I. Auslender, T. Cohen, E. Lebiush, B. Barmashenko, S. Rosenwaks
We present the results of an experimental study of Ti:Sapphire pumped Cs laser and theoretical modeling of these results, where we focused on the influence of the pump-to-laser beam overlap, a crucial parameter for optimizing the output laser power. The dependence of the output laser power on the incident pump power was found for varying pump beam cross-section widths and for a constant laser beam. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency ~55% was obtained. Non monotonic dependence of the laser power and threshold power on the pump beam radius (at a given pump power) was observed with a maximum laser power and minimum threshold power achieved at the ratio ~0.7 between the optimal pump beam and laser beam radius. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the incident pump power at different pump beam radii and of the laser power, threshold power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency but rather the pump and laser beam spatial shapes as input parameters. This model can be applied to different optically pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths.
{"title":"Optically pumped Cs vapor lasers: pump-to-laser beam overlap optimization","authors":"I. Auslender, T. Cohen, E. Lebiush, B. Barmashenko, S. Rosenwaks","doi":"10.1117/12.2256801","DOIUrl":"https://doi.org/10.1117/12.2256801","url":null,"abstract":"We present the results of an experimental study of Ti:Sapphire pumped Cs laser and theoretical modeling of these results, where we focused on the influence of the pump-to-laser beam overlap, a crucial parameter for optimizing the output laser power. The dependence of the output laser power on the incident pump power was found for varying pump beam cross-section widths and for a constant laser beam. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency ~55% was obtained. Non monotonic dependence of the laser power and threshold power on the pump beam radius (at a given pump power) was observed with a maximum laser power and minimum threshold power achieved at the ratio ~0.7 between the optimal pump beam and laser beam radius. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the incident pump power at different pump beam radii and of the laser power, threshold power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency but rather the pump and laser beam spatial shapes as input parameters. This model can be applied to different optically pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115703506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The BLAZE Multiphysics™ software simulation suite was specifically developed to model highly complex multiphysical systems in a computationally efficient and highly scalable manner. These capabilities are of particular use when applied to the complexities associated with high energy laser systems that combine subsonic/transonic/supersonic fluid dynamics, chemically reacting flows, laser electronics, heat transfer, optical physics, and in some cases plasma discharges. In this paper we present detailed cw and pulsed gas laser calculations using the BLAZE model with comparisons to data. Simulations of DPAL, XPAL, ElectricOIL (EOIL), and the optically pumped rare gas laser were found to be in good agreement with experimental data.
{"title":"Advanced laser modeling with BLAZE multiphysics","authors":"A. Palla, D. Carroll, M. Gray, Lui Suzuki","doi":"10.1117/12.2260487","DOIUrl":"https://doi.org/10.1117/12.2260487","url":null,"abstract":"The BLAZE Multiphysics™ software simulation suite was specifically developed to model highly complex multiphysical systems in a computationally efficient and highly scalable manner. These capabilities are of particular use when applied to the complexities associated with high energy laser systems that combine subsonic/transonic/supersonic fluid dynamics, chemically reacting flows, laser electronics, heat transfer, optical physics, and in some cases plasma discharges. In this paper we present detailed cw and pulsed gas laser calculations using the BLAZE model with comparisons to data. Simulations of DPAL, XPAL, ElectricOIL (EOIL), and the optically pumped rare gas laser were found to be in good agreement with experimental data.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127355438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiong-jun Zhang, Deng-sheng Wu, Jun Zhang, Donghui Lin, Jian-gang Zheng, K. Zheng
Large-aperture electro-optical switch based on plasma Pockels cell (PPC) is one of important components for inertial confinement fusion (ICF) laser facility. We have demonstrated a single-pulse driven 4×1 PPC with 400mm×400mm aperture for SGIII laser facility. And four 2×1 PPCs modules with 350mm×350mm aperture have been operated in SGII update laser facility. It is different to the PPC of NIF and LMJ for its simple operation to perform Pockels effect. With optimized operation parameters, the PPCs meet the SGII-U laser requirement of four-pass amplification control. Only driven by one high voltage pulser, the simplified PPC system would be provided with less associated diagnostics, and higher reliability. To farther reduce the insert loss of the PPC, research on the large-aperture PPC based on DKDP crystal driven by one pulse is developed. And several single-pulse driven PPCs with 80mm×80mm DKDP crystal have been manufactured and operated in laser facilities.
