Rujian Xiang, Honglai Xu, Guohui Li, Jing Wu, Yinglei Du, Kai Zhang
A novel phase aberration correcting method based on combined deformable mirrors (DMs) in a slab MOPA (master oscillator and power amplifier) solid state laser system is proposed and validated experimentally. The adaptive optics(AO) system with combined deformable mirrors composed of a one-dimension (1D) DM with 11 actuators and a two-dimension (2D) DM with 67 valid actuators, has been designed to correct the phase aberrations, which doesn’t need the high voltage drivers and has an excellent correcting efficiency of the high order phase aberrations. The experimental results show that the wave front of the slab laser beam is compensated well and the residual wave front is less than 0.08 λ rms. The beam quality of the slab laser in the far field is improved to1.67x DL.
{"title":"Beam quality active control of a slab MOPA solid state laser with combined deformable mirrors","authors":"Rujian Xiang, Honglai Xu, Guohui Li, Jing Wu, Yinglei Du, Kai Zhang","doi":"10.1117/12.2256843","DOIUrl":"https://doi.org/10.1117/12.2256843","url":null,"abstract":"A novel phase aberration correcting method based on combined deformable mirrors (DMs) in a slab MOPA (master oscillator and power amplifier) solid state laser system is proposed and validated experimentally. The adaptive optics(AO) system with combined deformable mirrors composed of a one-dimension (1D) DM with 11 actuators and a two-dimension (2D) DM with 67 valid actuators, has been designed to correct the phase aberrations, which doesn’t need the high voltage drivers and has an excellent correcting efficiency of the high order phase aberrations. The experimental results show that the wave front of the slab laser beam is compensated well and the residual wave front is less than 0.08 λ rms. The beam quality of the slab laser in the far field is improved to1.67x DL.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127160582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Saito, Y. Ueno, T. Yabu, A. Kurosawa, S. Nagai, T. Yanagida, T. Hori, Y. Kawasuji, T. Abe, T. Kodama, H. Nakarai, T. Yamazaki, H. Mizoguchi
We have been developing a laser produced plasma extremely ultra violet (LPP-EUV) light source for a high volume manufacturing (HVM) semiconductor lithography. It has several unique technologies such as the high power short pulse carbon dioxide (CO2) laser, the short wavelength solid-state pre-pulse laser and the debris mitigation technology with the magnetic field. This paper presents the key technologies for a high power LPP-EUV light source. We also show the latest performance data which is 188W EUV power at intermediate focus (IF) point with 3.7% conversion efficiency (CE) at 100 kHz.
{"title":"LPP-EUV light source for HVM lithography","authors":"T. Saito, Y. Ueno, T. Yabu, A. Kurosawa, S. Nagai, T. Yanagida, T. Hori, Y. Kawasuji, T. Abe, T. Kodama, H. Nakarai, T. Yamazaki, H. Mizoguchi","doi":"10.1117/12.2257464","DOIUrl":"https://doi.org/10.1117/12.2257464","url":null,"abstract":"We have been developing a laser produced plasma extremely ultra violet (LPP-EUV) light source for a high volume manufacturing (HVM) semiconductor lithography. It has several unique technologies such as the high power short pulse carbon dioxide (CO2) laser, the short wavelength solid-state pre-pulse laser and the debris mitigation technology with the magnetic field. This paper presents the key technologies for a high power LPP-EUV light source. We also show the latest performance data which is 188W EUV power at intermediate focus (IF) point with 3.7% conversion efficiency (CE) at 100 kHz.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130803216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Results of experiments on dissociation of iodine molecules in the presence of singlet oxygen molecules are presented for wide range of oxygen-iodine media composition. Rate constants values have been obtained: 4.3⋅10-17cm3/s for the reaction O2(1Δ)+O2(1Δ)→O2(1Σ) +О2(3Σ) − (1), 2.8⋅10-13 cm3/s for the reactionO2(1Δ)+I(2P1/2)→O2(1Σ)+I(2P3/2) − (4) and 8.3⋅10-11 cm3/s for the reaction O2(1Σ) +I2→О2(3Σ)+2I − (2). Analysis of experiments shows that for the wide range of oxygen-iodine medium composition the dissociation occurs via the chain of reactions (1), (2), O2(1Δ)+I(2P3/2)→О2(3Σ)+I(2P1/2), (4) and via cascade process I2+I(2P1/2)→I2(v)+I(2P3/2), I2(v)+O2(1Δ)→2I+О2(3Σ). Contributions of each mechanism in the dissociation of the iodine are comparable for the typical composition of the active medium of the supersonic chemical oxygen-iodine laser. The experiments did not reveal the contribution of vibrationally excited oxygen molecules in the dissociation of iodine. Thus, the experiments and the following conclusions are fully confirmed iodine dissociation mechanism previously proposed by Heidner et al. (J. Phys. Chem., 87, 2348 (1983)).
