首页 > 最新文献

Current Opinion in Colloid & Interface Science最新文献

英文 中文
Interfacial properties of (super)spreading trisiloxane surfactants 超)扩展三硅氧烷表面活性剂的界面特性
IF 8.9 2区 化学 Q1 Materials Science Pub Date : 2024-05-09 DOI: 10.1016/j.cocis.2024.101807
Joachim Venzmer

Trisiloxane surfactants have been reported to have unusual interfacial properties, which was considered to be the root cause why some trisiloxane surfactants show exceptionally good spreading properties on hydrophobic substrates, so-called superspreading. Therefore, the behavior of those surfactants at all interfaces involved has been critically discussed, because some of the findings published in the past are quite counterintuitive. As it turns out, there does not seem to be anything unusual concerning trisiloxane surfactants – their interfacial behavior follows the rules of basic physical chemistry.

据报道,三硅氧烷表面活性剂具有不寻常的界面特性,这被认为是某些三硅氧烷表面活性剂在疏水基底上表现出特别好的铺展特性(即所谓的超铺展)的根本原因。因此,人们对这些表面活性剂在所有相关界面上的行为进行了认真讨论,因为过去发表的一些研究结果与直觉相悖。事实证明,三硅氧烷表面活性剂似乎并没有什么不寻常之处--它们的界面行为遵循基本物理化学规则。
{"title":"Interfacial properties of (super)spreading trisiloxane surfactants","authors":"Joachim Venzmer","doi":"10.1016/j.cocis.2024.101807","DOIUrl":"10.1016/j.cocis.2024.101807","url":null,"abstract":"<div><p>Trisiloxane surfactants have been reported to have unusual interfacial properties, which was considered to be the root cause why some trisiloxane surfactants show exceptionally good spreading properties on hydrophobic substrates, so-called superspreading. Therefore, the behavior of those surfactants at all interfaces involved has been critically discussed, because some of the findings published in the past are quite counterintuitive. As it turns out, there does not seem to be anything unusual concerning trisiloxane surfactants – their interfacial behavior follows the rules of basic physical chemistry.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141025134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging the gap: An investigation of biosurfactants-polymer systems 缩小差距:生物表面活性剂-聚合物系统研究
IF 8.9 2区 化学 Q1 Materials Science Pub Date : 2024-04-27 DOI: 10.1016/j.cocis.2024.101806
Isha Abhyankar , Swarali Hirlekar , Asmita Prabhune , Anuya Nisal

Biosurfactants (BSs) have been extensively researched due to their potential applications in various fields, including textiles, cosmetics, pharmaceuticals, agriculture, and oil remediation. These BSs possess a diverse range of physical, chemical, and biological properties. In recent years, researchers have combined these biosurfactants with both natural and synthetic polymers, resulting in the development of advanced material systems that exhibit a unique combination of properties. This review focuses on highlighting the recent advancements in these biosurfactant-polymer material systems and identifies existing gaps in the literature. The combination of biosurfactants with polymers has led to the formation of interpenetrated hydrogels, films, chemically modified surfaces, vesicles, functionalized nanofiber non-woven mats, nano-formulations, and nano-assemblies. Some studies have also investigated the interactions between biosurfactants and polymer molecules. In most cases, non-specific, non-covalent interactions, such as electrostatic interactions, hydrogen bonding, and hydrophobic interactions have been found to govern the properties of these systems. Moreover, promising results have been achieved through the covalent modification of polymer surfaces, followed by functionalization using biosurfactant molecules. The literature demonstrates that these advanced materials could find applications in various fields, including drug delivery, bioremediation, biomedical materials, and as antimicrobial agents. These findings indicate the promising potential of biosurfactant-polymer systems for future advancements in these areas.

