the warning algorithm.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114327888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Drivers often use infotainment systems in motor vehicles, such as systems for navigation, music, and phones. However, operating visual-manual interfaces for these systems can distract drivers. Speech interfaces may be less distracting. To help designing easy-to-use speech interfaces, this paper identifies key speech interfaces (e.g., CHAT, Linguatronic, SYNC, Siri, and Google Voice), their features, and what was learned from evaluating them and other systems. Also included is information on key technical standards (e.g., ISO 9921, ITU P.800) and relevant design guidelines. This paper also describes relevant design and evaluation methods (e.g., Wizard of Oz) and how to make driving studies replicable (e.g., by referencing SAE J2944). Throughout the paper, there is discussion of linguistic terms (e.g., turn-taking) and principles (e.g., Grice’s Conversational Maxims) that provide a basis for describing user-device interactions and errors in evaluations.
{"title":"Development and Evaluation of Automotive Speech Interfaces: Useful Information from the Human Factors and the Related Literature","authors":"Victor Ei Wen Lo, P. Green","doi":"10.1155/2013/924170","DOIUrl":"https://doi.org/10.1155/2013/924170","url":null,"abstract":"Drivers often use infotainment systems in motor vehicles, such as systems for navigation, music, and phones. However, operating visual-manual interfaces for these systems can distract drivers. Speech interfaces may be less distracting. To help designing easy-to-use speech interfaces, this paper identifies key speech interfaces (e.g., CHAT, Linguatronic, SYNC, Siri, and Google Voice), their features, and what was learned from evaluating them and other systems. Also included is information on key technical standards (e.g., ISO 9921, ITU P.800) and relevant design guidelines. This paper also describes relevant design and evaluation methods (e.g., Wizard of Oz) and how to make driving studies replicable (e.g., by referencing SAE J2944). Throughout the paper, there is discussion of linguistic terms (e.g., turn-taking) and principles (e.g., Grice’s Conversational Maxims) that provide a basis for describing user-device interactions and errors in evaluations.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114696132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Harter, T. Schipper, L. Zwirello, A. Ziroff, T. Zwick
The benefit of trolley truck systems is the substitution of the diesel fuel by the cheaper and more ecological electrical energy. Trolley trucks are powered by electricity from two overhead contact lines, where one is the supply and the other the return conductor. Such trolley trucks are used for haulage at open pit mining sites but could also be used for freight traffic at roadways in the future. Automatic guidance prevents the trolley-powered trucks from leaving the track and thus allows higher operating speeds, higher loading capacity, and greater efficiency. Radar is the ideal sensing technique for automatic guidance in such environments. The presented radar system with two-dimensional digital beamforming capability offers a compact measurement solution as it can be installed on top of the truck. Besides the distance measurement, this radar system allows to detect the location and inclination of the overhead contact lines by digital beamforming in two dimensions. Besides automatic guidance, the knowledge of the inclination of the overhead contact lines could allow automatic speed adaption, which would help to achieve maximum speed especially in hilly terrain.
{"title":"Detection of Overhead Contact Lines with a 2D-Digital-Beamforming Radar System for Automatic Guidance of Trolley Trucks","authors":"M. Harter, T. Schipper, L. Zwirello, A. Ziroff, T. Zwick","doi":"10.1155/2013/914351","DOIUrl":"https://doi.org/10.1155/2013/914351","url":null,"abstract":"The benefit of trolley truck systems is the substitution of the diesel fuel by the cheaper and more ecological electrical energy. Trolley trucks are powered by electricity from two overhead contact lines, where one is the supply and the other the return conductor. Such trolley trucks are used for haulage at open pit mining sites but could also be used for freight traffic at roadways in the future. Automatic guidance prevents the trolley-powered trucks from leaving the track and thus allows higher operating speeds, higher loading capacity, and greater efficiency. Radar is the ideal sensing technique for automatic guidance in such environments. The presented radar system with two-dimensional digital beamforming capability offers a compact measurement solution as it can be installed on top of the truck. Besides the distance measurement, this radar system allows to detect the location and inclination of the overhead contact lines by digital beamforming in two dimensions. Besides automatic guidance, the knowledge of the inclination of the overhead contact lines could allow automatic speed adaption, which would help to achieve maximum speed especially in hilly terrain.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130574701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The optimum functional characteristics of suspension components, namely, linear/nonlinear spring and nonlinear damper characteristic functions are determined using simple lumped parameter models. A quarter car model is used to represent the front independent suspension, and a half car model is used to represent the rear solid axle suspension of a light commercial vehicle. The functional shapes of the suspension characteristics used in the optimisation process are based on typical shapes supplied by a car manufacturer. The complexity of a nonlinear function optimisation problem is reduced by scaling it up or down from the aforementioned shape in the optimisation process. The nonlinear optimised suspension characteristics are first obtained using lower complexity lumped parameter models. Then, the performance of the optimised suspension units are verified using the higher fidelity and more realistic Carmaker model. An interactive software module is developed to ease the nonlinear suspension optimisation process using the Matlab Graphical User Interface tool.
