Ming-xiu Xu, F. Sang, Yuelong Zhang, Benjie Fang, Yuqi Jin
The supersonic nozzles lower temperature to 170-180 K better for the small signal gain coefficient. But at this temperature, the CO2 buffer gas may become liquid state. A chemical oxygen-iodine laser (COIL) employing CO2 as buffer gas and no-flake-nozzle was studied. Some mathematical simulation in three-dimensional computation fluid dynamics was adopted first to validate its usability. New nozzles gave the temperature higher than 400 K and considerable small signal gain coefficient. In the same conditions as simulation, experiments gave a 23% of chemical efficiency and 2.5 kW of output power. And it have got rid of “black area”, which was familiar in the supersonic COIL both in simulation and experimental results.
{"title":"Research on COIL employing no-flake-nozzle and CO2 as buffer gas","authors":"Ming-xiu Xu, F. Sang, Yuelong Zhang, Benjie Fang, Yuqi Jin","doi":"10.1117/12.2065089","DOIUrl":"https://doi.org/10.1117/12.2065089","url":null,"abstract":"The supersonic nozzles lower temperature to 170-180 K better for the small signal gain coefficient. But at this temperature, the CO2 buffer gas may become liquid state. A chemical oxygen-iodine laser (COIL) employing CO2 as buffer gas and no-flake-nozzle was studied. Some mathematical simulation in three-dimensional computation fluid dynamics was adopted first to validate its usability. New nozzles gave the temperature higher than 400 K and considerable small signal gain coefficient. In the same conditions as simulation, experiments gave a 23% of chemical efficiency and 2.5 kW of output power. And it have got rid of “black area”, which was familiar in the supersonic COIL both in simulation and experimental results.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"9255 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130011570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhilin Li, Xiao Wang, J. Mu, Q. Zhu, Jing-qin Su, K. Zhou, Junwei Zhang, Wei Yan, Zhaohui Wu, Y. Zuo, Hongzhong Liu
In a high-energy chirped-pulse-amplified laser system, grating tiling technology provides an effective means to increase the aperture of the gratings and to scale the energy and irradiance of short-pulse lasers. The difficulties lie in controlling tiling errors accurately between the sub-gratings and keeping long time stability. In this paper, a two-pass full-tiled grating-compressor (TGC) with real- time control unit is developed for the first time. The far-field distributions of the 0th order and -1 st order diffracted beams of the two pairs of tiled gratings are monitored by the same CCD system, with the main laser chain being not disturbed. In this way, we realize online real-time control of tiling errors. Through a method of locking the far-field image to compensating the temporal drift, we can realize the automation of the assembly. The TGC has successfully applied in the multi-function XGIII laser facility, and focusing focal spot and output pulse width are obtained.
{"title":"Method to realize real-time monitoring and control of a tiled-grating compressor for the XGIII laser facility","authors":"Zhilin Li, Xiao Wang, J. Mu, Q. Zhu, Jing-qin Su, K. Zhou, Junwei Zhang, Wei Yan, Zhaohui Wu, Y. Zuo, Hongzhong Liu","doi":"10.1117/12.2064963","DOIUrl":"https://doi.org/10.1117/12.2064963","url":null,"abstract":"In a high-energy chirped-pulse-amplified laser system, grating tiling technology provides an effective means to increase the aperture of the gratings and to scale the energy and irradiance of short-pulse lasers. The difficulties lie in controlling tiling errors accurately between the sub-gratings and keeping long time stability. In this paper, a two-pass full-tiled grating-compressor (TGC) with real- time control unit is developed for the first time. The far-field distributions of the 0th order and -1 st order diffracted beams of the two pairs of tiled gratings are monitored by the same CCD system, with the main laser chain being not disturbed. In this way, we realize online real-time control of tiling errors. Through a method of locking the far-field image to compensating the temporal drift, we can realize the automation of the assembly. The TGC has successfully applied in the multi-function XGIII laser facility, and focusing focal spot and output pulse width are obtained.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132860867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For reducing the error of affine transform while matching the three-dimensional targets in optical images, the model of optical images matching was extended to three dimension using distance information of high characteristics in optical images (vector distance information), the three-dimensional (3D) coordinate transform was proposed. Theoretical analysis shows that when the optical imaging model was simplified to pinhole imaging model, the error of 3D coordinate transform didn’t exist, while avoiding the nonlinear problem. The amount of calculation of 3D coordinate transform was analyzed using least squares estimation and RANSAC estimation as examples; the amount of calculation of 3D coordinate transform is only four times of affine transform, twice when using RANSAC estimates. The simulation analysis of matching tracking algorithm based on SIFT feature points using 3D coordinate transform was taken by the visual simulation software VegaPrime and MATLAB, and the advantages of 3D coordinate transform has been verified.
