首页 > 最新文献

Current Opinion in Colloid & Interface Science最新文献

英文 中文
The rise and potential of top interface modification in tin halide perovskite solar cells 卤化锡过氧化物太阳能电池顶界面改性的兴起与潜力
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-18 DOI: 10.1016/j.cocis.2024.101863
Jorge Pascual , Teresa S. Ripolles , Silver-Hamill Turren-Cruz , Juan Luis Delgado
Top interface engineering is becoming one of the preferred methodologies for easily improving tin halide perovskite solar cell efficiency. The particular effectiveness of this strategy for tin-based materials may stem from their fragility in terms of oxidation and defect chemistry. Studies mainly focus on the design of novel fullerenes as interlayers or electron-selective layers, as well as on the application of organic and inorganic molecules of varying sizes. In this mini-review, we highlight the rise and potential of top interface modification in tin halide perovskite solar cells.
顶部界面工程正成为轻松提高卤化锡过氧化物太阳能电池效率的首选方法之一。锡基材料在氧化和缺陷化学方面的脆弱性可能是这一策略特别有效的原因。研究主要集中在设计新型富勒烯作为夹层或电子选择层,以及应用不同大小的有机和无机分子。在这篇微型综述中,我们将重点介绍顶部界面改性在锡卤化物过氧化物太阳能电池中的兴起和潜力。
{"title":"The rise and potential of top interface modification in tin halide perovskite solar cells","authors":"Jorge Pascual ,&nbsp;Teresa S. Ripolles ,&nbsp;Silver-Hamill Turren-Cruz ,&nbsp;Juan Luis Delgado","doi":"10.1016/j.cocis.2024.101863","DOIUrl":"10.1016/j.cocis.2024.101863","url":null,"abstract":"<div><div>Top interface engineering is becoming one of the preferred methodologies for easily improving tin halide perovskite solar cell efficiency. The particular effectiveness of this strategy for tin-based materials may stem from their fragility in terms of oxidation and defect chemistry. Studies mainly focus on the design of novel fullerenes as interlayers or electron-selective layers, as well as on the application of organic and inorganic molecules of varying sizes. In this mini-review, we highlight the rise and potential of top interface modification in tin halide perovskite solar cells.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101863"},"PeriodicalIF":7.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current progress of perovskite solar cells stability with bibliometric study 包晶体太阳能电池稳定性的最新进展及文献计量学研究
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-16 DOI: 10.1016/j.cocis.2024.101862
Christian Harito , Syauqi Abdurrahman Abrori , Munawar Khalil , Brian Yuliarto , Sule Erten-Ela
Perovskite solar cells have matched or even surpassed commercial silicone-based photovoltaics (PVs) in terms of cost effectiveness and power conversion efficiency. However, the stability is quite far behind the commercial silicone-based PV. Humidity, electrical bias, high temperature, and ultraviolet light are the determining stressors in the degradation of perovskite solar cells. This review provides the current advancement (2022 to July 31st, 2024) to the stability problem in perovskite solar cells. Equipped with bibliometric study, we deploy keyword analysis, citation analysis, and notable progress to give an overview and latest progress in perovskite solar cells stability. The importance of interface passivation is highlighted. The scalability studies of nontoxic, lead-free, stable perovskite solar cells are expected in near future.
在成本效益和电力转换效率方面,包光体太阳能电池已经赶上甚至超过了商用硅基光伏电池。然而,其稳定性却远远落后于商用硅基光伏电池。湿度、电偏压、高温和紫外线是导致包晶体太阳能电池降解的决定性因素。本综述介绍了目前(2022 年至 2024 年 7 月 31 日)针对包晶体太阳能电池稳定性问题的研究进展。通过文献计量学研究,我们采用关键词分析、引文分析和显著进展等方法,概述了包晶体太阳能电池稳定性方面的最新进展。我们强调了界面钝化的重要性。无毒、无铅、稳定的包晶体太阳能电池的可扩展性研究有望在不久的将来实现。
{"title":"Current progress of perovskite solar cells stability with bibliometric study","authors":"Christian Harito ,&nbsp;Syauqi Abdurrahman Abrori ,&nbsp;Munawar Khalil ,&nbsp;Brian Yuliarto ,&nbsp;Sule Erten-Ela","doi":"10.1016/j.cocis.2024.101862","DOIUrl":"10.1016/j.cocis.2024.101862","url":null,"abstract":"<div><div>Perovskite solar cells have matched or even surpassed commercial silicone-based photovoltaics (PVs) in terms of cost effectiveness and power conversion efficiency. However, the stability is quite far behind the commercial silicone-based PV. Humidity, electrical bias, high temperature, and ultraviolet light are the determining stressors in the degradation of perovskite solar cells. This review provides the current advancement (2022 to July 31<sup>st</sup>, 2024) to the stability problem in perovskite solar cells. Equipped with bibliometric study, we deploy keyword analysis, citation analysis, and notable progress to give an overview and latest progress in perovskite solar cells stability. The importance of interface passivation is highlighted. The scalability studies of nontoxic, lead-free, stable perovskite solar cells are expected in near future.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101862"},"PeriodicalIF":7.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to use stimuli-responsive soft materials for detection? 如何使用刺激响应软材料进行探测?