{"title":"Optimisation of the Nonlinear Suspension Characteristics of a Light Commercial Vehicle","authors":"Dinçer Özcan, Ümit Sönmez, L. Guvenç","doi":"10.1155/2013/562424","DOIUrl":"https://doi.org/10.1155/2013/562424","url":null,"abstract":"The optimum functional characteristics of suspension components, namely, linear/nonlinear spring and nonlinear damper characteristic functions are determined using simple lumped parameter models. A quarter car model is used to represent the front independent suspension, and a half car model is used to represent the rear solid axle suspension of a light commercial vehicle. The functional shapes of the suspension characteristics used in the optimisation process are based on typical shapes supplied by a car manufacturer. The complexity of a nonlinear function optimisation problem is reduced by scaling it up or down from the aforementioned shape in the optimisation process. The nonlinear optimised suspension characteristics are first obtained using lower complexity lumped parameter models. Then, the performance of the optimised suspension units are verified using the higher fidelity and more realistic Carmaker model. An interactive software module is developed to ease the nonlinear suspension optimisation process using the Matlab Graphical User Interface tool.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125216644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Khoucha, K. Marouani, M. Benbouzid, A. Kheloui, A. Mamoune
This paper presents a new hybrid cascaded H-bridge multilevel inverter motor drive DTC scheme for electric vehicles where each phase of the inverter can be implemented using a single DC source. Traditionally, each phase of the inverter requires DC source for output voltage levels. In this paper, a scheme is proposed that allows the use of a single DC source as the first DC source which would be available from batteries or fuel cells, with the remaining () DC sources being capacitors. This scheme can simultaneously maintain the capacitors of DC voltage level and produce a nearly sinusoidal output voltage due to its high number of output levels. In this context, high performances and efficient torque and flux control are obtained, enabling a DTC solution for hybrid multilevel inverter powered induction motor drives intended for electric vehicle propulsion. Simulations and experiments show that the proposed multilevel inverter and control scheme are effective and very attractive for embedded systems such as automotive applications.
{"title":"A 7-Level Single DC Source Cascaded H-Bridge Multilevel Inverter with a Modified DTC Scheme for Induction Motor-Based Electric Vehicle Propulsion","authors":"F. Khoucha, K. Marouani, M. Benbouzid, A. Kheloui, A. Mamoune","doi":"10.1155/2013/718920","DOIUrl":"https://doi.org/10.1155/2013/718920","url":null,"abstract":"This paper presents a new hybrid cascaded H-bridge multilevel inverter motor drive DTC scheme for electric vehicles where each phase of the inverter can be implemented using a single DC source. Traditionally, each phase of the inverter requires DC source for output voltage levels. In this paper, a scheme is proposed that allows the use of a single DC source as the first DC source which would be available from batteries or fuel cells, with the remaining () DC sources being capacitors. This scheme can simultaneously maintain the capacitors of DC voltage level and produce a nearly sinusoidal output voltage due to its high number of output levels. In this context, high performances and efficient torque and flux control are obtained, enabling a DTC solution for hybrid multilevel inverter powered induction motor drives intended for electric vehicle propulsion. Simulations and experiments show that the proposed multilevel inverter and control scheme are effective and very attractive for embedded systems such as automotive applications.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126434704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The DriveSafe project was carried out by a consortium of university research centers and automotive OEMs in Turkey to reduce accidents caused by driver behavior. A huge amount of driving data was collected from 108 drivers who drove the instrumented DriveSafe vehicle in the same route of 25 km of urban and highway traffic in Istanbul. One of the sensors used in the DriveSafe vehicle was a forward-looking LIDAR. The data from the LIDAR is used here to determine and record the headway time characteristics of different drivers. This paper concentrates on the analysis of LIDAR data from the DriveSafe vehicle. A simple algorithm that only looks at the forward direction along a straight line is used first. Headway times based on this simple approach are presented for an example driver. A more accurate detection and tracking algorithm taken from the literature are presented later in the paper. Grid-based and point distance-based methods are presented first. Then, a detection and tracking algorithm based on the Kalman filter is presented. The results are demonstrated using experimental data.