{"title":"3D coordinate transform model of optical images fusing vector distance information","authors":"Hua Ran, Yihua Huo, Zili Huang","doi":"10.1117/12.2064970","DOIUrl":"https://doi.org/10.1117/12.2064970","url":null,"abstract":"For reducing the error of affine transform while matching the three-dimensional targets in optical images, the model of optical images matching was extended to three dimension using distance information of high characteristics in optical images (vector distance information), the three-dimensional (3D) coordinate transform was proposed. Theoretical analysis shows that when the optical imaging model was simplified to pinhole imaging model, the error of 3D coordinate transform didn’t exist, while avoiding the nonlinear problem. The amount of calculation of 3D coordinate transform was analyzed using least squares estimation and RANSAC estimation as examples; the amount of calculation of 3D coordinate transform is only four times of affine transform, twice when using RANSAC estimates. The simulation analysis of matching tracking algorithm based on SIFT feature points using 3D coordinate transform was taken by the visual simulation software VegaPrime and MATLAB, and the advantages of 3D coordinate transform has been verified.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130849052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
When chemical oxygen-iodine laser (COIL) runs longtime, the influence on heating effects of mirrors has attracted attention abroad. For obtaining accurate estimate on it, relying on past experience, we carry on coupling simulation among flow field, optical field and heating effects of mirrors. At present computational condition, three-dimensional model about nozzle flow is constructed; by analyzing simulation data, coupling simulation result is obtained between flow field and optical field. Finally, the influence on heating effects of mirrors is investigated. The focus is solving the convergence of iteration between flow field and optical field. By particular analysis on the physical mechanism, coupling style is adjusted; finally, stable result is obtained, coupling iteration times is reduced greatly. The simulation result indicate if considering actual flow field disturbance, facular fragmentation is distinct; the disturbance exist from the beginning, so it influences on beam quality in the whole course.
{"title":"Research on 3D simulation of coupling model among flow field, optical field and heating effects of mirrors","authors":"Y. Li, Y. Du, S. Li","doi":"10.1117/12.2065460","DOIUrl":"https://doi.org/10.1117/12.2065460","url":null,"abstract":"When chemical oxygen-iodine laser (COIL) runs longtime, the influence on heating effects of mirrors has attracted attention abroad. For obtaining accurate estimate on it, relying on past experience, we carry on coupling simulation among flow field, optical field and heating effects of mirrors. At present computational condition, three-dimensional model about nozzle flow is constructed; by analyzing simulation data, coupling simulation result is obtained between flow field and optical field. Finally, the influence on heating effects of mirrors is investigated. The focus is solving the convergence of iteration between flow field and optical field. By particular analysis on the physical mechanism, coupling style is adjusted; finally, stable result is obtained, coupling iteration times is reduced greatly. The simulation result indicate if considering actual flow field disturbance, facular fragmentation is distinct; the disturbance exist from the beginning, so it influences on beam quality in the whole course.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130415832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An introduction was given to the active segmented mirror(ASM) used in coherent beam combination firstly. Based on the actuator distribution of ASM, the computational formula between the perturbation voltage of each actuator and the perturbation of piston or tip/tilt was acquired. Then the numerical analysis of correction process with two different perturbation ways in SPGD algorithm was carried on. By comparing the two correction processes, it was found that the convergence speed of the second method is 25 times as fast as the first one when there only existed piston error between the two beamlets, while the convergence speed was almost the same when there only existed tip/tilt error, and the convergence speed is 5 times when there existed both piston and tip/tilt error.
