Pub Date : 2024-11-01DOI: 10.1016/j.cocis.2024.101872
Jian Tang, Quan Chen
Polymer gels are three-dimensional polymer networks swollen by solvents. They exhibit high elasticity and swellability and are widely used in many fields. The design, development, and application of these materials are all dependent on a precise understanding of molecular mechanisms of elasticity and swellability. The development of a model polymer gel system with a uniform structure and low degree of defects facilitates the test of these mechanisms. This review summarized the recent progress in understanding the local polymer/solvent interaction in determining the elasticity and swellability of the model polymer gels. A particular emphasis is placed on the relationship between the conformation of the precursor chains on a microscopic scale and the modulus and swelling ratio of polymer gels on a macroscopic scale under the influence of the polymer/solvent interaction. Knowledge of the relationship plays a vital role in the future development of novel functional polymer gel materials.
{"title":"Understanding elasticity and swellability of polymer gels from a perspective of polymer/solvent interaction","authors":"Jian Tang, Quan Chen","doi":"10.1016/j.cocis.2024.101872","DOIUrl":"10.1016/j.cocis.2024.101872","url":null,"abstract":"<div><div>Polymer gels are three-dimensional polymer networks swollen by solvents. They exhibit high elasticity and swellability and are widely used in many fields. The design, development, and application of these materials are all dependent on a precise understanding of molecular mechanisms of elasticity and swellability. The development of a model polymer gel system with a uniform structure and low degree of defects facilitates the test of these mechanisms. This review summarized the recent progress in understanding the local polymer/solvent interaction in determining the elasticity and swellability of the model polymer gels. A particular emphasis is placed on the relationship between the conformation of the precursor chains on a microscopic scale and the modulus and swelling ratio of polymer gels on a macroscopic scale under the influence of the polymer/solvent interaction. Knowledge of the relationship plays a vital role in the future development of novel functional polymer gel materials.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101872"},"PeriodicalIF":7.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1016/j.cocis.2024.101871
Samina Qamar, Sule Erten Ela
This review provides a comprehensive summary of the research advancements made in recent years regarding photoanode, sensitizer, electrolytes, counter electrode materials, and solid-state electrolytes for long-term stable dye-sensitized solar cells (DSSCs). Its objectives are to facilitate comprehension of the underlying design principles, elucidate the fundamental research, and develop high-performance DSSCs for practical applications.
{"title":"Dye-sensitized solar cells (DSSC): Principles, materials and working mechanism","authors":"Samina Qamar, Sule Erten Ela","doi":"10.1016/j.cocis.2024.101871","DOIUrl":"10.1016/j.cocis.2024.101871","url":null,"abstract":"<div><div>This review provides a comprehensive summary of the research advancements made in recent years regarding photoanode, sensitizer, electrolytes, counter electrode materials, and solid-state electrolytes for long-term stable dye-sensitized solar cells (DSSCs). Its objectives are to facilitate comprehension of the underlying design principles, elucidate the fundamental research, and develop high-performance DSSCs for practical applications.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101871"},"PeriodicalIF":7.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.cocis.2024.101870
Niki Baccile, Jochen Kleinen
{"title":"A glance at the future. Biosurfactants at the interface between colloids and surface science, from academia to industry","authors":"Niki Baccile, Jochen Kleinen","doi":"10.1016/j.cocis.2024.101870","DOIUrl":"10.1016/j.cocis.2024.101870","url":null,"abstract":"","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"75 ","pages":"Article 101870"},"PeriodicalIF":7.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.cocis.2024.101869
Mildred Muñoz Cardona , Alejandro Ortiz Gonzalez , Angélica García
In the last years, the rapid emergence of photovoltaic technology has introduced a clean and renewable energy source, the significant potential of photovoltaic devices lies in their ability to transform light energy into electrical energy using cost-effective and eco-friendly methods. Organic materials have achieved notable increases in power conversion efficiency through chemical functionalization, proving advantages such as low-cost synthesis, high purity, and good charge transport properties in perovskites solar cells (PSCs). Challenges are still, including the stability and efficiency of organic materials, however, advances in material chemistry and structural optimization offer promising solutions that could significantly enhance the performance and commercial viability of PSCs. The integration of organic dyes for passivators, hole and electron transport layers in PSCs has shown improvements in device efficiency and stability, offering potential for increased efficiency and reduced production costs.
