Filamentous fungi are important cell factories for producing chemicals, organic acids, and enzymes. Although several genome editing tools are available for filamentous fungi, few effectively enable continuous evolution for rational engineering of complex phenotype. Here, we present CRISPR-Cas9 cytidine-base-editor (CBE) assisted in vivo evolution by continuously delivering a combinatorial sgRNA library to filamentous fungi. The method was validated by targeting core genes of 46 natural product biosynthetic gene clusters in Aspergillus nidulans NRRL 8112 to eliminate fungal toxins via six rounds of evolution. NGS analysis revealed the average C-to-T conversion rates in the first, third, and sixth rounds were 2.02%, 5.25%, and 9.34%, respectively. Metabolic profiles of the evolved mutants exhibited significant changes, allowing for the isolation of clean-background strains with enhanced production of an antifungal compound Echinocandin B. This study demonstrates that CBE-mediated in vivo evolution greatly facilitates the iterative refinement of complex morphogenetic traits in filamentous fungi.
{"title":"CRISPR-Cas9 Cytidine-Base-Editor Mediated Continuous In Vivo Evolution in Aspergillus nidulans","authors":"Yuan Tian, Qing Xu, Meng Pang, Youchu Ma, Zhiruo Zhang, Dongfang Zhang, Donghui Guo, Lupeng Wang, Qingbin Li, Yanling Li and Fanglong Zhao*, ","doi":"10.1021/acssynbio.4c0071610.1021/acssynbio.4c00716","DOIUrl":"https://doi.org/10.1021/acssynbio.4c00716https://doi.org/10.1021/acssynbio.4c00716","url":null,"abstract":"<p >Filamentous fungi are important cell factories for producing chemicals, organic acids, and enzymes. Although several genome editing tools are available for filamentous fungi, few effectively enable continuous evolution for rational engineering of complex phenotype. Here, we present CRISPR-Cas9 cytidine-base-editor (CBE) assisted <i>in vivo</i> evolution by continuously delivering a combinatorial sgRNA library to filamentous fungi. The method was validated by targeting core genes of 46 natural product biosynthetic gene clusters in <i>Aspergillus nidulans</i> NRRL 8112 to eliminate fungal toxins via six rounds of evolution. NGS analysis revealed the average C-to-T conversion rates in the first, third, and sixth rounds were 2.02%, 5.25%, and 9.34%, respectively. Metabolic profiles of the evolved mutants exhibited significant changes, allowing for the isolation of clean-background strains with enhanced production of an antifungal compound Echinocandin B. This study demonstrates that CBE-mediated <i>in vivo</i> evolution greatly facilitates the iterative refinement of complex morphogenetic traits in filamentous fungi.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 2","pages":"621–628 621–628"},"PeriodicalIF":3.7,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1021/acssynbio.4c0060510.1021/acssynbio.4c00605
Jaemin Kim, Yo Rim Kim, Sang Mo Lee, Jinhwan Lee, Seoyoung Lee, Dongeun Yong* and Hyun Gyu Park*,
We herein developed an ultrasensitive and rapid strategy to identify genomic nucleic acids by integrating a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 13a (Cas13a) into our recently developed isothermal technique, nicking and extension chain reaction system-based amplification (NESBA) reaction. In this technique, named CESBA, the NESBA reaction isothermally produces a large amount of RNA amplicons from the initial target genomic RNA (gRNA). The RNA amplicons bind to the crispr RNA (crRNA) and activate the collateral cleavage activity of Cas13a, which would then cleave the reporter probe nearby, consequently producing the final signals. Based on this design principle, we successfully detected SARS-CoV-2 gRNA as a model target very sensitively down to even a single copy (0.05 copies/μL) in both fluorescence- and lateral flow assay (LFA)-based modes with excellent specificity against other human coronaviruses (H-CoVs). We further validated the clinical applicability of CESBA by testing the 20 clinical samples with 100% clinical sensitivity and specificity. This work represents a potent and innovative strategy for the identification of genomic nucleic acids in molecular diagnostics, delivering exceptional levels of sensitivity.
