The image quality of space object or the Laser propagation characteristics in atmosphere will be degraded by the effect of turbulence. Adaptive optics can be used to correct atmospheric turbulent aberration, but the anisoplanatic effect of atmospheric turbulence is unavoidable. Adopting the special spectral filtering method, different type of anisoplanatism in different scene are systemically modelled, and the formulae that describing different type of anisoplanatic variance and their Zernike model components are obtained. According to HV turbulent outline, the characteristics of Zernike model components of different type of anisoplanatic variance are analyzed.
{"title":"Analysis of atmospheric turbulence anisoplanatism","authors":"Jianzhu Zhang, Feizhou Zhang","doi":"10.1117/12.2065214","DOIUrl":"https://doi.org/10.1117/12.2065214","url":null,"abstract":"The image quality of space object or the Laser propagation characteristics in atmosphere will be degraded by the effect of turbulence. Adaptive optics can be used to correct atmospheric turbulent aberration, but the anisoplanatic effect of atmospheric turbulence is unavoidable. Adopting the special spectral filtering method, different type of anisoplanatism in different scene are systemically modelled, and the formulae that describing different type of anisoplanatic variance and their Zernike model components are obtained. According to HV turbulent outline, the characteristics of Zernike model components of different type of anisoplanatic variance are analyzed.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126992956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The quality of clamping device for PPMgLN crystal has a vital influence on the optical property of solid-state laser. It has highly requirements of work stability and environmental adaptation ability, especially the thermal adaptation under high temperature differences. To achieve thermal adaptation, structural stiffness will be unavoidably weakened. How to keep both enough stiffness and thermal adaptation as far as possible is the key design point and also difficult point. In this paper, a kind of flexible thermal release unit which can work permanent under 130±10°C is studied. Thermal compensation principle and flexible thermal release theory are applied. Analysis results indicate that this device can effectively decreased the thermal stress of the crystal from 85MPa to 0.66MPa. The results of the vibration resistance test on the optical axis direction of the crystal indicate that the device can provide at least 5.62N to resistant 57.2g impact vibration and 18.5g impact vibration in the side direction, well satisfied the requirements of ability to resistant 6g impact vibration.
{"title":"Design and analysis on thermal adaptive clamping device for PPMgLN crystal used in solid state laser","authors":"C. Yan, Yongliang Chen, Wei Zhang","doi":"10.1117/12.2065229","DOIUrl":"https://doi.org/10.1117/12.2065229","url":null,"abstract":"The quality of clamping device for PPMgLN crystal has a vital influence on the optical property of solid-state laser. It has highly requirements of work stability and environmental adaptation ability, especially the thermal adaptation under high temperature differences. To achieve thermal adaptation, structural stiffness will be unavoidably weakened. How to keep both enough stiffness and thermal adaptation as far as possible is the key design point and also difficult point. In this paper, a kind of flexible thermal release unit which can work permanent under 130±10°C is studied. Thermal compensation principle and flexible thermal release theory are applied. Analysis results indicate that this device can effectively decreased the thermal stress of the crystal from 85MPa to 0.66MPa. The results of the vibration resistance test on the optical axis direction of the crystal indicate that the device can provide at least 5.62N to resistant 57.2g impact vibration and 18.5g impact vibration in the side direction, well satisfied the requirements of ability to resistant 6g impact vibration.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127740013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
International standard ISO 10110-7 sets a strict limit on the size and quantity for surface defects of an optical element. For high-power laser, sub-beams caused by defects with different distributions interfere with each other in the transmission process, causing beam quality complex changes. So it is necessary to make a clear limitation on relative position of defects, thereby giving the standard a more comprehensive supplement. Based on the diffraction theory, the changes of beam modulation are studied. The influence of scratch depth on the distribution of near field beam modulation is also taken into account. Results demonstrate that when two parallel scratches are on the same or different surfaces of an element, they produce more severe modulation than single scratch, and the maximum modulation can be increased to 1.5 times. Meanwhile more strict requirements for scratch depth are put forward. The results could provide reference for the determination of defects specifications for large-diameter optical elements in high-power laser systems.