{"title":"Lidar Data Analysis for Time to Headway Determination in the DriveSafe Project Field Tests","authors":"Ilker Altay, B. A. Güvenç, L. Guvenç","doi":"10.1155/2013/749896","DOIUrl":"https://doi.org/10.1155/2013/749896","url":null,"abstract":"The DriveSafe project was carried out by a consortium of university research centers and automotive OEMs in Turkey to reduce accidents caused by driver behavior. A huge amount of driving data was collected from 108 drivers who drove the instrumented DriveSafe vehicle in the same route of 25 km of urban and highway traffic in Istanbul. One of the sensors used in the DriveSafe vehicle was a forward-looking LIDAR. The data from the LIDAR is used here to determine and record the headway time characteristics of different drivers. This paper concentrates on the analysis of LIDAR data from the DriveSafe vehicle. A simple algorithm that only looks at the forward direction along a straight line is used first. Headway times based on this simple approach are presented for an example driver. A more accurate detection and tracking algorithm taken from the literature are presented later in the paper. Grid-based and point distance-based methods are presented first. Then, a detection and tracking algorithm based on the Kalman filter is presented. The results are demonstrated using experimental data.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126453566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this experiment, 13 licensed drivers performed 20 tasks with a prototype navigation radio. Subjects completed such tasks as entering a street address, selecting a preset radio station, and tuning to an XM station while “thinking aloud” to identify problems with operating the prototype interface. Overall, subjects identified 64 unique problems with the interface; 17 specific problems were encountered by more than half of the subjects. Problems are related to inconsistent music interfaces, limitations to destination entry methods, icons that were not understood, the lack of functional grouping, and similar looking buttons and displays, among others. An important project focus was getting the findings to the developers quickly. Having a scribe to code interactions in real time helped as well as directed observations of test sessions by representatives of the developers. Other researchers are encouraged to use this method to examine automotive interfaces as a complement to traditional usability testing.
{"title":"Evaluation of a Navigation Radio Using the Think-Aloud Method","authors":"P. Green, J. Park","doi":"10.1155/2013/705086","DOIUrl":"https://doi.org/10.1155/2013/705086","url":null,"abstract":"In this experiment, 13 licensed drivers performed 20 tasks with a prototype navigation radio. Subjects completed such tasks as entering a street address, selecting a preset radio station, and tuning to an XM station while “thinking aloud” to identify problems with operating the prototype interface. Overall, subjects identified 64 unique problems with the interface; 17 specific problems were encountered by more than half of the subjects. Problems are related to inconsistent music interfaces, limitations to destination entry methods, icons that were not understood, the lack of functional grouping, and similar looking buttons and displays, among others. An important project focus was getting the findings to the developers quickly. Having a scribe to code interactions in real time helped as well as directed observations of test sessions by representatives of the developers. Other researchers are encouraged to use this method to examine automotive interfaces as a complement to traditional usability testing.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"112 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122460421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Tawk, A. Jovanovic, P. Tomé, J. Leclère, C. Botteron, P. Farine, R. Riem-Vis, Bertrand Spaeth
Nowadays, in the aeronautical environments, the use of mobile communication and other wireless technologies is restricted. More specifically, the Federal Communications Commission (FCC) and the Federal Aviation Administration (FAA) prohibit the use of cellular phones and other wireless devices on airborne aircraft because of potential interference with wireless networks on the ground, and with the aircraft's navigation and communication systems. Within this context, we propose in this paper a movement recognition algorithm that will switch off a module including a GSM (Global System for Mobile Communications) device or any other mobile cellular technology as soon as it senses movement and thereby will prevent any forbidden transmissions that could occur in a moving airplane. The algorithm is based solely on measurements of a low-cost accelerometer and is easy to implement with a high degree of reliability.