本文介绍了各种氧碘介质组成中碘分子在单线态氧分子存在下解离的实验结果。得到速率常数值:4.3⋅10-17cm3 / s的反应O2(1Δ)+ O2(1Δ)→O2(1Σ)+О2(3Σ)−(1),2.8⋅10 - 13立方厘米/秒reactionO2(1Δ)+ I (2 p1/2)→O2(1Σ)+ I (2 p3/2)−⋅- 11(4)和8.3立方厘米/秒的反应O2(1Σ)+ I2→О我−2(3Σ)+ 2(2)。实验分析表明,oxygen-iodine广泛的介质成分发生离解通过连锁反应(1)、(2)、O2(1Δ)+ I (2 p3/2)→О2(3Σ)+ (2 p1/2),(4),通过级联过程I2 + I (2 p1/2)→I2 (v) + I (2 p3/2), I2 (v) + O2(1Δ)→2 I +О2(3Σ)。每种机制对碘解离的贡献与超声化学氧碘激光器活性介质的典型组成相当。实验没有揭示振动激发的氧分子在碘解离中的作用。因此,实验和以下结论充分证实了Heidner等人先前提出的碘解离机制(J. Phys。化学。, 87, 2348(1983))。
{"title":"Results of experiments on iodine dissociation in active medium of oxygen-iodine laser","authors":"M. Zagidullin, N. A. Khvatov, M. Malyshev","doi":"10.1117/12.2257789","DOIUrl":"https://doi.org/10.1117/12.2257789","url":null,"abstract":"Results of experiments on dissociation of iodine molecules in the presence of singlet oxygen molecules are presented for wide range of oxygen-iodine media composition. Rate constants values have been obtained: 4.3⋅10-17cm3/s for the reaction O2(1Δ)+O2(1Δ)→O2(1Σ) +О2(3Σ) − (1), 2.8⋅10-13 cm3/s for the reactionO2(1Δ)+I(2P1/2)→O2(1Σ)+I(2P3/2) − (4) and 8.3⋅10-11 cm3/s for the reaction O2(1Σ) +I2→О2(3Σ)+2I − (2). Analysis of experiments shows that for the wide range of oxygen-iodine medium composition the dissociation occurs via the chain of reactions (1), (2), O2(1Δ)+I(2P3/2)→О2(3Σ)+I(2P1/2), (4) and via cascade process I2+I(2P1/2)→I2(v)+I(2P3/2), I2(v)+O2(1Δ)→2I+О2(3Σ). Contributions of each mechanism in the dissociation of the iodine are comparable for the typical composition of the active medium of the supersonic chemical oxygen-iodine laser. The experiments did not reveal the contribution of vibrationally excited oxygen molecules in the dissociation of iodine. Thus, the experiments and the following conclusions are fully confirmed iodine dissociation mechanism previously proposed by Heidner et al. (J. Phys. Chem., 87, 2348 (1983)).","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"226 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121128523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kinetics of vibrationally-excited singlet oxygen O2(a1Δ,v) molecule have been examined using pulsed laser technique.O2(a1Δ,v) molecules were produced by the pulsed 266 nm laser photolysis of ozone. The kinetics of O2(a1Δ) quenching were followed by observing the 1268 nm fluorescence of the O2 a1Δ-X3Σ transition. It has been found that the loss of O2(a1Δ,v) in the O(3P)/O3/N2 mixture is carried out both in chemical and in V-T process. We observed that the vibrational excitation of singlet oxygen molecule enhances the rate of reaction between O2(a1Δ,v) and O3 molecules. The rate constant of this process was estimated to be in the range 10-12-10-11 cm3/s. Rate constant of O2(a,v=1) quenching by CO2 was found to be (1.03±0.07)×10-14 cm3/s.
