Localized ensemble of free microparticles spreads out as in a frictionless diffusion satisfying the principle of relativity. An ensemble of classical particles in a fluctuating classical scalar field diffuses in a similar way, and this analogy is used to formulate diffusion quantum mechanics (DQM). DQM reproduces quantum mechanics for homogeneous and gravity for inhomogeneous scalar field. Diffusion flux and probability density are related by Fick’s law, diffusion coefficient is constant and invariant. Hamiltonian includes a “thermal” energy, kinetic energies of drift and diffusion flux. The probability density and the action function of drift form a canonical pair and canonical equations for them lead to the Hamilton-Jacobi-Madelung and continuity equations. At canonical transformation to a complex probability amplitude they form a linear Schrödinger equation. DQM explains appearance of quantum statistics, rest energy (“thermal” energy) and gravity (“thermal” diffusion) and leads to a low mass mechanism for composite particles.
{"title":"Diffusion treatment of quantum mechanics and its consequences","authors":"Zahid Zakir","doi":"10.9751/qgph.2-013.7610","DOIUrl":"https://doi.org/10.9751/qgph.2-013.7610","url":null,"abstract":"Localized ensemble of free microparticles spreads out as in a frictionless diffusion satisfying the principle of relativity. An ensemble of classical particles in a fluctuating classical scalar field diffuses in a similar way, and this analogy is used to formulate diffusion quantum mechanics (DQM). DQM reproduces quantum mechanics for homogeneous and gravity for inhomogeneous scalar field. Diffusion flux and probability density are related by Fick’s law, diffusion coefficient is constant and invariant. Hamiltonian includes a “thermal” energy, kinetic energies of drift and diffusion flux. The probability density and the action function of drift form a canonical pair and canonical equations for them lead to the Hamilton-Jacobi-Madelung and continuity equations. At canonical transformation to a complex probability amplitude they form a linear Schrödinger equation. DQM explains appearance of quantum statistics, rest energy (“thermal” energy) and gravity (“thermal” diffusion) and leads to a low mass mechanism for composite particles.","PeriodicalId":294020,"journal":{"name":"QUANTUM AND GRAVITATIONAL PHYSICS","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124550581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In general relativity, the stretching of the wavelengths of photons in the expanding universe occurs along the path and does not depend on the velocity of the source. Therefore, the photons from the sources at rest relative to us did not have, and from the sources comoving the expansion there was an initial Doppler redshift, and then on the way both photon fluxes acquired a stretching redshift. As the result, the redshift of the comoving the expansion sources should be at least doubled. But observations show a single redshift already in the linear part, and therefore in cosmological models only with redshifts (Friedmann's and others) there was the double redshift problem with one hundred percent discrepancy between theory and observations. The observational fact of single redshifts means that the photons should have an initial violetshift, which was compensated for along the way by one of two types of redshift. In the model of slowing time cosmology (STC) proposed in 2020, the rate of proper times was higher in earlier epochs, which led to the violetshift, compensated along the way by the stretching redshift. As a result, in STC the observed shift is reduced to the initial Doppler redshift, to which the gravitational redshift is added for distant objects. The relativistic aberration then leads to dimming of the apparent luminosities. The basic relations of STC are presented, including the “distance modulus – redshift”, which are consistent with observations at new values of cosmological parameters. Evolution in early epochs and its influence on the properties of CMB are also discussed. In STC the light velocity was higher in the past and for this reason it has no previously known cosmological problems.