{"title":"Fundamentals in organic dyes for perovskite solar cells","authors":"Mildred Muñoz Cardona , Alejandro Ortiz Gonzalez , Angélica García","doi":"10.1016/j.cocis.2024.101869","DOIUrl":"10.1016/j.cocis.2024.101869","url":null,"abstract":"<div><div>In the last years, the rapid emergence of photovoltaic technology has introduced a clean and renewable energy source, the significant potential of photovoltaic devices lies in their ability to transform light energy into electrical energy using cost-effective and eco-friendly methods. Organic materials have achieved notable increases in power conversion efficiency through chemical functionalization, proving advantages such as low-cost synthesis, high purity, and good charge transport properties in perovskites solar cells (PSCs). Challenges are still, including the stability and efficiency of organic materials, however, advances in material chemistry and structural optimization offer promising solutions that could significantly enhance the performance and commercial viability of PSCs. The integration of organic dyes for passivators, hole and electron transport layers in PSCs has shown improvements in device efficiency and stability, offering potential for increased efficiency and reduced production costs.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101869"},"PeriodicalIF":7.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.cocis.2024.101866
Mohammad Tanver Hossain , Ramdas Tiwari , Randy H. Ewoldt
Protorheology is the paradigm that any observed flow or deformation is a chance to infer quantitative rheological properties. While this creates many opportunities for insight, there is significant risk of misunderstanding the physics involved, e.g. misinterpreting a liquid as a solid or mistaking viscous flow time as viscoelastic relaxation time. We describe these and other potential mistakes, use case studies to show how serious the problems can be, and contrast misinterpretations with correct approaches and interpretations. Some issues are especially important with materials involving colloidal particles and flows involving surface tension. Whether the reader is making inference from a tilted vial, time-lapse gravity-driven flow, a bounce test, die swell, or any other protorheology observation, the examples here serve as a guide for avoiding bad data in protorheology.
{"title":"Protorheology in practice: Avoiding misinterpretation","authors":"Mohammad Tanver Hossain , Ramdas Tiwari , Randy H. Ewoldt","doi":"10.1016/j.cocis.2024.101866","DOIUrl":"10.1016/j.cocis.2024.101866","url":null,"abstract":"<div><div>Protorheology is the paradigm that any observed flow or deformation is a chance to infer quantitative rheological properties. While this creates many opportunities for insight, there is significant risk of misunderstanding the physics involved, e.g. misinterpreting a liquid as a solid or mistaking viscous flow time as viscoelastic relaxation time. We describe these and other potential mistakes, use case studies to show how serious the problems can be, and contrast misinterpretations with correct approaches and interpretations. Some issues are especially important with materials involving colloidal particles and flows involving surface tension. Whether the reader is making inference from a tilted vial, time-lapse gravity-driven flow, a bounce test, die swell, or any other protorheology observation, the examples here serve as a guide for avoiding bad data in protorheology.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101866"},"PeriodicalIF":7.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.cocis.2024.101868
Fernando Martínez-Pedrero , Carlo Carbone , Ramón G. Rubio , Francisco Ortega , Eduardo Guzmán
Particle trapping is a powerful tool for tailoring fluid interfaces, offering unprecedented control over interfacial properties and behaviors. In this review, we delve into the intricate mechanisms driving the trapping of particles at the fluid interface. By strategically manipulating particles at fluid interfaces, researchers have unlocked a myriad of opportunities for engineering interfacial phenomena with precision and versatility. In fact, particle trapping strategies enable tailored modifications of fluid interfaces that span a wide range of length scales and material systems. This work explores the underlying principles governing particle–surface interactions, highlighting key factors such as particle size, shape, surface chemistry, and interfacial tension. Through a comprehensive examination of recent developments, this review provides valuable insights into the transformative potential of particle trapping for shaping fluid interfaces, paving the way for innovative applications across various disciplines, including materials science, biotechnology, and environmental engineering.
{"title":"A critical examination of the physics behind the formation of particle-laden fluid interfaces","authors":"Fernando Martínez-Pedrero , Carlo Carbone , Ramón G. Rubio , Francisco Ortega , Eduardo Guzmán","doi":"10.1016/j.cocis.2024.101868","DOIUrl":"10.1016/j.cocis.2024.101868","url":null,"abstract":"<div><div>Particle trapping is a powerful tool for tailoring fluid interfaces, offering unprecedented control over interfacial properties and behaviors. In this review, we delve into the intricate mechanisms driving the trapping of particles at the fluid interface. By strategically manipulating particles at fluid interfaces, researchers have unlocked a myriad of opportunities for engineering interfacial phenomena with precision and versatility. In fact, particle trapping strategies enable tailored modifications of fluid interfaces that span a wide range of length scales and material systems. This work explores the underlying principles governing particle–surface interactions, highlighting key factors such as particle size, shape, surface chemistry, and interfacial tension. Through a comprehensive examination of recent developments, this review provides valuable insights into the transformative potential of particle trapping for shaping fluid interfaces, paving the way for innovative applications across various disciplines, including materials science, biotechnology, and environmental engineering.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101868"},"PeriodicalIF":7.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.cocis.2024.101864
Rocío Dominguez , Leydi M. Moreno , Fernando Langa, Pilar de la Cruz
Organic solar cells (OSCs) have attracted attention due to their lightweight, flexibility and transparency. Recent advances in OSC materials, especially non-fullerene acceptors (NFAs), have led to marked improvements. NFAs are characterized by their tunable structures and broad absorption spectra, which enhance charge separation and overall performance. These developments make NFAs pivotal materials in advancing OSC technologies and they represent a promising alternative. The development of fused-ring acceptors (FRAs) has enabled power conversion efficiencies (PCEs) over 19 % to be achieved. Despite this success, the intricate synthesis processes and low material yields result in high production costs limiting the commercial viability of FRAs in OSCs. Conversely, non-fused-ring acceptors (NFRAs) offer significant advantages, including easier synthesis, higher yields and improved stability, facilitating the production of cost-effective OSCs. NFRA-based OSCs have provided similar PCE values to FRAs (above 19 %). The research published in recent months on FRAs – particularly NFRAs – is covered in this review.