{"title":"Numerical analysis of the convergence speed of the SPGD algorithm with two different perturbation methods in coherent beam combination using active segmented mirror","authors":"Yi Tan, Xinyang Li, Wen Luo, C. Geng","doi":"10.1117/12.2065452","DOIUrl":"https://doi.org/10.1117/12.2065452","url":null,"abstract":"An introduction was given to the active segmented mirror(ASM) used in coherent beam combination firstly. Based on the actuator distribution of ASM, the computational formula between the perturbation voltage of each actuator and the perturbation of piston or tip/tilt was acquired. Then the numerical analysis of correction process with two different perturbation ways in SPGD algorithm was carried on. By comparing the two correction processes, it was found that the convergence speed of the second method is 25 times as fast as the first one when there only existed piston error between the two beamlets, while the convergence speed was almost the same when there only existed tip/tilt error, and the convergence speed is 5 times when there existed both piston and tip/tilt error.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"9255 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129250800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Schuöcker, T. Schumi, O. Spitzer, F. Bammer, G. Schuöcker, G. Sperrer
Nowadays high power lasers are mainly used for cutting of sheet metals, for welding, hardening and rapid prototyping. In the forming of sheet metals as bending or deep drawing lasers are not used. Nevertheless a few years ago a new application of high power lasers has been invented, where bending of materials that break at room temperature becomes possible by heating them along the bending edge with high power lasers thus allowing their treatment without cracks and rupture. For this purpose a large number of diode lasers are arranged in the bottom tool of a bending machine (a V-shaped die) which heat up the initially flat sheet metal during the bending process what is performed by pressing it into the die with a knife shaped upper tool where due to the laser heating the material is softened and thus cracks are avoided. For the technical realization of the new process of laser assisted die bending, modules equipped with numerous laser diodes and a total beam power of 2,5 kW are used. The light emitted by these modules enters a tool with a length of 15cm and is deflected towards the workpiece. By using ten of these modules with adjacent dies and by integrating those in a bending press a bending edge of sheet metals with a length of 1500mm can be realized. Such a bending press with laser assistance also needs energization with a power of practically 50kW, a respective water flow, a heat exchanger system and also a control for all functions of this system. Special measures have also been developed to avoid radiating of those tools that are not covered by a workpiece in the case of bending edges shorter than the full length of the bending tools whereas individual short circuiting of diode modules can be performed. Specific measures to ensure a safe operation without any harm to the operational person have been realized. Exploitation of the bending process has been carried out for titanium, where material thicknesses up to 3mm have been bent successfully.