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-14 DOI: 10.1016/j.cocis.2024.101860
Anne-Laure Fameau , Jonathan Potier , Ricardo Ayala , Hernan Ritacco , Romain Bordes
The growing demand for rapid, cost-effective, and user-friendly detection methods has driven advancements in “stimuli-responsive soft materials” for sensor development. Many examples of complex and liquid crystals emulsions can be found demonstrating their application for the detection of bacteria, virus, enzyme, or specific molecules. However, despite frequent comparisons between emulsions and foams, the exploration of liquid foams for sensor applications remains limited. Paradoxically, foam-based sensors for fetal lung maturity were developed in the 1970s, before the emergence of more sophisticated detection methods. Here, we describe some examples of soft interfaces used as sensor to detect biomarkers, enzymes, and bacteria, with a strong emphasis on foam. We demonstrate how to use the foamability and foam stability as read-out mechanism. We discuss approaches developed for complex emulsions and liquid crystals, highlighting their potential adaptation to liquid foams.
对快速、经济、方便的检测方法的需求日益增长,推动了用于传感器开发的 "刺激响应软材料 "的进步。许多复杂的液晶乳液应用于细菌、病毒、酶或特定分子的检测。然而,尽管经常对乳液和泡沫进行比较,但对液态泡沫传感器应用的探索仍然有限。矛盾的是,基于泡沫的胎肺成熟度传感器是在 20 世纪 70 年代开发的,当时还没有出现更先进的检测方法。在此,我们介绍了一些用作传感器检测生物标记物、酶和细菌的软界面的例子,重点是泡沫。我们展示了如何利用泡沫性和泡沫稳定性作为读出机制。我们讨论了针对复杂乳液和液晶开发的方法,强调了这些方法适用于液态泡沫的潜力。
{"title":"How to use stimuli-responsive soft materials for detection?","authors":"Anne-Laure Fameau ,&nbsp;Jonathan Potier ,&nbsp;Ricardo Ayala ,&nbsp;Hernan Ritacco ,&nbsp;Romain Bordes","doi":"10.1016/j.cocis.2024.101860","DOIUrl":"10.1016/j.cocis.2024.101860","url":null,"abstract":"<div><div>The growing demand for rapid, cost-effective, and user-friendly detection methods has driven advancements in “stimuli-responsive soft materials” for sensor development. Many examples of complex and liquid crystals emulsions can be found demonstrating their application for the detection of bacteria, virus, enzyme, or specific molecules. However, despite frequent comparisons between emulsions and foams, the exploration of liquid foams for sensor applications remains limited. Paradoxically, foam-based sensors for fetal lung maturity were developed in the 1970s, before the emergence of more sophisticated detection methods. Here, we describe some examples of soft interfaces used as sensor to detect biomarkers, enzymes, and bacteria, with a strong emphasis on foam. We demonstrate how to use the foamability and foam stability as read-out mechanism. We discuss approaches developed for complex emulsions and liquid crystals, highlighting their potential adaptation to liquid foams.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101860"},"PeriodicalIF":7.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron-organic matter colloid control rare earth element environmental mobility 铁有机物胶体控制稀土元素的环境流动性
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-13 DOI: 10.1016/j.cocis.2024.101859
Yasaman Tadayon , Mélanie Davranche , Delphine Vantelon , Aline Dia , Julien Gigault
Rare earth elements (REE) have raised significant environmental concerns due to their increasing use in human activities and subsequent release into the environment. Hence, in the context of growing demand for “green” technologies and potential mismanagement of their life cycle, understanding their potential mobility within and between environmental compartments becomes crucial for evaluating their environmental risks. Colloids emerge as primary carriers/vectors facilitating REE mobility and transfer in the environment. This work addresses major topics related to the control exerted by colloids on the REE speciation and subsequent patterns. Among colloids, iron-organic matter colloids have been identified as the major REE carrier in surface water under various pedoclimatic conditions. Compelling evidences were provided that the mixing of iron-, organic- and iron-organic colloids could explain both REE concentration and pattern under environmental conditions. However, there is currently a lack of data on the specific distribution of REE between the iron and organic matter phases within Fe-OM colloids. It remains unclear whether REE distribution is primarily controlled by colloid mixing since structural rearrangements of Fe-OM colloids under varying hydrological and physicochemical conditions exert also a significant role.