有机太阳能电池(OSC)因其轻质、灵活和透明而备受关注。有机太阳能电池材料,特别是非富勒烯受体(NFA)的最新进展带来了显著的改进。非富勒烯受体的特点是结构可调、吸收光谱宽广,可增强电荷分离和整体性能。这些发展使非富勒烯受体成为推动 OSC 技术发展的关键材料,也是一种前景广阔的替代材料。熔环受体(FRA)的开发使功率转换效率(PCE)超过了 19%。尽管取得了这一成功,但复杂的合成工艺和较低的材料产量导致生产成本居高不下,限制了 FRA 在 OSC 中的商业可行性。相反,非熔合环受体(NFRA)具有显著的优势,包括更容易合成、更高的产量和更好的稳定性,有利于生产出具有成本效益的 OSC。基于 NFRA 的 OSC 具有与 FRA 相似的 PCE 值(高于 19%)。本综述介绍了近几个月发表的有关 FRA(尤其是 NFRA)的研究成果。
{"title":"Non-fused and fused ring non-fullerene acceptors","authors":"Rocío Dominguez , Leydi M. Moreno , Fernando Langa, Pilar de la Cruz","doi":"10.1016/j.cocis.2024.101864","DOIUrl":"10.1016/j.cocis.2024.101864","url":null,"abstract":"<div><div>Organic solar cells (OSCs) have attracted attention due to their lightweight, flexibility and transparency. Recent advances in OSC materials, especially non-fullerene acceptors (NFAs), have led to marked improvements. NFAs are characterized by their tunable structures and broad absorption spectra, which enhance charge separation and overall performance. These developments make NFAs pivotal materials in advancing OSC technologies and they represent a promising alternative. The development of fused-ring acceptors (FRAs) has enabled power conversion efficiencies (PCEs) over 19 % to be achieved. Despite this success, the intricate synthesis processes and low material yields result in high production costs limiting the commercial viability of FRAs in OSCs. Conversely, non-fused-ring acceptors (NFRAs) offer significant advantages, including easier synthesis, higher yields and improved stability, facilitating the production of cost-effective OSCs. NFRA-based OSCs have provided similar PCE values to FRAs (above 19 %). The research published in recent months on FRAs – particularly NFRAs – is covered in this review.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101864"},"PeriodicalIF":7.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.cocis.2024.101867
Lijun Dai , Zhiwei Liu , Minna Li , Tao Li
Because of the capillary interactions arising from surface corrugation, rough particles at fluid interfaces often exhibit intricate rheological responses to interfacial deformations and material flows, challenging the conventional physicochemical and thermodynamic concepts that were typically applied in bulk suspensions. Although such rheological responses have been widely applied in industrial processes (i.e. crude oil recovery) and some biological systems (i.e. the dynamics of lung alveoli), studies on their physical mechanisms are not summarized systematically. In this work, we present an overview of the rheological effects of rough particle-laden interfaces, where the influences of particles’ softness and geometric roughness are emphatically discussed. We also point out that, relevant rheological effects can be strongly affected by a competition between the particles’ capillary attractions and frictional forces. Potentially, integrating experiments and simulations from a mesoscale perspective would gain deeper insights into the rheological properties for a quasi-2D system.