{"title":"Development of large-aperture electro-optical switch for high power laser at CAEP","authors":"Xiong-jun Zhang, Deng-sheng Wu, Jun Zhang, Donghui Lin, Jian-gang Zheng, K. Zheng","doi":"10.1117/12.2065224","DOIUrl":"https://doi.org/10.1117/12.2065224","url":null,"abstract":"Large-aperture electro-optical switch based on plasma Pockels cell (PPC) is one of important components for inertial confinement fusion (ICF) laser facility. We have demonstrated a single-pulse driven 4×1 PPC with 400mm×400mm aperture for SGIII laser facility. And four 2×1 PPCs modules with 350mm×350mm aperture have been operated in SGII update laser facility. It is different to the PPC of NIF and LMJ for its simple operation to perform Pockels effect. With optimized operation parameters, the PPCs meet the SGII-U laser requirement of four-pass amplification control. Only driven by one high voltage pulser, the simplified PPC system would be provided with less associated diagnostics, and higher reliability. To farther reduce the insert loss of the PPC, research on the large-aperture PPC based on DKDP crystal driven by one pulse is developed. And several single-pulse driven PPCs with 80mm×80mm DKDP crystal have been manufactured and operated in laser facilities.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116523032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With a recent developed mode-coupling model, the Brillouin gain spectra (BGS) of multi-mode fibers (MMF) are investigated and compared with the corresponding experiment. It is found that the calculation results are coincident well with the experiment data. Furthermore, the BGS are found to be very sensitive to the index fluctuation. Such phenomenon is demonstrated by introducing a small index hump or dip in the center of the fiber core. And it can be explained by that the index fluctuation may influence the acoustic mode greatly.
{"title":"Effect of acoustic waveguide properties on the Brillouin gain spectrum in multi-mode fibers","authors":"W. Ke, Xiao-Jun Wang, Xuan Tang","doi":"10.1117/12.2065113","DOIUrl":"https://doi.org/10.1117/12.2065113","url":null,"abstract":"With a recent developed mode-coupling model, the Brillouin gain spectra (BGS) of multi-mode fibers (MMF) are investigated and compared with the corresponding experiment. It is found that the calculation results are coincident well with the experiment data. Furthermore, the BGS are found to be very sensitive to the index fluctuation. Such phenomenon is demonstrated by introducing a small index hump or dip in the center of the fiber core. And it can be explained by that the index fluctuation may influence the acoustic mode greatly.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116109426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An Electro-optical Q-switched Nd:YAG slab laser with a crossed misalignment Porro prism resonator for space applications has been theoretically and experimentally investigated. The phase shift induced by the combination of different wave plates and Porro prism azimuth angles have been studied for creating high loss condition prior to Q-switching. The relationship of the effective output coupling reflectivity and the employed Q-switch driving voltage is explored by using Jones matrix optics. In the experiment, the maximum output pulse energy of 93 mJ with 14-ns pulse duration is obtained at the repetition rate of 20 Hz and the optical-to-optical conversion efficiency is 16.8%. The beam quality factors are M 2 x = 2.5 and M 2y = 2.2, respectively.
{"title":"Characteristic analysis of a polarization output coupling Porro prism resonator","authors":"Hailong Yang, J. Meng, Weibiao Chen","doi":"10.1117/12.2064390","DOIUrl":"https://doi.org/10.1117/12.2064390","url":null,"abstract":"An Electro-optical Q-switched Nd:YAG slab laser with a crossed misalignment Porro prism resonator for space applications has been theoretically and experimentally investigated. The phase shift induced by the combination of different wave plates and Porro prism azimuth angles have been studied for creating high loss condition prior to Q-switching. The relationship of the effective output coupling reflectivity and the employed Q-switch driving voltage is explored by using Jones matrix optics. In the experiment, the maximum output pulse energy of 93 mJ with 14-ns pulse duration is obtained at the repetition rate of 20 Hz and the optical-to-optical conversion efficiency is 16.8%. The beam quality factors are M 2 x = 2.5 and M 2y = 2.2, respectively.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124789969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Yu, Yongxin Chang, Pei Lu, Zhiyong Xu, Chengyu Fu, Yafei Wang
Discriminatively trained Part based Model (DPM) is one of the state-of-the-art object detectors. However, DPM complies little with real vision procedure. In this paper, we try arming DPM with biologically inspired approaches. On the one hand, we use Gabor instead of Histogram of Oriented Gradient (HOG) as low level features to simulate the receptive fields of simple cells. We show Gabor outperforms or is on par with HOG. On the other hand, we learn biased saliency of the object with the same Gabor features to simulate the search procedure of real vision. We combine DPM and biased saliency in a single Bayesian framework, which at least partially reflects the interactions between top-down and bottom-up vision procedures. We show these biologically inspired procedures can effectively improve the performance and efficiency of DPM. We present experimental results on both challenging PASCAL VOC2007 dataset and publicly available sequences.