{"title":"Novel Isothermal Amplification Integrated with CRISPR/Cas13a and Its Applications for Ultrasensitive Detection of SARS-CoV-2","authors":"Jaemin Kim, Yo Rim Kim, Sang Mo Lee, Jinhwan Lee, Seoyoung Lee, Dongeun Yong* and Hyun Gyu Park*, ","doi":"10.1021/acssynbio.4c0060510.1021/acssynbio.4c00605","DOIUrl":"https://doi.org/10.1021/acssynbio.4c00605https://doi.org/10.1021/acssynbio.4c00605","url":null,"abstract":"<p >We herein developed an ultrasensitive and rapid strategy to identify genomic nucleic acids by integrating a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 13a (Cas13a) into our recently developed isothermal technique, nicking and extension chain reaction system-based amplification (NESBA) reaction. In this technique, named CESBA, the NESBA reaction isothermally produces a large amount of RNA amplicons from the initial target genomic RNA (gRNA). The RNA amplicons bind to the crispr RNA (crRNA) and activate the collateral cleavage activity of Cas13a, which would then cleave the reporter probe nearby, consequently producing the final signals. Based on this design principle, we successfully detected SARS-CoV-2 gRNA as a model target very sensitively down to even a single copy (0.05 copies/μL) in both fluorescence- and lateral flow assay (LFA)-based modes with excellent specificity against other human coronaviruses (H-CoVs). We further validated the clinical applicability of CESBA by testing the 20 clinical samples with 100% clinical sensitivity and specificity. This work represents a potent and innovative strategy for the identification of genomic nucleic acids in molecular diagnostics, delivering exceptional levels of sensitivity.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 2","pages":"463–469 463–469"},"PeriodicalIF":3.7,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20DOI: 10.1021/acssynbio.4c0049010.1021/acssynbio.4c00490
Ke Wang, Boya Cui, Yi Wang and Wei Luo*,
Ectoine is an important natural secondary metabolite widely used in biomedical fields, novel cosmetics development, and the food industry. Due to the increasing market demand for ectoine, more cost-effective production methods are being explored. With the rapid development of synthetic biology and metabolic engineering technologies, the production of ectoine using traditional halophilic bacteria is gradually being replaced by higher-yielding and environmentally friendly nonhalophilic engineered strains. By introducing the ectoine synthesis pathway into model strains and optimizing the fermentation process through various metabolic regulations, high-level production of ectoine can be achieved. This review focuses on strategies for the microbial production of ectoine, including screening of wild strains, mutation breeding, and metabolic engineering of model strains, to elucidate the current research status and provide insights for the industrial production of ectoine.
{"title":"Microbial Production of Ectoine: A Review","authors":"Ke Wang, Boya Cui, Yi Wang and Wei Luo*, ","doi":"10.1021/acssynbio.4c0049010.1021/acssynbio.4c00490","DOIUrl":"https://doi.org/10.1021/acssynbio.4c00490https://doi.org/10.1021/acssynbio.4c00490","url":null,"abstract":"<p >Ectoine is an important natural secondary metabolite widely used in biomedical fields, novel cosmetics development, and the food industry. Due to the increasing market demand for ectoine, more cost-effective production methods are being explored. With the rapid development of synthetic biology and metabolic engineering technologies, the production of ectoine using traditional halophilic bacteria is gradually being replaced by higher-yielding and environmentally friendly nonhalophilic engineered strains. By introducing the ectoine synthesis pathway into model strains and optimizing the fermentation process through various metabolic regulations, high-level production of ectoine can be achieved. This review focuses on strategies for the microbial production of ectoine, including screening of wild strains, mutation breeding, and metabolic engineering of model strains, to elucidate the current research status and provide insights for the industrial production of ectoine.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 2","pages":"332–342 332–342"},"PeriodicalIF":3.7,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-19DOI: 10.1021/acssynbio.4c0076910.1021/acssynbio.4c00769
Lu Liu, Xiangjun Zhang, Tengteng Zhu, Tong Ye, Wei Ding*, Huiyan Liu* and Haitian Fang*,
The development of an engineered strain for efficient cytidine production holds significant value for both research and industrial applications. In this study, the pgi and edd genes were knocked out to reveal their roles involved in the regulation of efficient cytidine synthesis in Escherichia coli. The results showed that after 36 h of shaking flask fermentation, the pgi knockout strain E. coli NXBG-14 produced a cytidine concentration of 2.57 ± 0.04 g/L, and the pgi and edd double knockout strain E. coli NXBG-15 produced a cytidine titer of 2.68 ± 0.03 g/L, which represented enhancements of 1.68 and 1.75 times over the start strain, respectively. Transcriptome analysis revealed that the differentially expressed genes (DEGs) in the NXBG-14 strain were mainly enriched in the glycolytic pathway and the tricarboxylic acid (TCA) cycle. Additionally, 13C metabolic flow distribution indicated a significant increase in 6-phosphogluconate in the pentose phosphate pathway (PPP) for NXBG-15. These findings suggest that modifications of the pgi and edd genes redirect central carbon metabolism and promote cytidine accumulation.