由于稀土元素(REE)在人类活动中的使用日益增多,并随之释放到环境中,因此引起了人们对环境问题的极大关注。因此,在对 "绿色 "技术的需求不断增长以及对其生命周期的潜在管理不善的背景下,了解稀土元素在环境区划内和环境区划间的潜在流动性对于评估其环境风险至关重要。胶体是促进稀土元素在环境中流动和转移的主要载体/载体。本研究探讨了与胶体对 REE 分型及后续模式的控制有关的主要课题。在胶体中,铁-有机物胶体已被确定为各种气候条件下地表水中的主要 REE 载体。有令人信服的证据表明,铁胶体、有机胶体和铁有机胶体的混合可以解释环境条件下的 REE 浓度和模式。不过,目前还缺乏有关铁-有机质胶体中铁相和有机质相之间 REE 具体分布情况的数据。目前还不清楚 REE 分布是否主要受胶体混合的控制,因为在不同的水文和物理化学条件下,Fe-OM 胶体的结构重排也发挥着重要作用。
{"title":"Iron-organic matter colloid control rare earth element environmental mobility","authors":"Yasaman Tadayon ,&nbsp;Mélanie Davranche ,&nbsp;Delphine Vantelon ,&nbsp;Aline Dia ,&nbsp;Julien Gigault","doi":"10.1016/j.cocis.2024.101859","DOIUrl":"10.1016/j.cocis.2024.101859","url":null,"abstract":"<div><div>Rare earth elements (REE) have raised significant environmental concerns due to their increasing use in human activities and subsequent release into the environment. Hence, in the context of growing demand for “green” technologies and potential mismanagement of their life cycle, understanding their potential mobility within and between environmental compartments becomes crucial for evaluating their environmental risks. Colloids emerge as primary carriers/vectors facilitating REE mobility and transfer in the environment. This work addresses major topics related to the control exerted by colloids on the REE speciation and subsequent patterns. Among colloids, iron-organic matter colloids have been identified as the major REE carrier in surface water under various pedoclimatic conditions. Compelling evidences were provided that the mixing of iron-, organic- and iron-organic colloids could explain both REE concentration and pattern under environmental conditions. However, there is currently a lack of data on the specific distribution of REE between the iron and organic matter phases within Fe-OM colloids. It remains unclear whether REE distribution is primarily controlled by colloid mixing since structural rearrangements of Fe-OM colloids under varying hydrological and physicochemical conditions exert also a significant role.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101859"},"PeriodicalIF":7.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of carboxymethyl cellulose on the rheology of anode slurries in lithium-ion batteries 羧甲基纤维素对锂离子电池负极浆料流变性的影响
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-13 DOI: 10.1016/j.cocis.2024.101858
Masahiko Ishii, Soichiro Makino, Hiroshi Nakamura
Lithium-ion batteries are widely used in modern society, and research and development activities with the aim of further improving battery performance. The anode slurries in these devices typically include graphite as an active material and styrene-butadiene rubber as a binder, together with carboxymethyl cellulose (CMC) in water. Despite much effort to date, there is no agreement regarding the role of CMC. This mini-review summarizes the function of CMC based on prior research findings. The results of previous studies indicate that, at moderate concentrations, CMC can act as a dispersant but can serve as a thickener at high concentrations. Our experimental results suggest that steric and electrostatic repulsion effects play a crucial role in anode slurries. Also, we show that the preparation processes can drastically change the rheological properties of the slurries despite the same materials and the same composition being used.