{"title":"Slowing time cosmology with initial violetshift and three types of redshift","authors":"Zahid Zakir","doi":"10.9751/qgph.2-012.7533","DOIUrl":"https://doi.org/10.9751/qgph.2-012.7533","url":null,"abstract":"In general relativity, the stretching of the wavelengths of photons in the expanding universe occurs along the path and does not depend on the velocity of the source. Therefore, the photons from the sources at rest relative to us did not have, and from the sources comoving the expansion there was an initial Doppler redshift, and then on the way both photon fluxes acquired a stretching redshift. As the result, the redshift of the comoving the expansion sources should be at least doubled. But observations show a single redshift already in the linear part, and therefore in cosmological models only with redshifts (Friedmann's and others) there was the double redshift problem with one hundred percent discrepancy between theory and observations. The observational fact of single redshifts means that the photons should have an initial violetshift, which was compensated for along the way by one of two types of redshift. In the model of slowing time cosmology (STC) proposed in 2020, the rate of proper times was higher in earlier epochs, which led to the violetshift, compensated along the way by the stretching redshift. As a result, in STC the observed shift is reduced to the initial Doppler redshift, to which the gravitational redshift is added for distant objects. The relativistic aberration then leads to dimming of the apparent luminosities. The basic relations of STC are presented, including the “distance modulus – redshift”, which are consistent with observations at new values of cosmological parameters. Evolution in early epochs and its influence on the properties of CMB are also discussed. In STC the light velocity was higher in the past and for this reason it has no previously known cosmological problems.","PeriodicalId":294020,"journal":{"name":"QUANTUM AND GRAVITATIONAL PHYSICS","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131588642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A consistent theory of gravitational redshift in cosmology (GRC) is formulated. The global GRC arises due to weakening of gravitational time dilation due to decreasing of matter density during the propagation time of photons. In the expanding world the local GRC arises due to the weakening of gravity of the sphere between observer and source, since photons emitted at a smaller radius arrive at a larger one. In static world there is no GRC at the exchange of photons at the periphery of this sphere. In any case photons from observer to source have the same GRC as photons from source to observer, which is in agreement with the cosmological principle. Consequences of the local and global GRC for cosmological models and their parameters, as well as corrections to data on distant objects and CMB, are considered. In Appendix the inconsistency of two former treatments of the gravitational frequency shift in cosmology is shown. They: a) did not take into account the global GRC; b) derived the local GRC not from the field of the sphere between the source and observer, but from the field of spheres around one of them; c) contradicted each other (the signs of shifts are opposite); d) violated cosmological principle (changing the propagation direction changes the sign of shift) and e) were based on the delusion that the Friedmann model supposedly contains the gravitational shift.
{"title":"Global and local gravitational redshifts in cosmology and their consequences for theory and observations","authors":"Zahid Zakir","doi":"10.9751/qgph.2-011.7528","DOIUrl":"https://doi.org/10.9751/qgph.2-011.7528","url":null,"abstract":"A consistent theory of gravitational redshift in cosmology (GRC) is formulated. The global GRC arises due to weakening of gravitational time dilation due to decreasing of matter density during the propagation time of photons. In the expanding world the local GRC arises due to the weakening of gravity of the sphere between observer and source, since photons emitted at a smaller radius arrive at a larger one. In static world there is no GRC at the exchange of photons at the periphery of this sphere. In any case photons from observer to source have the same GRC as photons from source to observer, which is in agreement with the cosmological principle. Consequences of the local and global GRC for cosmological models and their parameters, as well as corrections to data on distant objects and CMB, are considered. In Appendix the inconsistency of two former treatments of the gravitational frequency shift in cosmology is shown. They: a) did not take into account the global GRC; b) derived the local GRC not from the field of the sphere between the source and observer, but from the field of spheres around one of them; c) contradicted each other (the signs of shifts are opposite); d) violated cosmological principle (changing the propagation direction changes the sign of shift) and e) were based on the delusion that the Friedmann model supposedly contains the gravitational shift.","PeriodicalId":294020,"journal":{"name":"QUANTUM AND GRAVITATIONAL PHYSICS","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127861384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In static space, the redshift of photons from the receding sources is related by the Doppler effect. In the expanding space, the sources in our rest frame emit without the Doppler redshift, but along the path wavelengths of photons will experience a redshift due to stretching. Photons from the comoving the expansion sources are emitted with Doppler redshifts in our rest frame, and along the path they acquire stretching redshift also, and thus their redshift turns out to be doubled. This is clear for nearby sources, where there is both stretching and the Doppler redshifts, and only the quadratic Doppler effect will be