{"title":"Combined Transcriptomics and 13C Metabolomics Analysis Reveals pgi and edd Genes Involved in the Regulation of Efficient Cytidine Synthesis in Escherichia coli","authors":"Lu Liu, Xiangjun Zhang, Tengteng Zhu, Tong Ye, Wei Ding*, Huiyan Liu* and Haitian Fang*, ","doi":"10.1021/acssynbio.4c0076910.1021/acssynbio.4c00769","DOIUrl":"https://doi.org/10.1021/acssynbio.4c00769https://doi.org/10.1021/acssynbio.4c00769","url":null,"abstract":"<p >The development of an engineered strain for efficient cytidine production holds significant value for both research and industrial applications. In this study, the <i>pgi</i> and <i>edd</i> genes were knocked out to reveal their roles involved in the regulation of efficient cytidine synthesis in <i>Escherichia coli</i>. The results showed that after 36 h of shaking flask fermentation, the <i>pgi</i> knockout strain <i>E. coli</i> NXBG-14 produced a cytidine concentration of 2.57 ± 0.04 g/L, and the <i>pgi</i> and <i>edd</i> double knockout strain <i>E. coli</i> NXBG-15 produced a cytidine titer of 2.68 ± 0.03 g/L, which represented enhancements of 1.68 and 1.75 times over the start strain, respectively. Transcriptome analysis revealed that the differentially expressed genes (DEGs) in the NXBG-14 strain were mainly enriched in the glycolytic pathway and the tricarboxylic acid (TCA) cycle. Additionally, <sup>13</sup>C metabolic flow distribution indicated a significant increase in 6-phosphogluconate in the pentose phosphate pathway (PPP) for NXBG-15. These findings suggest that modifications of the <i>pgi</i> and <i>edd</i> genes redirect central carbon metabolism and promote cytidine accumulation.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 2","pages":"542–552 542–552"},"PeriodicalIF":3.7,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17Epub Date: 2024-12-16DOI: 10.1021/acssynbio.4c00632
Shuhan Yang, Guang Hu, Jianming Wang, Jie Song
In recent years, gene editing technologies have rapidly evolved to enable precise and efficient genomic modification. These strategies serve as a crucial instrument in advancing our comprehension of genetics and treating genetic disorders. Of particular interest is the manipulation of large DNA fragments, notably the insertion of large fragments, which has emerged as a focal point of research in recent years. Nevertheless, the techniques employed to integrate larger gene fragments are frequently confronted with inefficiencies, off-target effects, and elevated costs. It is therefore imperative to develop efficient tools capable of precisely inserting kilobase-sized DNA fragments into mammalian genomes to support genetic engineering, gene therapy, and synthetic biology applications. This review provides a comprehensive overview of methods developed in the past five years for integrating large DNA fragments with a particular focus on burgeoning CRISPR-related technologies. We discuss the opportunities associated with homology-directed repair (HDR) and emerging CRISPR-transposase and CRISPR-recombinase strategies, highlighting their potential to revolutionize gene therapies for complex diseases. Additionally, we explore the challenges confronting these methodologies and outline potential future directions for their improvement with the overarching goal of facilitating the utilization and advancement of tools for large fragment gene editing.