锂离子电池广泛应用于现代社会,研发活动旨在进一步提高电池性能。这些设备中的负极浆料通常包括作为活性材料的石墨和作为粘合剂的丁苯橡胶,以及水中的羧甲基纤维素(CMC)。尽管迄今为止已做了大量努力,但关于 CMC 的作用仍未达成一致意见。本微型综述根据先前的研究成果总结了 CMC 的作用。之前的研究结果表明,在中等浓度下,CMC 可用作分散剂,但在高浓度下可用作增稠剂。我们的实验结果表明,立体和静电排斥效应在阳极泥浆中起着至关重要的作用。此外,我们还发现,尽管使用相同的材料和相同的成分,制备过程也会极大地改变泥浆的流变特性。
{"title":"The role of carboxymethyl cellulose on the rheology of anode slurries in lithium-ion batteries","authors":"Masahiko Ishii,&nbsp;Soichiro Makino,&nbsp;Hiroshi Nakamura","doi":"10.1016/j.cocis.2024.101858","DOIUrl":"10.1016/j.cocis.2024.101858","url":null,"abstract":"<div><div>Lithium-ion batteries are widely used in modern society, and research and development activities with the aim of further improving battery performance. The anode slurries in these devices typically include graphite as an active material and styrene-butadiene rubber as a binder, together with carboxymethyl cellulose (CMC) in water. Despite much effort to date, there is no agreement regarding the role of CMC. This mini-review summarizes the function of CMC based on prior research findings. The results of previous studies indicate that, at moderate concentrations, CMC can act as a dispersant but can serve as a thickener at high concentrations. Our experimental results suggest that steric and electrostatic repulsion effects play a crucial role in anode slurries. Also, we show that the preparation processes can drastically change the rheological properties of the slurries despite the same materials and the same composition being used.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101858"},"PeriodicalIF":7.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics and rheology of 2D particles at fluid–fluid interfaces 流体-流体界面上二维颗粒的动力学和流变学
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-05 DOI: 10.1016/j.cocis.2024.101857
Joseph R. Samaniuk
Two-dimensional (2D) particles can be confined to a fluid–fluid interface to create a rheologically-complex interface with dynamic particle–particle and particle–membrane interactions that are still poorly understood. There are dozens of bulk materials from which 2D particles can be made, including graphene, graphene oxide, hexagonal boron nitride, molybdenum disulfide, and MXenes, and there is interest in utilizing them because of the unique properties they have over their bulk counterparts. Increasing use of 2D materials in consumer products and novel materials science applications such as Pickering emulsions, composite foams, and films, adds urgency to improve our understanding of how the atomically thin nature and variable chemistry of 2D particles makes their dynamics and interfacial rheological properties at fluid–fluid interfaces different than spheroidal particles. This short review highlights key advances that have been made in understanding the dynamics of 2D particles at fluid–fluid interfaces, including in interfacial rheology and particle–particle dynamics, and it includes discussion on important future research directions.
二维(2D)粒子可被限制在流体-流体界面上,从而形成流变学上复杂的界面,其粒子-粒子和粒子-膜之间的动态相互作用至今仍鲜为人知。二维颗粒可由数十种块状材料制成,包括石墨烯、氧化石墨烯、六方氮化硼、二硫化钼和二氧化二烯类,由于它们比块状材料具有独特的性能,因此人们对利用它们很感兴趣。二维材料在消费品和新型材料科学应用(如皮克林乳液、复合泡沫和薄膜)中的使用日益增多,这使我们更迫切地需要了解二维颗粒的原子薄性和可变化学性质如何使它们在流体-流体界面上的动力学和界面流变特性与球形颗粒不同。这篇简短的综述重点介绍了在理解二维粒子在流体-流体界面上的动力学(包括界面流变学和粒子-粒子动力学)方面取得的主要进展,并讨论了未来的重要研究方向。
{"title":"Dynamics and rheology of 2D particles at fluid–fluid interfaces","authors":"Joseph R. Samaniuk","doi":"10.1016/j.cocis.2024.101857","DOIUrl":"10.1016/j.cocis.2024.101857","url":null,"abstract":"<div><div>Two-dimensional (2D) particles can be confined to a fluid–fluid interface to create a rheologically-complex interface with dynamic particle–particle and particle–membrane interactions that are still poorly understood. There are dozens of bulk materials from which 2D particles can be made, including graphene, graphene oxide, hexagonal boron nitride, molybdenum disulfide, and MXenes, and there is interest in utilizing them because of the unique properties they have over their bulk counterparts. Increasing use of 2D materials in consumer products and novel materials science applications such as Pickering emulsions, composite foams, and films, adds urgency to improve our understanding of how the atomically thin nature and variable chemistry of 2D particles makes their dynamics and interfacial rheological properties at fluid–fluid interfaces different than spheroidal particles. This short review highlights key advances that have been made in understanding the dynamics of 2D particles at fluid–fluid interfaces, including in interfacial rheology and particle–particle dynamics, and it includes discussion on important future research directions.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101857"},"PeriodicalIF":7.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic dilational viscoelasticity of surfactant layers at liquid–liquid interfaces 液-液界面表面活性剂层的动态扩张粘弹性