{"title":"V-T relaxation of vibrationally excited singlet oxygen molecule in the EOIL systems","authors":"A. P. Torbin, M. Heaven, V. N. Azyazov","doi":"10.1117/12.2257050","DOIUrl":"https://doi.org/10.1117/12.2257050","url":null,"abstract":"Kinetics of vibrationally-excited singlet oxygen O2(a1Δ,v) molecule have been examined using pulsed laser technique.O2(a1Δ,v) molecules were produced by the pulsed 266 nm laser photolysis of ozone. The kinetics of O2(a1Δ) quenching were followed by observing the 1268 nm fluorescence of the O2 a1Δ-X3Σ transition. It has been found that the loss of O2(a1Δ,v) in the O(3P)/O3/N2 mixture is carried out both in chemical and in V-T process. We observed that the vibrational excitation of singlet oxygen molecule enhances the rate of reaction between O2(a1Δ,v) and O3 molecules. The rate constant of this process was estimated to be in the range 10-12-10-11 cm3/s. Rate constant of O2(a,v=1) quenching by CO2 was found to be (1.03±0.07)×10-14 cm3/s.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122836837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alternative wavelengths for optically pumped alkali vapor lasers have been developed using single photon excitation of higher lying P-states, stimulated Raman processes, two-photon excitation of S and D states, and electric quadruple excitation on S-D transitions. Two photon excitation of Cs 72D leads to competing and cascade lasing producing red and infrared lasers operating on the D-P transitions, followed by ultraviolet, blue, the standard near infrared DPAL transitions operating on P-S transitions. The S-D pump transitions are fully bleached at pump intensities exceeding 1 MW/cm2, allowing for lasing transitions that terminate on the ground state. The kinetics of these systems are complex due to competition for population inversion among the many optical transitions. An optically pumped mid-infrared rubidium pulsed, mirrorless laser has also been demonstrated in a heat pipe along both the 62P3/2 - 62S1/2 transition at 2.73 μm and the 62P1/2 - 62S1/2 transition at 2.79 μm with a maximum energy of ~100 nJ. Performance improves dramatically as the rubidium vapor density is increased, in direct contradiction with the prior work. No scaling limitations associated with energy pooling or ionization kinetics have been observed. Practical application for infrared counter measures depends on the further development of blue diode pump sources. Finally, stimulated electronic Raman scattering and hyper-Raman processes in potassium vapor near the D1 and D2 lines have been observed using a stable resonator and pulsed laser excitation. First and second order Stokes and anti-Stokes lines were observed simultaneously and independently for a pump laser tuning range exceeding 70 cm-1. When the pump is tuned between the K D1 and D2 lines, an efficient hyper-Raman process dominates with a slope efficiency that exceeds 10%. Raman shifted laser may be useful as a target illuminator or atmospheric compensation beacon for a high power diode pumped alkali laser.
{"title":"Wavelength diversity in optically pumped alkali vapor lasers","authors":"G. Perram","doi":"10.1117/12.2256256","DOIUrl":"https://doi.org/10.1117/12.2256256","url":null,"abstract":"Alternative wavelengths for optically pumped alkali vapor lasers have been developed using single photon excitation of higher lying P-states, stimulated Raman processes, two-photon excitation of S and D states, and electric quadruple excitation on S-D transitions. Two photon excitation of Cs 72D leads to competing and cascade lasing producing red and infrared lasers operating on the D-P transitions, followed by ultraviolet, blue, the standard near infrared DPAL transitions operating on P-S transitions. The S-D pump transitions are fully bleached at pump intensities exceeding 1 MW/cm2, allowing for lasing transitions that terminate on the ground state. The kinetics of these systems are complex due to competition for population inversion among the many optical transitions. An optically pumped mid-infrared rubidium pulsed, mirrorless laser has also been demonstrated in a heat pipe along both the 62P3/2 - 62S1/2 transition at 2.73 μm and the 62P1/2 - 62S1/2 transition at 2.79 μm with a maximum energy of ~100 nJ. Performance improves dramatically as the rubidium vapor density is increased, in direct contradiction with the prior work. No scaling limitations associated with energy pooling or ionization kinetics have been observed. Practical application for infrared counter measures depends on the further development of blue diode pump sources. Finally, stimulated electronic Raman scattering and hyper-Raman processes in potassium vapor near the D1 and D2 lines have been observed using a stable resonator and pulsed laser excitation. First and second order Stokes and anti-Stokes lines were observed simultaneously and independently for a pump laser tuning range exceeding 70 cm-1. When the pump is tuned between the K D1 and D2 lines, an efficient hyper-Raman process dominates with a slope efficiency that exceeds 10%. Raman shifted laser may be useful as a target illuminator or atmospheric compensation beacon for a high power diode pumped alkali laser.