{"title":"CRISPR/Cas-Based Gene Editing Tools for Large DNA Fragment Integration.","authors":"Shuhan Yang, Guang Hu, Jianming Wang, Jie Song","doi":"10.1021/acssynbio.4c00632","DOIUrl":"10.1021/acssynbio.4c00632","url":null,"abstract":"<p><p>In recent years, gene editing technologies have rapidly evolved to enable precise and efficient genomic modification. These strategies serve as a crucial instrument in advancing our comprehension of genetics and treating genetic disorders. Of particular interest is the manipulation of large DNA fragments, notably the insertion of large fragments, which has emerged as a focal point of research in recent years. Nevertheless, the techniques employed to integrate larger gene fragments are frequently confronted with inefficiencies, off-target effects, and elevated costs. It is therefore imperative to develop efficient tools capable of precisely inserting kilobase-sized DNA fragments into mammalian genomes to support genetic engineering, gene therapy, and synthetic biology applications. This review provides a comprehensive overview of methods developed in the past five years for integrating large DNA fragments with a particular focus on burgeoning CRISPR-related technologies. We discuss the opportunities associated with homology-directed repair (HDR) and emerging CRISPR-transposase and CRISPR-recombinase strategies, highlighting their potential to revolutionize gene therapies for complex diseases. Additionally, we explore the challenges confronting these methodologies and outline potential future directions for their improvement with the overarching goal of facilitating the utilization and advancement of tools for large fragment gene editing.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"57-71"},"PeriodicalIF":3.7,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17Epub Date: 2025-01-02DOI: 10.1021/acssynbio.4c00541
Elisa Paialunga, Neda Bagheri, Marianna Rossetti, Laura Fabiani, Laura Micheli, Alejandro Chamorro-Garcia, Alessandro Porchetta
We report here the use of antibody-DNA conjugates (Ab-DNA) to activate the collateral cleavage activity of the CRISPR-Cas12a enzyme. Our findings demonstrate that Ab-DNA conjugates effectively trigger the collateral cleavage activity of CRISPR-Cas12a, enabling the transduction of antibody-mediated recognition events into fluorescence outputs. We developed two different immunoassays using an Ab-DNA as activator of Cas12a: the CRISPR-based immunosensing assay (CIA) for detecting SARS-CoV-2 spike S protein, which shows superior sensitivity compared with the traditional enzyme-linked immunosorbent assay (ELISA), and the CRISPR-based immunomagnetic assay (CIMA). Notably, CIMA successfully detected the SARS-CoV-2 spike S protein in undiluted saliva with a limit of detection (LOD) of 890 pM in a 2 h assay. Our results underscore the benefits of integrating Cas12a-based signal amplification with antibody detection methods. The potential of Ab-DNA conjugates, combined with CRISPR technology, offers a promising alternative to conventional enzymes used in immunoassays and could facilitate the development of versatile CRISPR analytical platforms for the detection of non-nucleic acid targets.
我们在此报告利用抗体-DNA 结合物(Ab-DNA)激活 CRISPR-Cas12a 酶的旁路裂解活性。我们的研究结果表明,抗体-DNA共轭物能有效触发CRISPR-Cas12a的附带切割活性,使抗体介导的识别事件转化为荧光输出。我们利用抗体 DNA 作为 Cas12a 的激活剂开发了两种不同的免疫测定方法:基于 CRISPR 的免疫传感测定(CIA)和基于 CRISPR 的免疫磁测定(CIMA),前者用于检测 SARS-CoV-2 穗状 S 蛋白,其灵敏度优于传统的酶联免疫吸附测定(ELISA)。值得注意的是,CIMA 成功检测了未稀释唾液中的 SARS-CoV-2 spike S 蛋白,在 2 小时的检测中,检测限 (LOD) 为 890 pM。我们的结果凸显了将基于 Cas12a 的信号放大与抗体检测方法相结合的好处。Ab-DNA共轭物的潜力与CRISPR技术相结合,为免疫测定中使用的传统酶提供了一种有前途的替代方法,并能促进用于检测非核酸目标的多功能CRISPR分析平台的发展。
{"title":"Leveraging Synthetic Antibody-DNA Conjugates to Expand the CRISPR-Cas12a Biosensing Toolbox.","authors":"Elisa Paialunga, Neda Bagheri, Marianna Rossetti, Laura Fabiani, Laura Micheli, Alejandro Chamorro-Garcia, Alessandro Porchetta","doi":"10.1021/acssynbio.4c00541","DOIUrl":"10.1021/acssynbio.4c00541","url":null,"abstract":"<p><p>We report here the use of antibody-DNA conjugates (Ab-DNA) to activate the collateral cleavage activity of the CRISPR-Cas12a enzyme. Our findings demonstrate that Ab-DNA conjugates effectively trigger the collateral cleavage activity of CRISPR-Cas12a, enabling the transduction of antibody-mediated recognition events into fluorescence outputs. We developed two different immunoassays using an Ab-DNA as activator of Cas12a: the CRISPR-based immunosensing assay (CIA) for detecting SARS-CoV-2 spike S protein, which shows superior sensitivity compared with the traditional enzyme-linked immunosorbent assay (ELISA), and the CRISPR-based immunomagnetic assay (CIMA). Notably, CIMA successfully detected the SARS-CoV-2 spike S protein in undiluted saliva with a limit of detection (LOD) of 890 pM in a 2 h assay. Our results underscore the benefits of integrating Cas12a-based signal amplification with antibody detection methods. The potential of Ab-DNA conjugates, combined with CRISPR technology, offers a promising alternative to conventional enzymes used in immunoassays and could facilitate the development of versatile CRISPR analytical platforms for the detection of non-nucleic acid targets.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"171-178"},"PeriodicalIF":3.7,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17Epub Date: 2024-12-24DOI: 10.1021/acssynbio.4c00625