{"title":"Influence of distribution of optical component surface defects on near field beam quality","authors":"Kewei You, Yanli Zhang, Xuejie Zhang, Junyong Zhang, Jianqiang Zhu","doi":"10.1117/12.2071341","DOIUrl":"https://doi.org/10.1117/12.2071341","url":null,"abstract":"International standard ISO 10110-7 sets a strict limit on the size and quantity for surface defects of an optical element. For high-power laser, sub-beams caused by defects with different distributions interfere with each other in the transmission process, causing beam quality complex changes. So it is necessary to make a clear limitation on relative position of defects, thereby giving the standard a more comprehensive supplement. Based on the diffraction theory, the changes of beam modulation are studied. The influence of scratch depth on the distribution of near field beam modulation is also taken into account. Results demonstrate that when two parallel scratches are on the same or different surfaces of an element, they produce more severe modulation than single scratch, and the maximum modulation can be increased to 1.5 times. Meanwhile more strict requirements for scratch depth are put forward. The results could provide reference for the determination of defects specifications for large-diameter optical elements in high-power laser systems.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131802437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
1 Δg oxygen was the active medium of chemical oxygen iodine laser (COIL), the concentration and distribution of 1 Δg oxygen was important for the output power and beam quality. However, the current test technique, such as fluorescence detection method, absorption spectrum method could not get accurate 1 Δg oxygen information, due to the interference from the iodine fluorescence or the rigorous request of the laser source and optics and detection elements. The anti-stokes Raman spectrum of 1 Δg oxygen was regarded as a potential technique to obtain desirable signal, and the coherent anti-stokes Raman scatter (CARS) was the most feasible technique to get better signal to noise ratio (SNR). In this paper, we reported a broadband nanosecond coherent anti-stokes Raman scatter (CARS) detecting system built up for the detection of the concentration and distribution of O2( 1 Δg) in COIL:The second harmonic of a Nd: YAG pulse laser was separated into two parts, one part was used to pump a broadband nanosecond dye laser to generate light of 578-580 nm, which covered both stokes lines of O2 ( 1 Δg)and O2 (3 ∑); The other part was combined with dye laser output by a dichroic mirror, and then introduced into the detection region of COIL through a focus lens. CARS signals for O2(1 Δg)and O2 (3 ∑)have different wavelengths, and their intensity was proportional to the square of the concentration of O2(1 Δg) and O2( 3 ∑). By changing the focus spot of pump and stokes laser, the concentration distribution of O2(1 Δg) and O2(3 ∑)at different position could be obtained.
{"title":"O2 (1Δg) detection using broadband CARS","authors":"Jinbo Liu, Jingwei Guo, X. Cai, Baodong Gai, Qingkun Meng, Yuqi Jin","doi":"10.1117/12.2065289","DOIUrl":"https://doi.org/10.1117/12.2065289","url":null,"abstract":"1 Δg oxygen was the active medium of chemical oxygen iodine laser (COIL), the concentration and distribution of 1 Δg oxygen was important for the output power and beam quality. However, the current test technique, such as fluorescence detection method, absorption spectrum method could not get accurate 1 Δg oxygen information, due to the interference from the iodine fluorescence or the rigorous request of the laser source and optics and detection elements. The anti-stokes Raman spectrum of 1 Δg oxygen was regarded as a potential technique to obtain desirable signal, and the coherent anti-stokes Raman scatter (CARS) was the most feasible technique to get better signal to noise ratio (SNR). In this paper, we reported a broadband nanosecond coherent anti-stokes Raman scatter (CARS) detecting system built up for the detection of the concentration and distribution of O2( 1 Δg) in COIL:The second harmonic of a Nd: YAG pulse laser was separated into two parts, one part was used to pump a broadband nanosecond dye laser to generate light of 578-580 nm, which covered both stokes lines of O2 ( 1 Δg)and O2 (3 ∑); The other part was combined with dye laser output by a dichroic mirror, and then introduced into the detection region of COIL through a focus lens. CARS signals for O2(1 Δg)and O2 (3 ∑)have different wavelengths, and their intensity was proportional to the square of the concentration of O2(1 Δg) and O2( 3 ∑). By changing the focus spot of pump and stokes laser, the concentration distribution of O2(1 Δg) and O2(3 ∑)at different position could be obtained.