Ultrasound remains a remarkable method to form emulsions for food and other applications (e.g. cosmetics and pharmaceuticals) due to its high efficiency, excellent emulsion stability, and cost-effectiveness. Nevertheless, conventional ultrasound equipment suffers from low sonication power or undesired acoustic wave distribution across a sonication medium at large-scale processing, rendering the need for innovative designs to address the aforementioned issues. This mini review aims to discuss the recent developments in designs and configurations of ultrasonic emulsification equipment to overcome these shortcomings. Additionally, patented ultrasonic designs are reviewed to disclose the commercial potential of current ultrasonic inventions. This work can help identify gaps in current ultrasonic inventions, which could inspire researchers on future research directions that could boost the advancements of the design of ultrasound reactors for emulsification to eventual commercialization.
Modern robotic equipment has yielded a plethora of time-resolved data collected during a set of experiments aiming to study the kinetics of a pharmaceutical reaction. This has generated the need for a modeling methodology that will represent the reaction’s time evolution. The present communication highlights the main characteristics of the Dynamic Response Surface Methodology (DRSM), which generalizes the classical Response Surface Methodology by incorporating time as an independent variable in the estimated data-driven model. We also highlight the process insights this model reveals. Besides listing the substantial number of studies that have used this type of model, we also describe how the DRSM models of all the measured species can be used to discover the stoichiometric model of a reaction system. Some comparisons with other data-driven modeling approaches are commented upon.
As the biopharmaceutical industry advances to meet the pressures of an expanding product portfolio and global demand, it will continue to face new challenges while concurrently implementing Quality-by-Design principles. At this forefront, flowsheet modeling frameworks will become increasingly important in silico decisional tools during the process design phase. Flowsheet models further enable screening of process configurations, evaluation of technological alternatives, and identification and alleviation of potential bottlenecks within the context of technoeconomic and environmental impact studies. This review summarizes the recent literature on flowsheet methodologies within the monoclonal antibody sector. Key gaps and assumptions, primarily in the simulation of upstream production, present in current flowsheet approaches are examined. Strategies to overcome the identified assumptions are presented, involving the integration of higher resolution unit operation models to improve the accuracy of process assessments by incorporating biologically relevant constraints while maintaining computational feasibility.
Catalytic reduction represents a promising avenue for addressing some of the most pressing challenges in energy and environmental research. However, the absence of efficient electron management has emerged as a fundamental obstacle to practical applications. Piezocatalysis, a newcomer in charge carrier–based catalysis, holds the potential to overcome this bottleneck. By utilizing mechanical energy, the most ubiquitous and accessible source of energy in the environment yet underutilized, piezocatalysis enables efficient charge separation to retard recombination and thereby maximize charge utilization. This review discusses key achievements in piezocatalytic reduction for acquiring clean water, alternative fuels, and high-value-added chemicals. Challenges and potential research directions are outlined to stimulate further discussion.
Photocatalysis utilizes inexhaustible solar energy to provide a green and sustainable solution for environmental remediation and energy storage. The step-scheme (S-scheme) heterojunction was proposed to overcome the deficiencies of traditional type-II and Z-scheme heterojunctions in terms of kinetics and thermodynamics. This review aims to convey the state-of-the-art progress and achievements in the development of S-scheme heterojunctions. Firstly, the origins and fundamental principles of S-scheme heterojunctions were summarized. Secondly, the significant applications of S-scheme heterojunctions photocatalysts in hydrogen/hydrogen peroxide production, CO2 reduction, pollutants degradation and bacteria disinfection were discussed. Thirdly, the facing challenges and prospects of S-scheme heterojunctions in industrial application were highlighted. At last, we proposed the future direction of researching S-scheme heterojunctions, including NIR absorption, interface engineering, co-catalysts, IT techniques and experimental robots, in order to provide novel insight for clean energy exploration and environmental issues treatment.