Yueming Long, Ariane Mora, Francesca-Zhoufan Li, Emre Gürsoy, Kadina E Johnston, Frances H Arnold
Sequence-function data provides valuable information about the protein functional landscape but is rarely obtained during directed evolution campaigns. Here, we present Long-read every variant Sequencing (LevSeq), a pipeline that combines a dual barcoding strategy with nanopore sequencing to rapidly generate sequence-function data for entire protein-coding genes. LevSeq integrates into existing protein engineering workflows and comes with open-source software for data analysis and visualization. The pipeline facilitates data-driven protein engineering by consolidating sequence-function data to inform directed evolution and provide the requisite data for machine learning-guided protein engineering (MLPE). LevSeq enables quality control of mutagenesis libraries prior to screening, which reduces time and resource costs. Simulation studies demonstrate LevSeq's ability to accurately detect variants under various experimental conditions. Finally, we show LevSeq's utility in engineering protoglobins for new-to-nature chemistry. Widespread adoption of LevSeq and sharing of the data will enhance our understanding of protein sequence-function landscapes and empower data-driven directed evolution.
{"title":"LevSeq: Rapid Generation of Sequence-Function Data for Directed Evolution and Machine Learning.","authors":"Yueming Long, Ariane Mora, Francesca-Zhoufan Li, Emre Gürsoy, Kadina E Johnston, Frances H Arnold","doi":"10.1021/acssynbio.4c00625","DOIUrl":"10.1021/acssynbio.4c00625","url":null,"abstract":"<p><p>Sequence-function data provides valuable information about the protein functional landscape but is rarely obtained during directed evolution campaigns. Here, we present Long-read every variant Sequencing (LevSeq), a pipeline that combines a dual barcoding strategy with nanopore sequencing to rapidly generate sequence-function data for entire protein-coding genes. LevSeq integrates into existing protein engineering workflows and comes with open-source software for data analysis and visualization. The pipeline facilitates data-driven protein engineering by consolidating sequence-function data to inform directed evolution and provide the requisite data for machine learning-guided protein engineering (MLPE). LevSeq enables quality control of mutagenesis libraries prior to screening, which reduces time and resource costs. Simulation studies demonstrate LevSeq's ability to accurately detect variants under various experimental conditions. Finally, we show LevSeq's utility in engineering protoglobins for new-to-nature chemistry. Widespread adoption of LevSeq and sharing of the data will enhance our understanding of protein sequence-function landscapes and empower data-driven directed evolution.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"230-238"},"PeriodicalIF":3.7,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142884797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17Epub Date: 2024-12-13DOI: 10.1021/acssynbio.4c00653
Merve Keser, Ivan Mateljak, Roman Kittl, Roland Ludwig, Valeria A Risso, Jose M Sanchez-Ruiz, David Gonzalez-Perez, Miguel Alcalde
Galactose oxidase (GOase) is a versatile biocatalyst with a wide range of potential applications, ranging from synthetic chemistry to bioelectrochemical devices. Previous GOase engineering by directed evolution generated the M-RQW mutant, with unprecedented new-to-nature oxidation activity at the C6-OH group of glucose, and a mutational backbone that helped to unlock its promiscuity toward other molecules, including secondary alcohols. In the current study, we have used the M-RQW mutant as a starting point to engineer a set of GOases that are very thermostable and that are easily produced at high titers in yeast, enzymes with latent activities applicable to sustainable chemistry. To boost the generation of sequence and functional diversity, the directed evolution workflow incorporated one-shot computational mutagenesis by the PROSS algorithm and ancestral sequence reconstruction. This synergetic approach helped produce a rapid rise in functional expression by Pichia pastoris, achieving g/L production in a fed-batch bioreactor while the different GOases designed were resistant to pH and high temperature, with T50 enhancements up to 27 °C over the parental M-RQW. These designs displayed latent activity against glucose and an array of secondary aromatic alcohols with different degrees of bulkiness, becoming a suitable point of departure for the future engineering of industrial GOases.