added for distant sources. A similar doubling occurred with the deflection angle of the rays w.r.t. the Newtonian one due to the curvature of space. This double redshift paradox in expanding space is unsolvable in Friedmann's models with a constant rate of proper times. It is shown that the models of slowing time cosmology (STC) solve this paradox. The observed redshifts contain the contribution of only one of the two effects, and this indicates the presence of a third effect with a violetshift, which compensates the contribution of one of the redshifts. In STC, proper times rate in the past were faster and photons were emitted with an initial violetshift, compensated along the path by the stretching redshift. The observed redshift is then associated only with the Doppler effect, in addition the visible luminosities become dimmer due to relativistic aberration. Observations already in the linear part of the distance dependence of redshifts reject the models with Friedmann’s metric, leading to double redshift, and agree only with the STC. The basic relations of STC are presented, including the “distance modulus-redshift” relation describing observational data without dark energy. A modified picture of evolution in early epochs and the CMB properties are discussed. In particular, in STC the light speed in the past was faster and this solves the cosmological problems of the previous models (homogeneity, horizon, flatness, etc.).
{"title":"Slowing time cosmology solving the double redshift paradox","authors":"Zahid Zakir","doi":"10.9751/qgph.1-008.7160","DOIUrl":"https://doi.org/10.9751/qgph.1-008.7160","url":null,"abstract":"In static space, the redshift of photons from the receding sources is related by the Doppler effect. In the expanding space, the sources in our rest frame emit without the Doppler redshift, but along the path wavelengths of photons will experience a redshift due to stretching. Photons from the comoving the expansion sources are emitted with Doppler redshifts in our rest frame, and along the path they acquire stretching redshift also, and thus their redshift turns out to be doubled. This is clear for nearby sources, where there is both stretching and the Doppler redshifts, and only the quadratic Doppler effect will be added for distant sources. A similar doubling occurred with the deflection angle of the rays w.r.t. the Newtonian one due to the curvature of space. This double redshift paradox in expanding space is unsolvable in Friedmann's models with a constant rate of proper times. It is shown that the models of slowing time cosmology (STC) solve this paradox. The observed redshifts contain the contribution of only one of the two effects, and this indicates the presence of a third effect with a violetshift, which compensates the contribution of one of the redshifts. In STC, proper times rate in the past were faster and photons were emitted with an initial violetshift, compensated along the path by the stretching redshift. The observed redshift is then associated only with the Doppler effect, in addition the visible luminosities become dimmer due to relativistic aberration. Observations already in the linear part of the distance dependence of redshifts reject the models with Friedmann’s metric, leading to double redshift, and agree only with the STC. The basic relations of STC are presented, including the “distance modulus-redshift” relation describing observational data without dark energy. A modified picture of evolution in early epochs and the CMB properties are discussed. In particular, in STC the light speed in the past was faster and this solves the cosmological problems of the previous models (homogeneity, horizon, flatness, etc.).","PeriodicalId":294020,"journal":{"name":"QUANTUM AND GRAVITATIONAL PHYSICS","volume":"122 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123468577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a star collapses, positions of its particles, as for any extended object, must be set on the hypersurfaces of simultaneity t = const., marked by world time moments t, i.e. ordinary astronomical time around a star. Then the surface of a dust star freezes over its gravitational radius and such asymptotic behaviour of the worldlines of star’s particles on the surface is invariant. The star’s center freezes before other layers, after which the entire structure of the star quickly freezes. This means that a specifically general relativistic phenomenon - gravitational time dilation - is the physical mechanism that stops the collapse in terms of t. Such freezing is shown for exactly solvable models. A thin shell freezes outside its gravitational radius, its interior remains flat, and the test particles inside also freeze. A homogeneous dust star, as shows the Oppenheimer-Snyder solution in terms t, becomes a frozen star or frozar. The inner layers remain locally homogeneous and freeze near their asymptotes. Before the freezing, sufficiently massive stars have a density below a neutron star and, therefore, if their nuclei have not exploded before, the collapse of such stars occur like a dust star with the frozar formation. The rotation of stars freezes even before the surface reaches the ergosphere boundary, so the rotated frozar has not a horizon and an ergosphere. Accretion to frozar leads to freezing of the falling matter above the surface with formation of an inhomogeneous landscape of flattened mascons. Frozars do not merge, but only stick together near the gravitational radius of the multifrozar system, by forming, together with ordinary matter, a frozar cluster. Supermassive frozars, superfrozars, such heterogeneous clusters. Frozars and their clusters are not “bald”, but may have a “hairstyle” and an asymmetric structure. The inhomogeneities of their field can be detected by gravimetry, inhomogeneities of shadows, redshifts and orbits of matter. Observational consequences and prospects of the frozar theory are discussed.