{"title":"A New Movement Recognition Technique for Flight Mode Detection","authors":"Y. Tawk, A. Jovanovic, P. Tomé, J. Leclère, C. Botteron, P. Farine, R. Riem-Vis, Bertrand Spaeth","doi":"10.1155/2013/149813","DOIUrl":"https://doi.org/10.1155/2013/149813","url":null,"abstract":"Nowadays, in the aeronautical environments, the use of mobile communication and other wireless technologies is restricted. More specifically, the Federal Communications Commission (FCC) and the Federal Aviation Administration (FAA) prohibit the use of cellular phones and other wireless devices on airborne aircraft because of potential interference with wireless networks on the ground, and with the aircraft's navigation and communication systems. Within this context, we propose in this paper a movement recognition algorithm that will switch off a module including a GSM (Global System for Mobile Communications) device or any other mobile cellular technology as soon as it senses movement and thereby will prevent any forbidden transmissions that could occur in a moving airplane. The algorithm is based solely on measurements of a low-cost accelerometer and is easy to implement with a high degree of reliability.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125710412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Driver face monitoring system is a real-time system that can detect driver fatigue and distraction using machine vision approaches. In this paper, a new approach is introduced for driver hypovigilance (fatigue and distraction) detection based on the symptoms related to face and eye regions. In this method, face template matching and horizontal projection of top-half segment of face image are used to extract hypovigilance symptoms from face and eye, respectively. Head rotation is a symptom to detect distraction that is extracted from face region. The extracted symptoms from eye region are (1) percentage of eye closure, (2) eyelid distance changes with respect to the normal eyelid distance, and (3) eye closure rate. The first and second symptoms related to eye region are used for fatigue detection; the last one is used for distraction detection. In the proposed system, a fuzzy expert system combines the symptoms to estimate level of driver hypo-vigilance. There are three main contributions in the introduced method: (1) simple and efficient head rotation detection based on face template matching, (2) adaptive symptom extraction from eye region without explicit eye detection, and (3) normalizing and personalizing the extracted symptoms using a short training phase. These three contributions lead to develop an adaptive driver eye/face monitoring. Experiments show that the proposed system is relatively efficient for estimating the driver fatigue and distraction.
{"title":"A driver face monitoring system for fatigue and distraction detection","authors":"M. Sigari, M. Fathy, M. Soryani","doi":"10.1155/2013/263983","DOIUrl":"https://doi.org/10.1155/2013/263983","url":null,"abstract":"Driver face monitoring system is a real-time system that can detect driver fatigue and distraction using machine vision approaches. In this paper, a new approach is introduced for driver hypovigilance (fatigue and distraction) detection based on the symptoms related to face and eye regions. In this method, face template matching and horizontal projection of top-half segment of face image are used to extract hypovigilance symptoms from face and eye, respectively. Head rotation is a symptom to detect distraction that is extracted from face region. The extracted symptoms from eye region are (1) percentage of eye closure, (2) eyelid distance changes with respect to the normal eyelid distance, and (3) eye closure rate. The first and second symptoms related to eye region are used for fatigue detection; the last one is used for distraction detection. In the proposed system, a fuzzy expert system combines the symptoms to estimate level of driver hypo-vigilance. There are three main contributions in the introduced method: (1) simple and efficient head rotation detection based on face template matching, (2) adaptive symptom extraction from eye region without explicit eye detection, and (3) normalizing and personalizing the extracted symptoms using a short training phase. These three contributions lead to develop an adaptive driver eye/face monitoring. Experiments show that the proposed system is relatively efficient for estimating the driver fatigue and distraction.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130319743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A user’s position-specific field has been developed using the Global Positioning System (GPS) technology. To determine the position using cellular phones, a device was developed, in which a pedestrian navigation unit carries the GPS. However, GPS cannot specify a position in a subterranean environment or indoors, which is beyond the reach of transmitted signals. In addition, the position-specification precision of GPS, that is, its resolution, is on the order of several meters, which is deemed insufficient for pedestrians. In this study, we proposed and evaluated a technique for locating a user’s 3D position by setting up a marker in the navigation space detected in the image of a cellular phone. By experiment, we verified the effectiveness and accuracy of the proposed method. Additionally, we improved the positional precision because we measured the position distance using numerous markers.
{"title":"A Pedestrian Navigation System Using Cellular Phone Video-Conferencing Functions","authors":"A. Sugiura, Takuya Shoji","doi":"10.1155/2012/945365","DOIUrl":"https://doi.org/10.1155/2012/945365","url":null,"abstract":"A user’s position-specific field has been developed using the Global Positioning System (GPS) technology. To determine the position using cellular phones, a device was developed, in which a pedestrian navigation unit carries the GPS. However, GPS cannot specify a position in a subterranean environment or indoors, which is beyond the reach of transmitted signals. In addition, the position-specification precision of GPS, that is, its resolution, is on the order of several meters, which is deemed insufficient for pedestrians. In this study, we proposed and evaluated a technique for locating a user’s 3D position by setting up a marker in the navigation space detected in the image of a cellular phone. By experiment, we verified the effectiveness and accuracy of the proposed method. Additionally, we improved the positional precision because we measured the position distance using numerous markers.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124891338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}