{"title":"Stable and Promiscuous Galactose Oxidases Engineered by Directed Evolution, Atomistic Design, and Ancestral Sequence Reconstruction.","authors":"Merve Keser, Ivan Mateljak, Roman Kittl, Roland Ludwig, Valeria A Risso, Jose M Sanchez-Ruiz, David Gonzalez-Perez, Miguel Alcalde","doi":"10.1021/acssynbio.4c00653","DOIUrl":"10.1021/acssynbio.4c00653","url":null,"abstract":"<p><p>Galactose oxidase (GOase) is a versatile biocatalyst with a wide range of potential applications, ranging from synthetic chemistry to bioelectrochemical devices. Previous GOase engineering by directed evolution generated the M-RQW mutant, with unprecedented new-to-nature oxidation activity at the C6-OH group of glucose, and a mutational backbone that helped to unlock its promiscuity toward other molecules, including secondary alcohols. In the current study, we have used the M-RQW mutant as a starting point to engineer a set of GOases that are very thermostable and that are easily produced at high titers in yeast, enzymes with latent activities applicable to sustainable chemistry. To boost the generation of sequence and functional diversity, the directed evolution workflow incorporated one-shot computational mutagenesis by the PROSS algorithm and ancestral sequence reconstruction. This synergetic approach helped produce a rapid rise in functional expression by <i>Pichia pastoris</i>, achieving g/L production in a fed-batch bioreactor while the different GOases designed were resistant to pH and high temperature, with <i>T</i><sub>50</sub> enhancements up to 27 °C over the parental M-RQW. These designs displayed latent activity against glucose and an array of secondary aromatic alcohols with different degrees of bulkiness, becoming a suitable point of departure for the future engineering of industrial GOases.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"239-246"},"PeriodicalIF":3.7,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17Epub Date: 2024-12-13DOI: 10.1021/acssynbio.4c00469
Jaeyoung K Jung, Kathleen S Dreyer, Kate E Dray, Joseph J Muldoon, Jithin George, Sasha Shirman, Maria D Cabezas, Anne E d'Aquino, Matthew S Verosloff, Kosuke Seki, Grant A Rybnicky, Khalid K Alam, Neda Bagheri, Michael C Jewett, Joshua N Leonard, Niall M Mangan, Julius B Lucks
Recent years have seen intense interest in the development of point-of-care nucleic acid diagnostic technologies to address the scaling limitations of laboratory-based approaches. Chief among these are combinations of isothermal amplification approaches with CRISPR-based detection and readouts of target products. Here, we contribute to the growing body of rapid, programmable point-of-care pathogen tests by developing and optimizing a one-pot NASBA-Cas13a nucleic acid detection assay. This test uses the isothermal amplification technique NASBA to amplify target viral nucleic acids, followed by the Cas13a-based detection of amplified sequences. We first demonstrate an in-house formulation of NASBA that enables the optimization of individual NASBA components. We then present design rules for NASBA primer sets and LbuCas13a guide RNAs for the fast and sensitive detection of SARS-CoV-2 viral RNA fragments, resulting in 20-200 aM sensitivity. Finally, we explore the combination of high-throughput assay condition screening with mechanistic ordinary differential equation modeling of the reaction scheme to gain a deeper understanding of the NASBA-Cas13a system. This work presents a framework for developing a mechanistic understanding of reaction performance and optimization that uses both experiments and modeling, which we anticipate will be useful in developing future nucleic acid detection technologies.