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132130646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Results obtained from a small discharge cross section (10×10 mm), high pressure (10 bar) TE CO2 laser are presented demonstrating continuous wavelength tunability of the laser. Two arbitrary wavelength regions in the 9P and 10P branches are chosen to demonstrate the continuous tunability of the laser wavelength. Furthermore stability of the laser output is demonstrated over extended periods of operation. Other output parameters of the high pressure laser such as temporal pulse profile and peak pulse power were also measured. Preliminary results will be presented of a discharge system scaled to larger discharge cross sections intended for high pressure amplifiers in ultra short pulse terawatt laser systems. Electrode separations of up to 50 mm have been investigated with measured discharge widths of 80 mm. The system has been operated at gas pressures of up to 3.5 bar with various CO2 laser gas mixtures. Discharge stability studies and gain measurements are reported.
从一个小放电截面(10×10 mm),高压(10 bar) TE CO2激光器得到的结果表明,激光器的连续波长可调性。在9P和10P分支中选择两个任意波长区域来演示激光波长的连续可调性。此外,稳定性的激光输出证明了在长时间的操作。此外,还测量了高压激光器的脉冲时间分布和脉冲峰值功率等输出参数。初步结果将提出一个放电系统缩放到更大的放电截面,用于超短脉冲太瓦激光系统中的高压放大器。电极分离高达50毫米已研究与测量的放电宽度为80毫米。该系统已在高达3.5 bar的气体压力下与各种CO2激光气体混合物一起工作。报告了放电稳定性研究和增益测量。
{"title":"Continuously wavelength tunable high pressure CO2 lasers","authors":"H. V. von Bergmann, Francois Morkel","doi":"10.1117/12.2067998","DOIUrl":"https://doi.org/10.1117/12.2067998","url":null,"abstract":"Results obtained from a small discharge cross section (10×10 mm), high pressure (10 bar) TE CO2 laser are presented demonstrating continuous wavelength tunability of the laser. Two arbitrary wavelength regions in the 9P and 10P branches are chosen to demonstrate the continuous tunability of the laser wavelength. Furthermore stability of the laser output is demonstrated over extended periods of operation. Other output parameters of the high pressure laser such as temporal pulse profile and peak pulse power were also measured. Preliminary results will be presented of a discharge system scaled to larger discharge cross sections intended for high pressure amplifiers in ultra short pulse terawatt laser systems. Electrode separations of up to 50 mm have been investigated with measured discharge widths of 80 mm. The system has been operated at gas pressures of up to 3.5 bar with various CO2 laser gas mixtures. Discharge stability studies and gain measurements are reported.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"181 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134122709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingwei Li, Yuqi Jin, Zicai Geng, Yongzhao Li, Yuelong Zhang, F. Sang
A chemical oxygen-iodine laser (COIL) is an electronic transition, low pressure, high throughput system. The use of this laser demands a suitable pressure recovery system. This paper proposed a novel pressure recovery system based on chemical absorption and the feasibility for COIL with CO2 as buffer gas (CO2-COIL) was investigated. The novel pressure recovery system works by chemisorbing the CO2-COIL effluents into two fixed-beds maintained at initial temperature of around 293-323K. Compared with the cryosorption system for N2-COIL based on physical absorption, the novel chemisorptions based pressure recovery system has a simpler logistics and a shorter run-to-run preparation time. Two kinds of solid chemo-sorbents were designed and synthesized. One was used for chemisorbing the oxidizing gases such as O2 ,Cl2 and I2, another was used for chemisorbing the acidic gas such as CO2. The capacities of the two sorbents were measured to be 3.12 mmol(O2)/g and 3.84 mmol (CO2) /g, respectively. It indicated that the synthesized sorbents could effectively chemosorb the CO2-COIL effluents. Secondly, analog test equipment was set up and used to study the feasibility of the novel pressure recovery system used for CO2-COIL. The test results showed that the novel pressure recovery system could maintain the pressure under 6 Torr for tens seconds under the continuous gas flow. It showed that the novel pressure recovery system for CO2-COIL based on chemical absorption is feasible.