生物表面活性剂(BSs)因其在纺织品、化妆品、药品、农业和石油修复等多个领域的潜在应用而受到广泛研究。这些生物表面活性剂具有多种物理、化学和生物特性。近年来,研究人员将这些生物表面活性剂与天然和合成聚合物结合起来,开发出了具有独特综合特性的先进材料系统。本综述重点介绍这些生物表面活性剂-聚合物材料系统的最新进展,并指出文献中存在的空白。生物表面活性剂与聚合物的结合可形成互穿水凝胶、薄膜、化学修饰表面、囊泡、功能化纳米纤维无纺布垫、纳米配方和纳米组合体。一些研究还探讨了生物表面活性剂与聚合物分子之间的相互作用。在大多数情况下,静电作用、氢键和疏水作用等非特异性、非共价相互作用被认为是这些系统特性的主导因素。此外,通过对聚合物表面进行共价改性,然后使用生物表面活性剂分子进行功能化,也取得了可喜的成果。文献表明,这些先进材料可应用于多个领域,包括药物输送、生物修复、生物医学材料和抗菌剂。这些研究结果表明,生物表面活性剂-聚合物系统在这些领域的未来发展潜力巨大。
{"title":"Bridging the gap: An investigation of biosurfactants-polymer systems","authors":"Isha Abhyankar ,&nbsp;Swarali Hirlekar ,&nbsp;Asmita Prabhune ,&nbsp;Anuya Nisal","doi":"10.1016/j.cocis.2024.101806","DOIUrl":"10.1016/j.cocis.2024.101806","url":null,"abstract":"<div><p>Biosurfactants (BSs) have been extensively researched due to their potential applications in various fields, including textiles, cosmetics, pharmaceuticals, agriculture, and oil remediation. These BSs possess a diverse range of physical, chemical, and biological properties. In recent years, researchers have combined these biosurfactants with both natural and synthetic polymers, resulting in the development of advanced material systems that exhibit a unique combination of properties. This review focuses on highlighting the recent advancements in these biosurfactant-polymer material systems and identifies existing gaps in the literature. The combination of biosurfactants with polymers has led to the formation of interpenetrated hydrogels, films, chemically modified surfaces, vesicles, functionalized nanofiber non-woven mats, nano-formulations, and nano-assemblies. Some studies have also investigated the interactions between biosurfactants and polymer molecules. In most cases, non-specific, non-covalent interactions, such as electrostatic interactions, hydrogen bonding, and hydrophobic interactions have been found to govern the properties of these systems. Moreover, promising results have been achieved through the covalent modification of polymer surfaces, followed by functionalization using biosurfactant molecules. The literature demonstrates that these advanced materials could find applications in various fields, including drug delivery, bioremediation, biomedical materials, and as antimicrobial agents. These findings indicate the promising potential of biosurfactant-polymer systems for future advancements in these areas.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viscoelastic systems from glycolipid biosurfactants 来自糖脂生物表面活性剂的粘弹性系统
IF 8.9 2区 化学 Q1 Materials Science Pub Date : 2024-04-06 DOI: 10.1016/j.cocis.2024.101805
Ghazi Ben Messaoud

Biosurfactants offer significant advantages over their chemical counterparts due to their environmentally friendly nature. Among them, glycolipids are one of the most studied classes and possess the ability to self-assemble into various structures. The ability of glycolipid bioamphiphiles to impart viscoelasticity and immobilize the solvent underscores their potential use beyond their surface-active properties, positioning them as efficient low-molecular-weight gelators for the development of functional soft materials. Herein, we review the viscoelastic properties of self-assembled glycolipid systems, namely worm-like micelles, fibrillar, and lamellar hydrogels. Next, recent trends in the development of multicomponent systems from the orthogonal self-assembly of glycolipids and biopolymer gels are highlighted.

生物表面活性剂因其环境友好的性质而比化学表面活性剂具有显著优势。其中,糖脂是研究最多的类别之一,具有自我组装成各种结构的能力。糖脂类生物亲和剂具有粘弹性和固定溶剂的能力,这凸显了它们在表面活性特性之外的潜在用途。生物亲脂糖脂可被视为开发功能性软材料的高效低分子量凝胶剂。在此,我们回顾了自组装糖脂系统的粘弹性能,即蠕虫状胶束、纤维状和片状水凝胶。接下来,我们将重点介绍利用糖脂和生物聚合物凝胶的正交自组装开发多组分系统的最新趋势。
{"title":"Viscoelastic systems from glycolipid biosurfactants","authors":"Ghazi Ben Messaoud","doi":"10.1016/j.cocis.2024.101805","DOIUrl":"10.1016/j.cocis.2024.101805","url":null,"abstract":"<div><p>Biosurfactants offer significant advantages over their chemical counterparts due to their environmentally friendly nature. Among them, glycolipids are one of the most studied classes and possess the ability to self-assemble into various structures. The ability of glycolipid bioamphiphiles to impart viscoelasticity and immobilize the solvent underscores their potential use beyond their surface-active properties, positioning them as efficient low-molecular-weight gelators for the development of functional soft materials. Herein, we review the viscoelastic properties of self-assembled glycolipid systems, namely worm-like micelles, fibrillar, and lamellar hydrogels. Next, recent trends in the development of multicomponent systems from the orthogonal self-assembly of glycolipids and biopolymer gels are highlighted.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-equilibrium states in polyelectrolyte-surfactant systems at fluid interfaces: A critical review 流体界面上聚电解质-表面活性剂体系的非平衡状态:重要综述
IF 8.9 2区 化学 Q1 Materials Science Pub Date : 2024-04-04 DOI: 10.1016/j.cocis.2024.101804
Ana Puente-Santamaría , Francisco Ortega , Armando Maestro , Ramón G. Rubio , Eduardo Guzmán