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-03 DOI: 10.1016/j.cocis.2024.101849
Volodymyr I. Kovalchuk , Giuseppe Loglio , Eugene V. Aksenenko , Francesca Ravera , Libero Liggieri , Emanuel Schneck , Reinhard Miller

Dynamic dilational viscoelasticity is an important physical characteristic of interfacial layers because it influences the dynamics and stability of multiphase systems, such as thin liquid films, foams and emulsions. Dilational viscoelasticity depends on many factors. Less studied, but very important, factors are the solubility of the solution components in two contacting liquids, the simultaneous presence of two solution components within a mixed adsorption layer and the curvature of the interface. In this review, we considered several new developments of previously proposed models, which can be used for the analysis of new experimental data. In the presence of such effects, the behaviour of the dilational viscoelasticity becomes more complicated and requires more parameters for its description. An alternative way is to use phenomenological models, which do not identify the particular relaxation processes but propose a description of the dilational viscoelasticity in general terms.

动态扩张粘弹性是界面层的一个重要物理特性,因为它影响着液体薄膜、泡沫和乳液等多相系统的动态和稳定性。稀释粘弹性取决于许多因素。研究较少但非常重要的因素包括溶液成分在两种接触液体中的溶解度、混合吸附层中同时存在两种溶液成分以及界面曲率。在本综述中,我们考虑了以前提出的模型的一些新发展,这些模型可用于分析新的实验数据。在存在这些效应的情况下,扩张粘弹性的行为变得更加复杂,需要更多的参数来描述。另一种方法是使用现象学模型,这种模型不确定特定的弛豫过程,但提出了对扩张粘弹性的一般描述。
{"title":"Dynamic dilational viscoelasticity of surfactant layers at liquid–liquid interfaces","authors":"Volodymyr I. Kovalchuk ,&nbsp;Giuseppe Loglio ,&nbsp;Eugene V. Aksenenko ,&nbsp;Francesca Ravera ,&nbsp;Libero Liggieri ,&nbsp;Emanuel Schneck ,&nbsp;Reinhard Miller","doi":"10.1016/j.cocis.2024.101849","DOIUrl":"10.1016/j.cocis.2024.101849","url":null,"abstract":"<div><p>Dynamic dilational viscoelasticity is an important physical characteristic of interfacial layers because it influences the dynamics and stability of multiphase systems, such as thin liquid films, foams and emulsions. Dilational viscoelasticity depends on many factors. Less studied, but very important, factors are the solubility of the solution components in two contacting liquids, the simultaneous presence of two solution components within a mixed adsorption layer and the curvature of the interface. In this review, we considered several new developments of previously proposed models, which can be used for the analysis of new experimental data. In the presence of such effects, the behaviour of the dilational viscoelasticity becomes more complicated and requires more parameters for its description. An alternative way is to use phenomenological models, which do not identify the particular relaxation processes but propose a description of the dilational viscoelasticity in general terms.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101849"},"PeriodicalIF":7.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perovskite solar cells: Organic-based molecules for electron and hole transport materials with machine learning insights Perovskite 太阳能电池:基于有机分子的电子和空穴传输材料与机器学习见解
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-31 DOI: 10.1016/j.cocis.2024.101848
Reda M. El-Shishtawy , Nesma ElShishtawy

Perovskite solar cells (PSCs) have rapidly advanced as a promising new photovoltaic generation technology. In a decade, a remarkable power conversion efficiency of 26% was achieved, comparable to silicon-based traditional solar cells. However, their stability and sustainability still need to be improved before commercialization. The potential replacement of some of the inorganic components in the PSCs with organic ones could address these concerns as the organic components may offer the advantages of being biodegradable, low cost, and easily processed, with the potential of protecting the perovskite from the ambient environment. Thus, this review focuses on the recent developments in organic electron transport materials (ETMs) and hole transport materials (HTMs). Additionally, machine-learning insights and perspectives for future research directions are proposed for the advancements of PSCs.