{"title":"Feasibility study of a novel pressure recovery system for CO2-COIL based on chemical absorption","authors":"Qingwei Li, Yuqi Jin, Zicai Geng, Yongzhao Li, Yuelong Zhang, F. Sang","doi":"10.1117/12.2065368","DOIUrl":"https://doi.org/10.1117/12.2065368","url":null,"abstract":"A chemical oxygen-iodine laser (COIL) is an electronic transition, low pressure, high throughput system. The use of this laser demands a suitable pressure recovery system. This paper proposed a novel pressure recovery system based on chemical absorption and the feasibility for COIL with CO2 as buffer gas (CO2-COIL) was investigated. The novel pressure recovery system works by chemisorbing the CO2-COIL effluents into two fixed-beds maintained at initial temperature of around 293-323K. Compared with the cryosorption system for N2-COIL based on physical absorption, the novel chemisorptions based pressure recovery system has a simpler logistics and a shorter run-to-run preparation time. Two kinds of solid chemo-sorbents were designed and synthesized. One was used for chemisorbing the oxidizing gases such as O2 ,Cl2 and I2, another was used for chemisorbing the acidic gas such as CO2. The capacities of the two sorbents were measured to be 3.12 mmol(O2)/g and 3.84 mmol (CO2) /g, respectively. It indicated that the synthesized sorbents could effectively chemosorb the CO2-COIL effluents. Secondly, analog test equipment was set up and used to study the feasibility of the novel pressure recovery system used for CO2-COIL. The test results showed that the novel pressure recovery system could maintain the pressure under 6 Torr for tens seconds under the continuous gas flow. It showed that the novel pressure recovery system for CO2-COIL based on chemical absorption is feasible.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"267 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134070667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Zhang, W. Dai, Yuanchen Wang, Bo Lian, Ying Yang, Q. Yuan, X. Deng, Junpu Zhao, Wei Zhou
The high power solid laser system is becoming larger and higher energy that requires the beam automatic alignment faster and higher precision to ensure safety running of laser system and increase the shooting success rate. This paper take SGIII laser facility for instance, introduce the basic principle of automatic alignment of large laser system. The automatic alignment based on digital image processing technology which use the imaging of seven-classes spatial filter pinholes for feedback to working. Practical application indicates that automatic alignment system of cavity mirror in SGIII facility can finish the work in 210 seconds of four bundles and will not exceed 270 seconds of all six bundles. The alignment precision promoted to 2.5% aperture from 8% aperture. The automatic alignment makes it possible for fast and safety running of lager laser system.
{"title":"Automatic alignment technology in high power laser system","authors":"Xin Zhang, W. Dai, Yuanchen Wang, Bo Lian, Ying Yang, Q. Yuan, X. Deng, Junpu Zhao, Wei Zhou","doi":"10.1117/12.2065216","DOIUrl":"https://doi.org/10.1117/12.2065216","url":null,"abstract":"The high power solid laser system is becoming larger and higher energy that requires the beam automatic alignment faster and higher precision to ensure safety running of laser system and increase the shooting success rate. This paper take SGIII laser facility for instance, introduce the basic principle of automatic alignment of large laser system. The automatic alignment based on digital image processing technology which use the imaging of seven-classes spatial filter pinholes for feedback to working. Practical application indicates that automatic alignment system of cavity mirror in SGIII facility can finish the work in 210 seconds of four bundles and will not exceed 270 seconds of all six bundles. The alignment precision promoted to 2.5% aperture from 8% aperture. The automatic alignment makes it possible for fast and safety running of lager laser system.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114633114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Excimer laser has been shown to be efficient tools in plasma physics and material science. Recent progress on techniques of beam control in excimer laser system required for energy scaling are overviewed, Configuration and initial results of a 100J/10ns, 18 beam excimer laser system are given.