Over the last two decades, a significant body of research has been developed trying to understand the association and properties of mixtures formed by oppositely charged polyelectrolytes and surfactants. Particular emphasis has been given to their interfacial properties and the intriguing formation of nonequilibrium states. The synergy between these components at interfaces has attracted considerable attention due to its relevance in various industrial and biological applications. The combination of oppositely charged entities leads to complex interactions that influence the stability and behavior of interfaces. This review critically examines recent advances toward understanding the interfacial behavior when polyelectrolytes and surfactants coexist. Emphasis is placed on the existence of nonequilibrium states, shedding light on transient phenomena and kinetic aspects that play a crucial role in the overall system behavior. This will provide insights into the mechanisms governing the interfacial phenomena in these mixed systems. In summary, this review will contribute to the fundamental understanding of colloidal and interfacial science, offering a valuable perspective on designing and optimizing materials with tailored properties.

在过去的二十年里,人们已经开展了大量研究,试图了解由带电相反的聚电解质和表面活性剂形成的混合物的关联和特性。研究重点尤其放在它们的界面特性和非平衡态的形成上。这些成分在界面上的协同作用因其在各种工业和生物应用中的相关性而备受关注。带相反电荷的实体结合在一起会产生复杂的相互作用,从而影响界面的稳定性和行为。本综述认真研究了了解聚电解质和表面活性剂共存时界面行为的最新进展。重点关注非平衡态的存在,揭示在整个系统行为中起关键作用的瞬态现象和动力学方面。这将有助于深入了解这些混合体系中界面现象的作用机制。总之,这篇综述将有助于从根本上理解胶体和界面科学,为设计和优化具有定制特性的材料提供宝贵的视角。
{"title":"Non-equilibrium states in polyelectrolyte-surfactant systems at fluid interfaces: A critical review","authors":"Ana Puente-Santamaría ,&nbsp;Francisco Ortega ,&nbsp;Armando Maestro ,&nbsp;Ramón G. Rubio ,&nbsp;Eduardo Guzmán","doi":"10.1016/j.cocis.2024.101804","DOIUrl":"10.1016/j.cocis.2024.101804","url":null,"abstract":"<div><p>Over the last two decades, a significant body of research has been developed trying to understand the association and properties of mixtures formed by oppositely charged polyelectrolytes and surfactants. Particular emphasis has been given to their interfacial properties and the intriguing formation of nonequilibrium states. The synergy between these components at interfaces has attracted considerable attention due to its relevance in various industrial and biological applications. The combination of oppositely charged entities leads to complex interactions that influence the stability and behavior of interfaces. This review critically examines recent advances toward understanding the interfacial behavior when polyelectrolytes and surfactants coexist. Emphasis is placed on the existence of nonequilibrium states, shedding light on transient phenomena and kinetic aspects that play a crucial role in the overall system behavior. This will provide insights into the mechanisms governing the interfacial phenomena in these mixed systems. In summary, this review will contribute to the fundamental understanding of colloidal and interfacial science, offering a valuable perspective on designing and optimizing materials with tailored properties.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029424000220/pdfft?md5=a3efd0d71219c356476b4ad2d7dfe876&pid=1-s2.0-S1359029424000220-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soft nanostructures for sun protection formulations 用于防晒配方的软纳米结构
IF 8.9 2区 化学 Q1 Materials Science Pub Date : 2024-04-03 DOI: 10.1016/j.cocis.2024.101803
Aristotelis Xenakis, Eleni Galani, Vassiliki Papadimitriou, Maria D. Chatzidaki