{"title":"Discriminatively trained part based model armed with biased saliency","authors":"H. Yu, Yongxin Chang, Pei Lu, Zhiyong Xu, Chengyu Fu, Yafei Wang","doi":"10.1117/12.2064960","DOIUrl":"https://doi.org/10.1117/12.2064960","url":null,"abstract":"Discriminatively trained Part based Model (DPM) is one of the state-of-the-art object detectors. However, DPM complies little with real vision procedure. In this paper, we try arming DPM with biologically inspired approaches. On the one hand, we use Gabor instead of Histogram of Oriented Gradient (HOG) as low level features to simulate the receptive fields of simple cells. We show Gabor outperforms or is on par with HOG. On the other hand, we learn biased saliency of the object with the same Gabor features to simulate the search procedure of real vision. We combine DPM and biased saliency in a single Bayesian framework, which at least partially reflects the interactions between top-down and bottom-up vision procedures. We show these biologically inspired procedures can effectively improve the performance and efficiency of DPM. We present experimental results on both challenging PASCAL VOC2007 dataset and publicly available sequences.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"33 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121000269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper presents a control algorithm based on double deformable mirrors' (DM) voltage decoupling for an adaptive optics system. In the method there includes two DMs, and one DM has large stroke, and another has high spatial frequency. This paper presents the theoretic model about DM's voltage decoupling, designs control system that uses inertial element, and analyzes the performance on the control algorithm. Simulation and experimental results indicate the method can effectively correct aberrations that include large-scale low order aberrations and high spatial frequency aberrations in adaptive optics system at the same time, and improve the AO control system's performance.
{"title":"Double deformable mirrors' control based on voltage decoupling for adaptive optics system","authors":"R. Zhou, Feng Shen, H. Ye, Xinyang Li","doi":"10.1117/12.2065374","DOIUrl":"https://doi.org/10.1117/12.2065374","url":null,"abstract":"The paper presents a control algorithm based on double deformable mirrors' (DM) voltage decoupling for an adaptive optics system. In the method there includes two DMs, and one DM has large stroke, and another has high spatial frequency. This paper presents the theoretic model about DM's voltage decoupling, designs control system that uses inertial element, and analyzes the performance on the control algorithm. Simulation and experimental results indicate the method can effectively correct aberrations that include large-scale low order aberrations and high spatial frequency aberrations in adaptive optics system at the same time, and improve the AO control system's performance.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121130464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. P. Torbin, P. A. Mikheyev, A. A. Pershin, A. V. Mezhenin, V. Azyazov, M. Heaven
The development of a discharge oxygen iodine laser (DOIL) requires efficient production of singlet delta oxygen O2(α1 Δ) in electric discharge. It is important to understand the mechanisms of of O2α1 Δ) quenching in these devices. To gain understanding of this mechanisms quenching of O2(α]1 Δ)in O/O2/O3/CO2/He mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(α1 Δ) quenching were followed by observing the 1268 nm fluorescence of O2α1 Δ → X3 Σ transition. It is shown that vibrationally excited ozone O3(υ;) formed in the three-body recombination O + O2 + M →O3(υ) + M is an important O/O2/O3 quenching agent in O/O2/O3 systems. The process O3(υ ≥2) + O2(a1 Δ)→ 2O2 + O is the main O2(α1 Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease oxygen atom concentration, the contribution of this process into overall O2(α1Δ) removal is significant even in the discharge zone. It was found in experiment that addition of species that are good quenchers of O3(υ;) decrease O2(a1 Δ) deactivation rate in the O/O2/O3 mixtures.