{"title":"Laser assisted die bending: a new application of high power diode lasers","authors":"D. Schuöcker, T. Schumi, O. Spitzer, F. Bammer, G. Schuöcker, G. Sperrer","doi":"10.1117/12.2071210","DOIUrl":"https://doi.org/10.1117/12.2071210","url":null,"abstract":"Nowadays high power lasers are mainly used for cutting of sheet metals, for welding, hardening and rapid prototyping. In the forming of sheet metals as bending or deep drawing lasers are not used. Nevertheless a few years ago a new application of high power lasers has been invented, where bending of materials that break at room temperature becomes possible by heating them along the bending edge with high power lasers thus allowing their treatment without cracks and rupture. For this purpose a large number of diode lasers are arranged in the bottom tool of a bending machine (a V-shaped die) which heat up the initially flat sheet metal during the bending process what is performed by pressing it into the die with a knife shaped upper tool where due to the laser heating the material is softened and thus cracks are avoided. For the technical realization of the new process of laser assisted die bending, modules equipped with numerous laser diodes and a total beam power of 2,5 kW are used. The light emitted by these modules enters a tool with a length of 15cm and is deflected towards the workpiece. By using ten of these modules with adjacent dies and by integrating those in a bending press a bending edge of sheet metals with a length of 1500mm can be realized. Such a bending press with laser assistance also needs energization with a power of practically 50kW, a respective water flow, a heat exchanger system and also a control for all functions of this system. Special measures have also been developed to avoid radiating of those tools that are not covered by a workpiece in the case of bending edges shorter than the full length of the bending tools whereas individual short circuiting of diode modules can be performed. Specific measures to ensure a safe operation without any harm to the operational person have been realized. Exploitation of the bending process has been carried out for titanium, where material thicknesses up to 3mm have been bent successfully.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"79 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129273840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to resolve the disadvantages such as poor appearance quality, poor tightness, low efficiency of resistance spot welding of stainless steel rail vehicles, partial penetration lap laser welding process was investigated widely. But due to the limitation of processing technology, there will be local incomplete fusion in the lap laser welding seam. Defect rate is the ratio of the local incomplete fusion length to the weld seam length. The tensile shear strength under different defect rate and its effect on the car body static strength are not clear. It is necessary to find the biggest defect rate by numerical analysis of effects of different defect rates on the laser welding stainless steel rail vehicle body structure strength ,and tests of laser welding shear tensile strength.
{"title":"Investigation of defect rate of lap laser welding of stainless steel railway vehicles car body","authors":"Hongxiao Wang","doi":"10.1117/12.2062962","DOIUrl":"https://doi.org/10.1117/12.2062962","url":null,"abstract":"In order to resolve the disadvantages such as poor appearance quality, poor tightness, low efficiency of resistance spot welding of stainless steel rail vehicles, partial penetration lap laser welding process was investigated widely. But due to the limitation of processing technology, there will be local incomplete fusion in the lap laser welding seam. Defect rate is the ratio of the local incomplete fusion length to the weld seam length. The tensile shear strength under different defect rate and its effect on the car body static strength are not clear. It is necessary to find the biggest defect rate by numerical analysis of effects of different defect rates on the laser welding stainless steel rail vehicle body structure strength ,and tests of laser welding shear tensile strength.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"27 16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126715494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei Chen, F. Gao, Yan Xu, Ji-jiang Xie, Dian-jun Li, Jing Guo
Kilowatts class diode-pumped Cs vapor laser (DPCL) has been realized and this kind of lasers have military applications potentially for its high output power with high efficiency. Pumped by a fiber coupled laser diode, the key operating parameters of a DPCL are studied, including the spot size of focused pumping light, pressure ratio of buffer gases, vapor cell length, temperature of Cs vapor and reflectivity of output coupler. The spot size is properly chosen in the consideration of both the intensity scalability and mode matching. Pressure ratio is optimized under a modest pressure of mixed gases of helium and ethane. Under the optimized pressure ratio, the Cs vapor can absorb the pumping energy and convert it into laser energy efficiently. Besides, the temperature and reflectivity are also optimized to operate the DPCL in optimum state. The results have significant instructions for the experimental design of DPCL.