Sun protection formulations have undergone significant advancements, incorporating soft nanostructures to enhance their efficacy, safety, and aesthetic appeal. Nanoemulsions, with their controlled droplet size and improved ultraviolet (UV) absorption, are utilized in sunscreen formulations, boosting their photoprotective effects. Microemulsions, offering enhanced dispersion and delivery, enable the incorporation of new active ingredients, improving stability and skin permeation. Pickering emulsions, stabilized by particles provide stable, eco-friendly alternatives. Nanostructured lipid carriers, facilitate efficient encapsulation and delivery of various compounds, enhancing both UV protection and skin penetration. Nanoparticles (NPs), demonstrate promising results in improving photostability, preventing skin penetration, and enhancing antioxidant properties of sunscreens. SunSpheresTM, advanced UV boosters, scatter UV radiation effectively when integrated into sunscreen formulations, significantly increasing their sun protection factor values. This review highlights the diverse applications of soft nanostructures in sun protection, emphasizing their crucial role in the evolution of sunscreens for optimal skin safety and protection against UV radiation.

防晒配方已经取得了重大进展,采用了软性纳米结构来提高其功效、安全性和美观性。纳米乳液具有可控的液滴大小和更好的紫外线(UV)吸收能力,可用于防晒配方,增强其光保护效果。微乳剂具有更强的分散性和传递性,可加入新的活性成分,提高稳定性和皮肤渗透性。由微粒稳定的皮克林乳液提供了稳定、环保的替代品。纳米结构脂质载体有助于有效封装和输送各种化合物,增强紫外线防护和皮肤渗透。纳米粒子(NPs)在提高光稳定性、防止皮肤渗透和增强防晒霜的抗氧化性方面表现出良好的效果。先进的紫外线增强剂 SunSpheresTM 能有效散射紫外线辐射,融入防晒霜配方后可显著提高防晒系数。这篇综述重点介绍了软纳米结构在防晒领域的各种应用,强调了它们在防晒剂的发展过程中发挥的关键作用,以达到最佳的皮肤安全和紫外线辐射防护效果。
{"title":"Soft nanostructures for sun protection formulations","authors":"Aristotelis Xenakis,&nbsp;Eleni Galani,&nbsp;Vassiliki Papadimitriou,&nbsp;Maria D. Chatzidaki","doi":"10.1016/j.cocis.2024.101803","DOIUrl":"10.1016/j.cocis.2024.101803","url":null,"abstract":"<div><p>Sun protection formulations have undergone significant advancements, incorporating soft nanostructures to enhance their efficacy, safety, and aesthetic appeal. Nanoemulsions, with their controlled droplet size and improved ultraviolet (UV) absorption, are utilized in sunscreen formulations, boosting their photoprotective effects. Microemulsions, offering enhanced dispersion and delivery, enable the incorporation of new active ingredients, improving stability and skin permeation. Pickering emulsions, stabilized by particles provide stable, eco-friendly alternatives. Nanostructured lipid carriers, facilitate efficient encapsulation and delivery of various compounds, enhancing both UV protection and skin penetration. Nanoparticles (NPs), demonstrate promising results in improving photostability, preventing skin penetration, and enhancing antioxidant properties of sunscreens. SunSpheresTM, advanced UV boosters, scatter UV radiation effectively when integrated into sunscreen formulations, significantly increasing their sun protection factor values. This review highlights the diverse applications of soft nanostructures in sun protection, emphasizing their crucial role in the evolution of sunscreens for optimal skin safety and protection against UV radiation.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovations in colloid and interface science: Revolutionizing antimicrobial therapeutics 胶体和界面科学的创新:抗菌疗法的革命性变革
IF 8.9 2区 化学 Q1 Materials Science Pub Date : 2024-02-10 DOI: 10.1016/j.cocis.2024.101793
Martin Malmsten, Stefan Zauscher
{"title":"Innovations in colloid and interface science: Revolutionizing antimicrobial therapeutics","authors":"Martin Malmsten,&nbsp;Stefan Zauscher","doi":"10.1016/j.cocis.2024.101793","DOIUrl":"https://doi.org/10.1016/j.cocis.2024.101793","url":null,"abstract":"","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From composite molecular structures to a multiplicity of supramolecular aggregates: The role of intermolecular interactions in biosurfactant self-assembly 从复合分子结构到多重超分子聚集体:分子间相互作用在生物表面活性剂自组装中的作用
IF 8.9 2区 化学 Q1 Materials Science Pub Date : 2024-02-09 DOI: 10.1016/j.cocis.2024.101792
Irene Russo Krauss , Rodolfo Esposito , Luigi Paduano , Gerardino D'Errico