{"title":"Molecular singlet delta oxygen quenching kinetics in the EOIL system","authors":"A. P. Torbin, P. A. Mikheyev, A. A. Pershin, A. V. Mezhenin, V. Azyazov, M. Heaven","doi":"10.1117/12.2064825","DOIUrl":"https://doi.org/10.1117/12.2064825","url":null,"abstract":"The development of a discharge oxygen iodine laser (DOIL) requires efficient production of singlet delta oxygen O2(α1 Δ) in electric discharge. It is important to understand the mechanisms of of O2α1 Δ) quenching in these devices. To gain understanding of this mechanisms quenching of O2(α]1 Δ)in O/O2/O3/CO2/He mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(α1 Δ) quenching were followed by observing the 1268 nm fluorescence of O2α1 Δ → X3 Σ transition. It is shown that vibrationally excited ozone O3(υ;) formed in the three-body recombination O + O2 + M →O3(υ) + M is an important O/O2/O3 quenching agent in O/O2/O3 systems. The process O3(υ ≥2) + O2(a1 Δ)→ 2O2 + O is the main O2(α1 Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease oxygen atom concentration, the contribution of this process into overall O2(α1Δ) removal is significant even in the discharge zone. It was found in experiment that addition of species that are good quenchers of O3(υ;) decrease O2(a1 Δ) deactivation rate in the O/O2/O3 mixtures.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127116343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guanghui Xue, Bin Zhang, Ke Yin, Weiqiang Yang, J. Hou
Lasers in the eye-safe 2 μm spectral region are attracting significant interest due to a variety of applications such as atmospheric lidar sensing and medical treatment, which require laser sources matching the absorption lines of various molecules in the 2 μm wavelength region. We demonstrate an all-fiber Tm/Ho-codoped laser operating in the 2 μm wavelength region with a wide wavelength tuning range of more than 300 nm. The Tm/Ho-codoped fiber laser (THFL) was built in a ring cavity configuration with a fiberized grating-based tunable filter to select the operating wavelength. The tunable wavelength range of the THFL was from 1727 nm to 2030 nm. To the best of our knowledge, this is the widest tuning range that has been reported for an all-fiber rare-earth-doped laser to date. Efficient short wavelength operation was also achieved. The output power of the THFL was further scaled up from 1810 nm to 2010 nm by using a stage of Tm/Ho-codoped fiber amplifier (THFA), which exhibited the maximum slope efficiency of 42.6% with output power of 408 mW at 1910 nm.
{"title":"All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm","authors":"Guanghui Xue, Bin Zhang, Ke Yin, Weiqiang Yang, J. Hou","doi":"10.1117/12.2071092","DOIUrl":"https://doi.org/10.1117/12.2071092","url":null,"abstract":"Lasers in the eye-safe 2 μm spectral region are attracting significant interest due to a variety of applications such as atmospheric lidar sensing and medical treatment, which require laser sources matching the absorption lines of various molecules in the 2 μm wavelength region. We demonstrate an all-fiber Tm/Ho-codoped laser operating in the 2 μm wavelength region with a wide wavelength tuning range of more than 300 nm. The Tm/Ho-codoped fiber laser (THFL) was built in a ring cavity configuration with a fiberized grating-based tunable filter to select the operating wavelength. The tunable wavelength range of the THFL was from 1727 nm to 2030 nm. To the best of our knowledge, this is the widest tuning range that has been reported for an all-fiber rare-earth-doped laser to date. Efficient short wavelength operation was also achieved. The output power of the THFL was further scaled up from 1810 nm to 2010 nm by using a stage of Tm/Ho-codoped fiber amplifier (THFA), which exhibited the maximum slope efficiency of 42.6% with output power of 408 mW at 1910 nm.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125971339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shukai Tang, Liucheng Li, L. Duo, Yuanhu Wang, Haijun Yu, Yuqi Jin, F. Sang
An optical cavity temperature test method has been established for the HF chemical laser. This method assumes that in HF optical cavity the rotational distribution of vibrationally excited HF molecules meets the statistical thermodynamic distribution, the first overtones (v = 3-1 and 2-0) spontaneous emission spectral intensity distribution is obtained by using OMA V, the optical cavity temperature is calculated by linear fitting the rotational thermal equilibrium distribution formula for each HF vibrationally excited state. This method is simple, reliable, and repeatable. This method can be used to test the optical cavity temperature not only without lasing, but also with lasing.
{"title":"Optical cavity temperature measurement based on the first overtones spontaneous emission spectra for HF chemical laser","authors":"Shukai Tang, Liucheng Li, L. Duo, Yuanhu Wang, Haijun Yu, Yuqi Jin, F. Sang","doi":"10.1117/12.2065282","DOIUrl":"https://doi.org/10.1117/12.2065282","url":null,"abstract":"An optical cavity temperature test method has been established for the HF chemical laser. This method assumes that in HF optical cavity the rotational distribution of vibrationally excited HF molecules meets the statistical thermodynamic distribution, the first overtones (v = 3-1 and 2-0) spontaneous emission spectral intensity distribution is obtained by using OMA V, the optical cavity temperature is calculated by linear fitting the rotational thermal equilibrium distribution formula for each HF vibrationally excited state. This method is simple, reliable, and repeatable. This method can be used to test the optical cavity temperature not only without lasing, but also with lasing.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125288437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}