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"254 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121486534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The spread of the pump model, established based on MATLAB, simulates the distribution of the pump in End-Pumped single crystal fiber. Simulation results show that the pump in the rod single crystal fiber will converge again. By changing the crystal absorption coefficient, it can be found that smaller the absorption coefficient is, more uniform the pump distribution is; when it is greater, the pump will concentrate to the pump end more seriously. Establish End- Pumped Experimental platform in the experiment, the crystal is 1 mm in diameter and length of 30 mm, Nd3+ doping concentration is 1%. Change the position of the pump light's focus in the crystal, we can see different distribution of the pump light by different focus location in the crystal and find that the pump light has the most homogeneous distribution when the focus is on the crystal axis and has 1mm distance to the pump end face. At this time, the second convergence of the pump is clearly visible. By changing the pump wavelength, crystal absorption coefficient changes. It is found that under the same pump power, absorption coefficient is greater, the pump will concentrate to the pump end more seriously. And the temperature of crystal pump end rises, which is identical with the simulation results. The results indicate that for the single crystal fiber, the higher absorption coefficient is not better, low absorption coefficient leads to the uniform distribution of the pump, there will be a better absorption in a relatively long length of single crystal fiber. And due to the lower end face temperature, end pump power upper limit will also increase.
{"title":"Simulation and experiment of pump distribution in LD end-pumped Nd:YAG single crystal fiber","authors":"Xiaotian Cai, Xiao Li, Guo-min Zhao","doi":"10.1117/12.2256803","DOIUrl":"https://doi.org/10.1117/12.2256803","url":null,"abstract":"The spread of the pump model, established based on MATLAB, simulates the distribution of the pump in End-Pumped single crystal fiber. Simulation results show that the pump in the rod single crystal fiber will converge again. By changing the crystal absorption coefficient, it can be found that smaller the absorption coefficient is, more uniform the pump distribution is; when it is greater, the pump will concentrate to the pump end more seriously. Establish End- Pumped Experimental platform in the experiment, the crystal is 1 mm in diameter and length of 30 mm, Nd3+ doping concentration is 1%. Change the position of the pump light's focus in the crystal, we can see different distribution of the pump light by different focus location in the crystal and find that the pump light has the most homogeneous distribution when the focus is on the crystal axis and has 1mm distance to the pump end face. At this time, the second convergence of the pump is clearly visible. By changing the pump wavelength, crystal absorption coefficient changes. It is found that under the same pump power, absorption coefficient is greater, the pump will concentrate to the pump end more seriously. And the temperature of crystal pump end rises, which is identical with the simulation results. The results indicate that for the single crystal fiber, the higher absorption coefficient is not better, low absorption coefficient leads to the uniform distribution of the pump, there will be a better absorption in a relatively long length of single crystal fiber. And due to the lower end face temperature, end pump power upper limit will also increase.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124924694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Lux, R. J. Williams, S. Sarang, H. Jasbeer, A. Mckay, O. Kitzler, R. Mildren
We present our recent advances in the field of Raman frequency conversion using high-optical quality CVD-diamond. Different diamond Raman lasers were developed for efficiently generating multi-Watt output at specific wavelengths from the visible to the eye-safe spectral range, while single-frequency operation was accomplished by exploiting an intrinsic mode stability mechanism.