Microbial biosurfactants are an attractive and promising class of molecules with the potential to replace oil-derived surfactants for the formulation of ecofriendly and biocompatible products. In this review, we discuss literature findings, mostly reported in the last decade, on the self-assembly of the four main classes of microbial biosurfactants, i.e., rhamnolipids, mannosylerythritol lipids, sophorolipids, and surfactin. All of them present composite molecular structures, characterized by different functional groups and ionisable moieties, and a high conformational flexibility. Where possible, we discuss the formation of different aggregate morphologies in terms of biosurfactant molecular structure and variation of environmental parameters. We highlight how the biosurfactant self-assembly is regulated by a complex interplay between various intermolecular interactions, including H-bonds and steric constraints, besides electrostatic and hydrophobic interactions. For this reason, we show that common theoretical approaches to amphiphile self-assembly, such as the critical packing parameter, have limitations in rationalizing and predicting biosurfactant aggregation behaviour.

微生物生物表面活性剂是一类极具吸引力和发展前景的分子,有可能取代源自石油的表面活性剂,用于配制生态友好和生物兼容的产品。在这篇综述中,我们将讨论有关四大类微生物生物表面活性剂(即鼠李糖醇脂类、甘露糖赤藓糖醇脂类、槐脂类和表面活性剂)自组装的文献发现,这些发现大多是在过去十年中报道的。所有这些生物表面活性剂都具有复合分子结构,其特点是具有不同的官能团和可电离分子,并且具有很高的构象灵活性。在可能的情况下,我们从生物表面活性剂分子结构和环境参数变化的角度讨论了不同聚合体形态的形成。我们强调了生物表面活性剂的自组装如何受到各种分子间相互作用的复杂影响,除了静电和疏水相互作用外,还包括 H 键和立体约束。因此,我们证明了双亲化合物自组装的常见理论方法(如临界堆积参数)在合理解释和预测生物表面活性剂的聚集行为方面存在局限性。
{"title":"From composite molecular structures to a multiplicity of supramolecular aggregates: The role of intermolecular interactions in biosurfactant self-assembly","authors":"Irene Russo Krauss ,&nbsp;Rodolfo Esposito ,&nbsp;Luigi Paduano ,&nbsp;Gerardino D'Errico","doi":"10.1016/j.cocis.2024.101792","DOIUrl":"10.1016/j.cocis.2024.101792","url":null,"abstract":"<div><p>Microbial biosurfactants are an attractive and promising class of molecules with the potential to replace oil-derived surfactants for the formulation of ecofriendly and biocompatible products. In this review, we discuss literature findings, mostly reported in the last decade, on the self-assembly of the four main classes of microbial biosurfactants, <em>i.e.</em>, rhamnolipids, mannosylerythritol lipids, sophorolipids, and surfactin. All of them present composite molecular structures, characterized by different functional groups and ionisable moieties, and a high conformational flexibility. Where possible, we discuss the formation of different aggregate morphologies in terms of biosurfactant molecular structure and variation of environmental parameters. We highlight how the biosurfactant self-assembly is regulated by a complex interplay between various intermolecular interactions, including H-bonds and steric constraints, besides electrostatic and hydrophobic interactions. For this reason, we show that common theoretical approaches to amphiphile self-assembly, such as the critical packing parameter, have limitations in rationalizing and predicting biosurfactant aggregation behaviour.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029424000104/pdfft?md5=ddb5edf77569fd45576a9e974856fa99&pid=1-s2.0-S1359029424000104-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139893697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent trends in biosurfactant surfactant mixing and self-assembly 生物表面活性剂混合和自组装的最新趋势
IF 8.9 2区 化学 Q1 Materials Science Pub Date : 2024-01-24 DOI: 10.1016/j.cocis.2024.101789
Ian M. Tucker

The increasing trend towards low Greenhouse gas emissions, sustainable sourcing and waste minimisation has led to a large number of new surface-active species being made available whose unique sourcing and physical properties render them important aids towards achieving nett zero carbon in Home and Personal Care formulations. The X-ray and neutron small angle scattering techniques together with cryo-TEM and molecular modelling are important tools for the characterisation of their self-assembled microstructures in aqueous solution. In this Chapter, some of the recent studies of mixtures of a selection of novel biosurfactants, sophorolipids, rhamnolipids and triterpenoid saponins, with other commonplace anionic and nonionic surfactants are presented and discussed.