作为一种前景广阔的新型光伏发电技术,过氧化物太阳能电池(PSCs)发展迅速。十年间,其功率转换效率已达到 26%,与硅基传统太阳能电池不相上下。然而,在商业化之前,其稳定性和可持续性仍有待提高。用有机成分替代 PSCs 中的某些无机成分可以解决这些问题,因为有机成分具有可生物降解、成本低、易加工等优点,并有可能保护包晶体不受周围环境的影响。因此,本综述重点关注有机电子传输材料(ETM)和空穴传输材料(HTM)的最新发展。此外,还提出了机器学习的见解和未来研究方向的展望,以促进 PSCs 的发展。
{"title":"Perovskite solar cells: Organic-based molecules for electron and hole transport materials with machine learning insights","authors":"Reda M. El-Shishtawy ,&nbsp;Nesma ElShishtawy","doi":"10.1016/j.cocis.2024.101848","DOIUrl":"10.1016/j.cocis.2024.101848","url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) have rapidly advanced as a promising new photovoltaic generation technology. In a decade, a remarkable power conversion efficiency of 26% was achieved, comparable to silicon-based traditional solar cells. However, their stability and sustainability still need to be improved before commercialization. The potential replacement of some of the inorganic components in the PSCs with organic ones could address these concerns as the organic components may offer the advantages of being biodegradable, low cost, and easily processed, with the potential of protecting the perovskite from the ambient environment. Thus, this review focuses on the recent developments in organic electron transport materials (ETMs) and hole transport materials (HTMs). Additionally, machine-learning insights and perspectives for future research directions are proposed for the advancements of PSCs.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101848"},"PeriodicalIF":7.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid foam: Fundamentals, rheology, and applications of foam displacement in porous structures 液体泡沫:多孔结构中泡沫位移的基础、流变学和应用
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-08 DOI: 10.1016/j.cocis.2024.101845
Nikoo Moradpour , Junyi Yang , Peichun Amy Tsai

Liquid foams, as colloidal systems comprising a dispersed gas phase within a continuous liquid medium, exhibit unique structural and rheological properties beneficial for various industrial and environmental applications. This review synthesizes current knowledge on the fundamentals, stability mechanisms, and practical applications of liquid foams. We first discuss foam structures, transitioning from ball to wet and dry foams, influenced by the liquid fraction and surfactant presence, which also influence the foam’s mechanical and stability properties. We further describe the mechanisms of foam generation (for confined foams), stability, and decay, highlighting the roles of snap-off, lamellae division, and leave-behind in foam formation and the adverse effects of coarsening, gravity drainage, and collapse on foam stability. Additionally, the review covers the rheological behavior of foams under shear stress, illustrating their complex viscoelastic or viscoplastic nature. Finally, we review recent studies of foam injection and displacement in porous structures, utilizing Hele–Shaw cells and microfluidics.

液体泡沫是一种胶体系统,由分散在连续液体介质中的气相组成,具有独特的结构和流变特性,有利于各种工业和环境应用。本综述综合了当前有关液态泡沫的基本原理、稳定机制和实际应用的知识。我们首先讨论了泡沫结构,从球泡沫到湿泡沫和干泡沫的过渡,这受到液体组分和表面活性剂存在的影响,而液体组分和表面活性剂的存在也会影响泡沫的机械和稳定性能。我们进一步描述了泡沫的生成(对于封闭泡沫)、稳定和衰减机制,强调了泡沫形成过程中的断裂、薄片分裂和残留作用,以及粗化、重力排水和塌陷对泡沫稳定性的不利影响。此外,综述还涉及泡沫在剪切应力作用下的流变行为,说明了泡沫复杂的粘弹性或粘塑性。最后,我们回顾了近期利用海尔-肖细胞和微流体技术对多孔结构中的泡沫注入和位移进行的研究。
{"title":"Liquid foam: Fundamentals, rheology, and applications of foam displacement in porous structures","authors":"Nikoo Moradpour ,&nbsp;Junyi Yang ,&nbsp;Peichun Amy Tsai","doi":"10.1016/j.cocis.2024.101845","DOIUrl":"10.1016/j.cocis.2024.101845","url":null,"abstract":"<div><p>Liquid foams, as colloidal systems comprising a dispersed gas phase within a continuous liquid medium, exhibit unique structural and rheological properties beneficial for various industrial and environmental applications. This review synthesizes current knowledge on the fundamentals, stability mechanisms, and practical applications of liquid foams. We first discuss foam structures, transitioning from ball to wet and dry foams, influenced by the liquid fraction and surfactant presence, which also influence the foam’s mechanical and stability properties. We further describe the mechanisms of foam generation (for confined foams), stability, and decay, highlighting the roles of snap-off, lamellae division, and leave-behind in foam formation and the adverse effects of coarsening, gravity drainage, and collapse on foam stability. Additionally, the review covers the rheological behavior of foams under shear stress, illustrating their complex viscoelastic or viscoplastic nature. Finally, we review recent studies of foam injection and displacement in porous structures, utilizing Hele–Shaw cells and microfluidics.