{"title":"High-brightness and narrow-linewidth diamond Raman lasers","authors":"O. Lux, R. J. Williams, S. Sarang, H. Jasbeer, A. Mckay, O. Kitzler, R. Mildren","doi":"10.1117/12.2261684","DOIUrl":"https://doi.org/10.1117/12.2261684","url":null,"abstract":"We present our recent advances in the field of Raman frequency conversion using high-optical quality CVD-diamond. Different diamond Raman lasers were developed for efficiently generating multi-Watt output at specific wavelengths from the visible to the eye-safe spectral range, while single-frequency operation was accomplished by exploiting an intrinsic mode stability mechanism.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116621508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Results of experimental studies of the chemical HF laser with a non-chain reaction are presented. The possibility of the total laser efficiency of 5 % is shown when a traditional C-to-C pumping circuit with the charging voltage of 20-24 kV is used. It is experimentally shown that the specific radiation output energy of 21 J/l is reached at the specific pump energy of 350 J/l in SF6/H2 = 14/1 mixture at the total pressure of 0.27 bar.
{"title":"TEA HF laser with a high specific radiation energy","authors":"A. Puchikin, M. Andreev, V. Losev, Y. Panchenko","doi":"10.1117/12.2256353","DOIUrl":"https://doi.org/10.1117/12.2256353","url":null,"abstract":"Results of experimental studies of the chemical HF laser with a non-chain reaction are presented. The possibility of the total laser efficiency of 5 % is shown when a traditional C-to-C pumping circuit with the charging voltage of 20-24 kV is used. It is experimentally shown that the specific radiation output energy of 21 J/l is reached at the specific pump energy of 350 J/l in SF6/H2 = 14/1 mixture at the total pressure of 0.27 bar.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114891558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. R. Ghildina, P. A. Mikheyev, A. Chernyshov, N. I. Ufimtsev, V. N. Azyazov, M. Heaven
This paper describes systematic measurements of pressure broadening coefficients for argon and krypton lines in an RF (radio-frequency) discharge plasma sustained in a mixture of inert gases. Using tunable diode laser spectroscopy we obtained experimental data for pressure broadening of argon and krypton lines. Pressure broadening coefficients were determined for Ar+Ne and Kr+Ne and Kr+Ar. For krypton, the isotopic structure of the line was taken into account and an appropriate fitting function was used to determine pressure broadening coefficients for the natural mixture of isotopes. These data may be used for diagnostics of the active medium of optically pumped all-rare-gas lasers.
{"title":"Pressure broadening coefficients for the 811.5nm Ar line and 811.3nm Kr line in rare gases","authors":"A. R. Ghildina, P. A. Mikheyev, A. Chernyshov, N. I. Ufimtsev, V. N. Azyazov, M. Heaven","doi":"10.1117/12.2256708","DOIUrl":"https://doi.org/10.1117/12.2256708","url":null,"abstract":"This paper describes systematic measurements of pressure broadening coefficients for argon and krypton lines in an RF (radio-frequency) discharge plasma sustained in a mixture of inert gases. Using tunable diode laser spectroscopy we obtained experimental data for pressure broadening of argon and krypton lines. Pressure broadening coefficients were determined for Ar+Ne and Kr+Ne and Kr+Ar. For krypton, the isotopic structure of the line was taken into account and an appropriate fitting function was used to determine pressure broadening coefficients for the natural mixture of isotopes. These data may be used for diagnostics of the active medium of optically pumped all-rare-gas lasers.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115092465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The near and far field intensity distribution as well as the beam quality of the combination between the hollow beam generated by double axicons and the Gaussian beam were simulated in this paper. The simulation results revealed that several parameters like the interval between two axicons and the phase difference between the two beams would influence the intensity distribution of the combined beam, especially the phase difference between the hollow beam and Gaussian beam which could transforms the far-field intensity distribution into quasi-hollow distribution or peak shaped distribution and was of great potentiality in the industry application.
{"title":"Theoretical research of beam combination between hollow beam and Gaussian beam","authors":"Peng Wang, Xiao Li, Yaping Shang, Xiaojun Xu","doi":"10.1117/12.2256552","DOIUrl":"https://doi.org/10.1117/12.2256552","url":null,"abstract":"The near and far field intensity distribution as well as the beam quality of the combination between the hollow beam generated by double axicons and the Gaussian beam were simulated in this paper. The simulation results revealed that several parameters like the interval between two axicons and the phase difference between the two beams would influence the intensity distribution of the combined beam, especially the phase difference between the hollow beam and Gaussian beam which could transforms the far-field intensity distribution into quasi-hollow distribution or peak shaped distribution and was of great potentiality in the industry application.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126757518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}