{"title":"Study on key operating parameters of diode-pumped Cs vapor laser","authors":"Fei Chen, F. Gao, Yan Xu, Ji-jiang Xie, Dian-jun Li, Jing Guo","doi":"10.1117/12.2065349","DOIUrl":"https://doi.org/10.1117/12.2065349","url":null,"abstract":"Kilowatts class diode-pumped Cs vapor laser (DPCL) has been realized and this kind of lasers have military applications potentially for its high output power with high efficiency. Pumped by a fiber coupled laser diode, the key operating parameters of a DPCL are studied, including the spot size of focused pumping light, pressure ratio of buffer gases, vapor cell length, temperature of Cs vapor and reflectivity of output coupler. The spot size is properly chosen in the consideration of both the intensity scalability and mode matching. Pressure ratio is optimized under a modest pressure of mixed gases of helium and ethane. Under the optimized pressure ratio, the Cs vapor can absorb the pumping energy and convert it into laser energy efficiently. Besides, the temperature and reflectivity are also optimized to operate the DPCL in optimum state. The results have significant instructions for the experimental design of DPCL.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"30 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120910671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel conception of iterative pump number was introduced in this work for the first time. Based on the conservation of energy, the equivalent model for the lasering of solid state laser was built up, the iterative pump number was calculated, and a formula for the output power of laser was given. This formula presented the relationships among the output power of laser, pumping power of diode and the thickness of laser medium. The output power predicted by this formula is consistent with experimental results, so this formula could be an important tool for the designing of parameter for diode pumped solid state laser.
{"title":"Theoretical study of iterative pump number of diode pumped solid state laser","authors":"W. Liu, J. Guo, F. Sang","doi":"10.1117/12.2065369","DOIUrl":"https://doi.org/10.1117/12.2065369","url":null,"abstract":"A novel conception of iterative pump number was introduced in this work for the first time. Based on the conservation of energy, the equivalent model for the lasering of solid state laser was built up, the iterative pump number was calculated, and a formula for the output power of laser was given. This formula presented the relationships among the output power of laser, pumping power of diode and the thickness of laser medium. The output power predicted by this formula is consistent with experimental results, so this formula could be an important tool for the designing of parameter for diode pumped solid state laser.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115317704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Panchenko, Y. Andreev, G. Lanskii, V. Losev, D. Lubenko
Detailed model study of THz generation by CO2 laser down-conversion in pure and solid solution crystals GaSe1-xSx is carried out for the first time. Both forward and backward collinear interactions of common (eo-e, oe-e, oe-o, oo-e, ee-o) and original (ee-e, oo-o) types are considered. Possibility of realization, phase matching angles and figure of merits are estimated for line mixing within 9 μm and 10 μm emission bands, as well between them. Dispersion properties of o- and e-wave refractive indices and absorption coefficients for GaSe, GaS and GaSe1-xSx crystals were preliminary measured by THz-TDS, approximated in the equation form and then used in the study. Estimated results are presented in the form of 3-D figures that are suitable for rapid analyses of DFG parameters. The most efficient type of interaction is eo-o type. Optimally doped (x = 0.09-0.13) GaSe1-xSx crystals are from 4 to 5 times more efficient at limit pump intensity than not doped GaSe crystals.
{"title":"Aspects for efficient wide spectral band THz generation via CO2 laser down conversion","authors":"Y. Panchenko, Y. Andreev, G. Lanskii, V. Losev, D. Lubenko","doi":"10.1117/12.2065345","DOIUrl":"https://doi.org/10.1117/12.2065345","url":null,"abstract":"Detailed model study of THz generation by CO2 laser down-conversion in pure and solid solution crystals GaSe1-xSx is carried out for the first time. Both forward and backward collinear interactions of common (eo-e, oe-e, oe-o, oo-e, ee-o) and original (ee-e, oo-o) types are considered. Possibility of realization, phase matching angles and figure of merits are estimated for line mixing within 9 μm and 10 μm emission bands, as well between them. Dispersion properties of o- and e-wave refractive indices and absorption coefficients for GaSe, GaS and GaSe1-xSx crystals were preliminary measured by THz-TDS, approximated in the equation form and then used in the study. Estimated results are presented in the form of 3-D figures that are suitable for rapid analyses of DFG parameters. The most efficient type of interaction is eo-o type. Optimally doped (x = 0.09-0.13) GaSe1-xSx crystals are from 4 to 5 times more efficient at limit pump intensity than not doped GaSe crystals.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131425308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}