{"title":"Progress on high power excimer laser in NINT","authors":"Xue-qing Zhao, Jing-ru Liu, Ai-ping Yi, Yongshen Zhang, Dahui Wang, Yong-xiang Zhu, Hang Qian, Yun Hu, Lian-ying Ma, Quan-xi Xue, Chao Huang, Bibo Shao, Li Yu","doi":"10.1117/12.2071220","DOIUrl":"https://doi.org/10.1117/12.2071220","url":null,"abstract":"Excimer laser has been shown to be efficient tools in plasma physics and material science. Recent progress on techniques of beam control in excimer laser system required for energy scaling are overviewed, Configuration and initial results of a 100J/10ns, 18 beam excimer laser system are given.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115799961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The commonly used interferometer and Hartmann-Shack sensor are not ideally qualified for the phase or wavefront measurement in the field of high power laser because the optical elements always have large aperture, the steep phase gradient and very irregular surface profile. The ptychography, which is a newly developed coherent diffraction method for the imaging with short wavelength, can be a perfect alternative to traditional technologies due to its outstanding advantages. The complex transmittance of the optical element can be obtained by measuring its transmitted and incident fields with ptychography and calculating their phase difference. Since ptychography can realize measurement with a resolution comparable to that of interferometry, it can find lots of applications in the field of high power laser such as the measurement of the complex transmittance of large optical element, the thermal distortion of the gas-cooled Nd:glass amplifier, and the focal length of the lens array etc.
{"title":"The application of ptychography in the field of high power laser","authors":"Haiyan Wang, Cheng Liu, X. Pan, Jianqiang Zhu","doi":"10.1117/12.2071096","DOIUrl":"https://doi.org/10.1117/12.2071096","url":null,"abstract":"The commonly used interferometer and Hartmann-Shack sensor are not ideally qualified for the phase or wavefront measurement in the field of high power laser because the optical elements always have large aperture, the steep phase gradient and very irregular surface profile. The ptychography, which is a newly developed coherent diffraction method for the imaging with short wavelength, can be a perfect alternative to traditional technologies due to its outstanding advantages. The complex transmittance of the optical element can be obtained by measuring its transmitted and incident fields with ptychography and calculating their phase difference. Since ptychography can realize measurement with a resolution comparable to that of interferometry, it can find lots of applications in the field of high power laser such as the measurement of the complex transmittance of large optical element, the thermal distortion of the gas-cooled Nd:glass amplifier, and the focal length of the lens array etc.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115306453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New concept of self-focusing on the basis of great number of laboratory experiments and numerical simulations is developed. The results of the field experiments on the control of parameters of a terawatt ultrashort laser radiation in order to obtain the self-focusing effect at a specified part of atmospheric path is presented. The numerical simulations the nonlinear propagation of TW laser pulse at 10,6 mkm carrier wavelength in air are carried out.
{"title":"Interaction of high-power ultrashort laser pulses with air","authors":"A. Zemlyanov, G. Matvienko","doi":"10.1117/12.2073888","DOIUrl":"https://doi.org/10.1117/12.2073888","url":null,"abstract":"New concept of self-focusing on the basis of great number of laboratory experiments and numerical simulations is developed. The results of the field experiments on the control of parameters of a terawatt ultrashort laser radiation in order to obtain the self-focusing effect at a specified part of atmospheric path is presented. The numerical simulations the nonlinear propagation of TW laser pulse at 10,6 mkm carrier wavelength in air are carried out.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125029351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}