随着温室气体低排放、可持续采购和废物最小化趋势的不断加强,大量新型表面活性物质应运而生,其独特的来源和物理特性使其成为家庭和个人护理配方中实现净零碳的重要辅助工具。X 射线和中子小角散射技术以及低温-TEM 和分子建模是表征其在水溶液中自组装微结构的重要工具。本章介绍并讨论了近期对精选的新型生物表面活性剂、槐脂、鼠李糖脂和三萜类皂甙与其他常见阴离子和非离子表面活性剂的混合物进行的一些研究。
{"title":"Recent trends in biosurfactant surfactant mixing and self-assembly","authors":"Ian M. Tucker","doi":"10.1016/j.cocis.2024.101789","DOIUrl":"10.1016/j.cocis.2024.101789","url":null,"abstract":"<div><p>The increasing trend towards low Greenhouse gas emissions, sustainable sourcing and waste minimisation has led to a large number of new surface-active species being made available whose unique sourcing and physical properties render them important aids towards achieving nett zero carbon in Home and Personal Care formulations. The X-ray and neutron small angle scattering techniques together with cryo-TEM and molecular modelling are important tools for the characterisation of their self-assembled microstructures in aqueous solution. In this Chapter, some of the recent studies of mixtures of a selection of novel biosurfactants, sophorolipids, rhamnolipids and triterpenoid saponins, with other commonplace anionic and nonionic surfactants are presented and discussed.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139552669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycation influencing lubrication: Tribology principles derived from nature to inspire future food colloid design 糖化对润滑的影响:源于自然的摩擦学原理为未来食品胶体设计提供灵感
IF 8.9 2区 化学 Q1 Materials Science Pub Date : 2023-12-08 DOI: 10.1016/j.cocis.2023.101782
Anwesha Sarkar , Khalid Gul

Glycation, i.e., the covalent reaction between reactive carbonyl groups of sugar with biomolecules such as protein, lipid, or DNA, is integral to many physiological functions, including biolubrication. Although glycation, also commonly termed as “Maillard reaction”, has been used extensively to modify flavors and stabilize food colloids, its applications for achieving desired oral lubrication performance of food are in its infancy. This review discusses glycation as a biolubrication tool to provide stimulus to future designing of food colloids. Specifically, we examine how glycation drives biolubrication of soft tissues with examples of lubricin and mucin as “brush-like”, nature-engineered, high performance, aqueous lubricants. Recent advances in Maillard conjugation to modify tribology, rheology, adsorption, or surface hydrophobicity of dietary proteins are covered. Lastly, we transfer molecular rules from polymer physics to food colloid science to inspire repurposing glycation of dietary proteins to rationally design the next-generation of lubricious alternative protein-based foods that are often delubricating.