{"title":"Rheological effects of rough colloids at fluid interfaces: An overview","authors":"Lijun Dai , Zhiwei Liu , Minna Li , Tao Li","doi":"10.1016/j.cocis.2024.101867","DOIUrl":"10.1016/j.cocis.2024.101867","url":null,"abstract":"<div><div>Because of the capillary interactions arising from surface corrugation, rough particles at fluid interfaces often exhibit intricate rheological responses to interfacial deformations and material flows, challenging the conventional physicochemical and thermodynamic concepts that were typically applied in bulk suspensions. Although such rheological responses have been widely applied in industrial processes (i.e. crude oil recovery) and some biological systems (i.e. the dynamics of lung alveoli), studies on their physical mechanisms are not summarized systematically. In this work, we present an overview of the rheological effects of rough particle-laden interfaces, where the influences of particles’ softness and geometric roughness are emphatically discussed. We also point out that, relevant rheological effects can be strongly affected by a competition between the particles’ capillary attractions and frictional forces. Potentially, integrating experiments and simulations from a mesoscale perspective would gain deeper insights into the rheological properties for a quasi-2D system.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101867"},"PeriodicalIF":7.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.cocis.2024.101861
Jiachen Guo, Jianbin Huang, Yun Yan
Building macro continuous materials that play an important role in our daily lives directly from powder is in line with the development needs of green chemistry. Powders or particles tend to spontaneously aggregate and fuse to reduce the interfacial energy of the system, but compared to solutions or melts, the molecular motion ability in the solid phase is significantly limited. Inspired by the agglomeration of powder and kneading dough, the introduction of a small amount of water and pressure has enabled the preparation of continuous self-supporting materials based on surfactants, and even the construction of ordered molecular membranes through solid-phase molecular self-assembly. This article summarizes the recent work on the construction of macroscopic materials using molecular motion in solid phase, and mainly introduces its principles, self-healing properties, and application directions, including strain sensing, oil absorption, humidity response, circularly polarized luminescence, etc., and looks forward to the future development space.
{"title":"Endowing molecular motions in the solid materials","authors":"Jiachen Guo, Jianbin Huang, Yun Yan","doi":"10.1016/j.cocis.2024.101861","DOIUrl":"10.1016/j.cocis.2024.101861","url":null,"abstract":"<div><div>Building macro continuous materials that play an important role in our daily lives directly from powder is in line with the development needs of green chemistry. Powders or particles tend to spontaneously aggregate and fuse to reduce the interfacial energy of the system, but compared to solutions or melts, the molecular motion ability in the solid phase is significantly limited. Inspired by the agglomeration of powder and kneading dough, the introduction of a small amount of water and pressure has enabled the preparation of continuous self-supporting materials based on surfactants, and even the construction of ordered molecular membranes through solid-phase molecular self-assembly. This article summarizes the recent work on the construction of macroscopic materials using molecular motion in solid phase, and mainly introduces its principles, self-healing properties, and application directions, including strain sensing, oil absorption, humidity response, circularly polarized luminescence, etc., and looks forward to the future development space.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101861"},"PeriodicalIF":7.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.cocis.2024.101865
Maria Méndez , José G. Sánchez , Eugenia Martínez-Ferrero , Emilio J. Palomares
The incorporation of a third component in organic solar cells (OSCs), the so-called ternary OSCs, has given rise to an increase in the power conversion efficiencies of the devices. This improvement has been assigned to the broadening of the absorption spectrum, the tuning of the energy levels, and positive changes in the morphology of the active layer, resulting in remarkable power conversion efficiencies (PCE) of up to 20.2 %. Current research highlights the crucial role of morphology in enhancing device performance. However, achieving higher efficiencies requires improved charge dissociation, balanced charge transport, and minimized energy loss and recombination, which is not always attained. This review describes the most common steady-state techniques, such as photoluminescence, and advanced transient techniques, such as transient photovoltage and transient absorption spectroscopy, to gain insights into the photovoltaic charge dynamic processes to contribute to the improvement of the performance of TOSCs.
{"title":"Insights into charge dynamics and recombination processes in ternary organic solar cells through photophysical characterization techniques","authors":"Maria Méndez , José G. Sánchez , Eugenia Martínez-Ferrero , Emilio J. Palomares","doi":"10.1016/j.cocis.2024.101865","DOIUrl":"10.1016/j.cocis.2024.101865","url":null,"abstract":"<div><div>The incorporation of a third component in organic solar cells (OSCs), the so-called ternary OSCs, has given rise to an increase in the power conversion efficiencies of the devices. This improvement has been assigned to the broadening of the absorption spectrum, the tuning of the energy levels, and positive changes in the morphology of the active layer, resulting in remarkable power conversion efficiencies (PCE) of up to 20.2 %. Current research highlights the crucial role of morphology in enhancing device performance. However, achieving higher efficiencies requires improved charge dissociation, balanced charge transport, and minimized energy loss and recombination, which is not always attained. This review describes the most common steady-state techniques, such as photoluminescence, and advanced transient techniques, such as transient photovoltage and transient absorption spectroscopy, to gain insights into the photovoltaic charge dynamic processes to contribute to the improvement of the performance of TOSCs.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101865"},"PeriodicalIF":7.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}