{"title":"Theory of frozars and its observable effects. 1. Structure of stars frozen during general relativistic collapse","authors":"Zahid Zakir","doi":"10.9751/qgph.1-006.7132","DOIUrl":"https://doi.org/10.9751/qgph.1-006.7132","url":null,"abstract":"As a star collapses, positions of its particles, as for any extended object, must be set on the hypersurfaces of simultaneity t = const., marked by world time moments t, i.e. ordinary astronomical time around a star. Then the surface of a dust star freezes over its gravitational radius and such asymptotic behaviour of the worldlines of star’s particles on the surface is invariant. The star’s center freezes before other layers, after which the entire structure of the star quickly freezes. This means that a specifically general relativistic phenomenon - gravitational time dilation - is the physical mechanism that stops the collapse in terms of t. Such freezing is shown for exactly solvable models. A thin shell freezes outside its gravitational radius, its interior remains flat, and the test particles inside also freeze. A homogeneous dust star, as shows the Oppenheimer-Snyder solution in terms t, becomes a frozen star or frozar. The inner layers remain locally homogeneous and freeze near their asymptotes. Before the freezing, sufficiently massive stars have a density below a neutron star and, therefore, if their nuclei have not exploded before, the collapse of such stars occur like a dust star with the frozar formation. The rotation of stars freezes even before the surface reaches the ergosphere boundary, so the rotated frozar has not a horizon and an ergosphere. Accretion to frozar leads to freezing of the falling matter above the surface with formation of an inhomogeneous landscape of flattened mascons. Frozars do not merge, but only stick together near the gravitational radius of the multifrozar system, by forming, together with ordinary matter, a frozar cluster. Supermassive frozars, superfrozars, such heterogeneous clusters. Frozars and their clusters are not “bald”, but may have a “hairstyle” and an asymmetric structure. The inhomogeneities of their field can be detected by gravimetry, inhomogeneities of shadows, redshifts and orbits of matter. Observational consequences and prospects of the frozar theory are discussed.","PeriodicalId":294020,"journal":{"name":"QUANTUM AND GRAVITATIONAL PHYSICS","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124734023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The diffusion treatment of quantum mechanics and gravity described in the previous two papers was based on the fact of the existence of a background field whose energy density determines the rate of quantum fluctuations, i.e. the rate of proper times, and gravity is a local deficit of this energy density. In cosmology, due to the conservation of the background field energy during the expansion of space, the energy density of this field decreases both locally and globally. A change in the distribution of the local energy density deficit of the background field over time leads to a deformation of the gravitational potential of galaxies and clusters, which can explain the plateau in the rotation curves, as well as the relation of masses to rotation velocities and velocity dispersions. A global decrease in the background energy density during expansion leads to cosmology with slowing down proper times. In earlier epochs, fluctuations in the background field were faster and the photon frequencies were greater than current ones. As a result, a third mechanism is added to the two mechanisms of frequency shift, the Doppler effect and the stretching of wavelengths the violetshift at emitting in the early epochs. This shift compensates the redshift due to stretching, and ultimately only the redshift from the Doppler effect is observed, as well as the relativistic aberration for apparent luminosity. The basic relationships of the model of relativistic cosmology with a slowing down time are presented, including the “distance modulus – redshift” relation. It is shown that the model solves the main cosmological problems without new hypotheses and describes observations without dark matter and dark energy. Some changes in the picture of the evolution in early epochs are discussed, including changes in the properties of CMB.