糖化,即糖的活性羰基与蛋白质、脂质或 DNA 等生物大分子之间的共价反应,是包括生物润滑在内的许多生理功能不可或缺的组成部分。尽管糖化反应(通常也称为 "马氏反应")已被广泛用于改良风味和稳定食品胶体,但其在实现食品理想口腔润滑性能方面的应用仍处于起步阶段。本综述将糖化作为一种生物润滑工具进行讨论,以促进未来食品润滑剂的设计。具体来说,我们将通过润滑蛋白和粘蛋白作为 "刷子"、自然设计的高性能水性润滑剂的例子,研究糖基化如何推动软组织的生物润滑。我们还介绍了马氏共轭改变蛋白质摩擦学、流变学、吸附性或表面疏水性的最新进展。最后,我们将高分子物理学中的分子规则应用到食品胶体学中,启发人们重新利用蛋白质的糖化作用,合理设计下一代以植物蛋白为基础的润滑食品。
{"title":"Glycation influencing lubrication: Tribology principles derived from nature to inspire future food colloid design","authors":"Anwesha Sarkar ,&nbsp;Khalid Gul","doi":"10.1016/j.cocis.2023.101782","DOIUrl":"10.1016/j.cocis.2023.101782","url":null,"abstract":"<div><p>Glycation, <em>i.e.</em>, the covalent reaction between reactive carbonyl groups of sugar with biomolecules such as protein, lipid, or DNA, is integral to many physiological functions, including biolubrication. Although glycation, also commonly termed as “Maillard reaction”, has been used extensively to modify flavors and stabilize food colloids, its applications for achieving desired oral lubrication performance of food are in its infancy. This review discusses glycation as a biolubrication tool to provide stimulus to future designing of food colloids. Specifically, we examine how glycation drives biolubrication of soft tissues with examples of lubricin and mucin as “brush-like”, nature-engineered, high performance, aqueous lubricants. Recent advances in Maillard conjugation to modify tribology, rheology, adsorption, or surface hydrophobicity of dietary proteins are covered. Lastly, we transfer molecular rules from polymer physics to food colloid science to inspire repurposing glycation of dietary proteins to rationally design the next-generation of lubricious alternative protein-based foods that are often delubricating.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029423001073/pdfft?md5=29f21841f17655ef44ae9b4bd98f5e3a&pid=1-s2.0-S1359029423001073-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138556076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical properties and microstructure of (emul)gels formed by mixtures of proteins and polysaccharides 蛋白质和多糖混合物形成的(乳状)凝胶的机械性能和微观结构
IF 8.9 2区 化学 Q1 Materials Science Pub Date : 2023-12-07 DOI: 10.1016/j.cocis.2023.101781
Christophe Chassenieux, Taco Nicolai

It is now well established that the combination of proteins and polysaccharides makes it possible to obtain textures that can be used by the food industry. However, consumer demand for more environmentally friendly and healthier foods is leading to the development of new ingredients (particularly plant proteins) for which the know-how acquired on animal proteins cannot be directly transposed. The aim of this review is to take stock of the work published between 2021 and 2023 on gelation of polysaccharide/protein mixtures on their own or in the presence of oil. The emphasis is on the structural and rheological studies of these (emul)gels. In addition to the composition and variability of the ingredients, there are a multitude of formulation parameters (pH, salt, temperature, etc.) and shaping parameters (pressure, homogenisation, etc.), which makes it difficult to compare the different studies in order to conclude on general structure/properties relationships.

蛋白质和多糖的结合可以获得可供食品工业使用的质地,这一点现已得到公认。然而,消费者对更环保、更健康食品的需求正在促使新配料(尤其是植物蛋白)的开发,而在动物蛋白方面获得的技术诀窍无法直接照搬。本综述旨在总结 2021 年至 2023 年间发表的有关多糖/蛋白质混合物本身或在油存在下凝胶化的研究成果。重点是这些(乳状)凝胶的结构和流变学研究。除了成分的组成和可变性外,还有许多配方参数(pH 值、盐、温度等)和成型参数(压力、均质化等),因此很难对不同的研究进行比较,从而得出一般结构/性能关系的结论。
{"title":"Mechanical properties and microstructure of (emul)gels formed by mixtures of proteins and polysaccharides","authors":"Christophe Chassenieux,&nbsp;Taco Nicolai","doi":"10.1016/j.cocis.2023.101781","DOIUrl":"10.1016/j.cocis.2023.101781","url":null,"abstract":"<div><p>It is now well established that the combination of proteins and polysaccharides<span><span><span> makes it possible to obtain textures that can be used by the food industry. However, consumer demand for more environmentally friendly and healthier foods is leading to the development of new ingredients (particularly plant proteins) for which the know-how acquired on animal proteins cannot be directly transposed. The aim of this review is to take stock of the work published between 2021 and 2023 on gelation of polysaccharide/protein mixtures on their own or in the presence of oil. The emphasis is on the structural and rheological studies of these (emul)gels. In addition to the </span>composition and variability of the ingredients, there are a multitude of formulation parameters (pH, salt, temperature, etc.) and shaping parameters (pressure, </span>homogenisation, etc.), which makes it difficult to compare the different studies in order to conclude on general structure/properties relationships.</span></p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138556188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Opinion in Colloid & Interface Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1