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101845"},"PeriodicalIF":7.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029424000633/pdfft?md5=db5cfbca774cfeef81ccfba7587e20c3&pid=1-s2.0-S1359029424000633-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in drop and bubble profile analysis tensiometry 液滴和气泡剖面分析张力测量法的进展
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-03 DOI: 10.1016/j.cocis.2024.101846
Aliyar Javadi , Libero Liggieri , Eugene V. Aksenenko , Georgi G. Gochev , Reinhard Miller

Profile analysis tensiometry (PAT) with drops and bubbles is a successful methodology to characterize liquid–fluid interfaces. Questions about the most suitable size of drops and bubbles have been solved now on the basis of dimensionless numbers. The consideration of the standard deviation between measured and calculated liquid profiles as a sensitive measure for the applicability of PAT provides a tool for its correct use. For solutions of highly surface-active compounds, bulk depletion effects can cause systematic errors in the analysis of adsorption kinetics, equations of state, and the visco-elastic interfacial behavior of liquid adsorption layers. Great progress has been made in measurements of interfacial dilational rheology with large amplitude perturbations providing additional information about structure and dynamics of complex adsorption layers. Also, first attempts are successfully made to use artificial intelligence (AI) to enhance the efficiency of PAT applications. Thus, PAT has established a solid position in surface science.

使用液滴和气泡的剖面分析张力仪(PAT)是一种成功的表征液-流界面的方法。有关液滴和气泡最合适大小的问题,现在已经在无量纲数字的基础上得到了解决。将测量值与计算值之间的标准偏差作为衡量 PAT 适用性的敏感指标,为正确使用 PAT 提供了工具。对于高表面活性化合物的溶液,体积损耗效应会导致吸附动力学、状态方程和液体吸附层粘弹性界面行为分析出现系统误差。通过大振幅扰动测量界面扩张流变学取得了很大进展,为复杂吸附层的结构和动力学提供了更多信息。此外,还首次成功尝试使用人工智能(AI)来提高 PAT 应用的效率。因此,PAT 已在表面科学领域确立了稳固的地位。
{"title":"Advances in drop and bubble profile analysis tensiometry","authors":"Aliyar Javadi ,&nbsp;Libero Liggieri ,&nbsp;Eugene V. Aksenenko ,&nbsp;Georgi G. Gochev ,&nbsp;Reinhard Miller","doi":"10.1016/j.cocis.2024.101846","DOIUrl":"10.1016/j.cocis.2024.101846","url":null,"abstract":"<div><p>Profile analysis tensiometry (PAT) with drops and bubbles is a successful methodology to characterize liquid–fluid interfaces. Questions about the most suitable size of drops and bubbles have been solved now on the basis of dimensionless numbers. The consideration of the standard deviation between measured and calculated liquid profiles as a sensitive measure for the applicability of PAT provides a tool for its correct use. For solutions of highly surface-active compounds, bulk depletion effects can cause systematic errors in the analysis of adsorption kinetics, equations of state, and the visco-elastic interfacial behavior of liquid adsorption layers. Great progress has been made in measurements of interfacial dilational rheology with large amplitude perturbations providing additional information about structure and dynamics of complex adsorption layers. Also, first attempts are successfully made to use artificial intelligence (AI) to enhance the efficiency of PAT applications. Thus, PAT has established a solid position in surface science.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"73 ","pages":"Article 101846"},"PeriodicalIF":7.9,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029424000645/pdfft?md5=adc9812a6c4e0ac76f05ce2899649c09&pid=1-s2.0-S1359029424000645-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Opinion in Colloid & Interface Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1