{"title":"Developing, Characterizing, and Modeling CRISPR-Based Point-of-Use Pathogen Diagnostics.","authors":"Jaeyoung K Jung, Kathleen S Dreyer, Kate E Dray, Joseph J Muldoon, Jithin George, Sasha Shirman, Maria D Cabezas, Anne E d'Aquino, Matthew S Verosloff, Kosuke Seki, Grant A Rybnicky, Khalid K Alam, Neda Bagheri, Michael C Jewett, Joshua N Leonard, Niall M Mangan, Julius B Lucks","doi":"10.1021/acssynbio.4c00469","DOIUrl":"10.1021/acssynbio.4c00469","url":null,"abstract":"<p><p>Recent years have seen intense interest in the development of point-of-care nucleic acid diagnostic technologies to address the scaling limitations of laboratory-based approaches. Chief among these are combinations of isothermal amplification approaches with CRISPR-based detection and readouts of target products. Here, we contribute to the growing body of rapid, programmable point-of-care pathogen tests by developing and optimizing a one-pot NASBA-Cas13a nucleic acid detection assay. This test uses the isothermal amplification technique NASBA to amplify target viral nucleic acids, followed by the Cas13a-based detection of amplified sequences. We first demonstrate an in-house formulation of NASBA that enables the optimization of individual NASBA components. We then present design rules for NASBA primer sets and LbuCas13a guide RNAs for the fast and sensitive detection of SARS-CoV-2 viral RNA fragments, resulting in 20-200 aM sensitivity. Finally, we explore the combination of high-throughput assay condition screening with mechanistic ordinary differential equation modeling of the reaction scheme to gain a deeper understanding of the NASBA-Cas13a system. This work presents a framework for developing a mechanistic understanding of reaction performance and optimization that uses both experiments and modeling, which we anticipate will be useful in developing future nucleic acid detection technologies.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"129-147"},"PeriodicalIF":3.7,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17Epub Date: 2024-12-19DOI: 10.1021/acssynbio.4c00606
Qing Wang, Jiajia You, Yichen Li, Jie Zhang, Yi Wang, Meijuan Xu, Zhiming Rao
In vivo targeted mutagenesis technologies are the basis for the continuous directed evolution of specific proteins. Here, an efficient mutagenesis system (CgMutaT7) for continuous evolution of the targeted gene in Corynebacterium glutamicum was developed. First, cytosine deaminase and uracil-DNA glycosylase inhibitor were sequentially fused to T7 RNA polymerase using flexible linkers to build the CgMutaT7 system, which introduces mutations in targeted regions controlled by the T7 promoter. After a series of optimizations, the resulting targeted mutagenesis system (CgMutaT74) can increase the mutant frequency of the target gene by 1.12 × 104-fold, with low off-target mutant frequency. Subsequently, high-throughput sequencing further revealed that the CgMutaT74 system performs efficient and uniform C → T transitions in at least a 1.8 kb DNA region. Finally, the xylose isomerase was successfully continuously evolved by CgMutaT74 to improve the xylose utilization, indicating that the CgMutaT7 system has great potential for applications in the continuous evolution of protein function and expression components.
{"title":"Continuous Evolution of Protein through T7 RNA Polymerase-Guided Base Editing in <i>Corynebacterium glutamicum</i>.","authors":"Qing Wang, Jiajia You, Yichen Li, Jie Zhang, Yi Wang, Meijuan Xu, Zhiming Rao","doi":"10.1021/acssynbio.4c00606","DOIUrl":"10.1021/acssynbio.4c00606","url":null,"abstract":"<p><p><i>In vivo</i> targeted mutagenesis technologies are the basis for the continuous directed evolution of specific proteins. Here, an efficient mutagenesis system (CgMutaT7) for continuous evolution of the targeted gene in <i>Corynebacterium glutamicum</i> was developed. First, cytosine deaminase and uracil-DNA glycosylase inhibitor were sequentially fused to T7 RNA polymerase using flexible linkers to build the CgMutaT7 system, which introduces mutations in targeted regions controlled by the T7 promoter. After a series of optimizations, the resulting targeted mutagenesis system (CgMutaT7<sup>4</sup>) can increase the mutant frequency of the target gene by 1.12 × 10<sup>4</sup>-fold, with low off-target mutant frequency. Subsequently, high-throughput sequencing further revealed that the CgMutaT7<sup>4</sup> system performs efficient and uniform C → T transitions in at least a 1.8 kb DNA region. Finally, the xylose isomerase was successfully continuously evolved by CgMutaT7<sup>4</sup> to improve the xylose utilization, indicating that the CgMutaT7 system has great potential for applications in the continuous evolution of protein function and expression components.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"216-229"},"PeriodicalIF":3.7,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}