{"title":"Diffusion treatment of quantum theory and gravity. 3. Cosmology of diffusion gravity","authors":"Zahid Zakir","doi":"10.9751/qgph.1-005.7130","DOIUrl":"https://doi.org/10.9751/qgph.1-005.7130","url":null,"abstract":"The diffusion treatment of quantum mechanics and gravity described in the previous two papers was based on the fact of the existence of a background field whose energy density determines the rate of quantum fluctuations, i.e. the rate of proper times, and gravity is a local deficit of this energy density. In cosmology, due to the conservation of the background field energy during the expansion of space, the energy density of this field decreases both locally and globally. A change in the distribution of the local energy density deficit of the background field over time leads to a deformation of the gravitational potential of galaxies and clusters, which can explain the plateau in the rotation curves, as well as the relation of masses to rotation velocities and velocity dispersions. A global decrease in the background energy density during expansion leads to cosmology with slowing down proper times. In earlier epochs, fluctuations in the background field were faster and the photon frequencies were greater than current ones. As a result, a third mechanism is added to the two mechanisms of frequency shift, the Doppler effect and the stretching of wavelengths the violetshift at emitting in the early epochs. This shift compensates the redshift due to stretching, and ultimately only the redshift from the Doppler effect is observed, as well as the relativistic aberration for apparent luminosity. The basic relationships of the model of relativistic cosmology with a slowing down time are presented, including the “distance modulus – redshift” relation. It is shown that the model solves the main cosmological problems without new hypotheses and describes observations without dark matter and dark energy. Some changes in the picture of the evolution in early epochs are discussed, including changes in the properties of CMB.","PeriodicalId":294020,"journal":{"name":"QUANTUM AND GRAVITATIONAL PHYSICS","volume":"118 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116535992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
On the basis of the observational fact that a wave packet, describing the localized ensemble of micro-objects, spreads according to the diffusion law, the quantum equivalence principle is formulated, that the motion of the ensemble of quantum objects is equivalent to the diffusion of the ensemble of classical objects in a fluctuating background field (physical vacuum). The observations also confirm the validity of the principle of relativity for quantum phenomena, formulating as the principle of constancy of quantum fluctuations, that these fluctuations and the describing them diffusion occur identically in all inertial frames. It is shown that these two physical principles, together with the principles of mechanics, lead to the diffusion quantum mechanics (DQM), containing the formalism of quantum mechanics as a particular case. In DKM the relation between the velocity of the diffusion flow and the probability density is given by the diffusion law (Fick’s law), while the invariance of diffusion leads to its conservatism (diffusion without friction) and the constancy of the diffusion coefficient, fixed from correspondence with quantum mechanics. In DQM the Hamiltonian includes the kinetic energies of the drift, diffusion flux, and interaction potentials, while the probability density and the drift action function of particles S form a canonical pair. The canonical equations for them then lead to the continuity equation and to the Hamilton-Jacobi-Madelung equation. The probability density in them enters nonlinearly, but in the case of a canonical transformation to the complex amplitude of the probabilities, they are linearized and pass into the Schrödinger equation. As a result, the amplitudes of probabilities add up for the alternatives, i.e. their superposition takes place. DQM based on physical principles is a more general theory than quantum mechanics, since along with classical devices and particles it introduces a third participant of all processes - the background field, which is the source of quantum fluctuations of classical particles. In DQM, the quantum potential is the potential energy associated with localization, quantum statistics appears in the system of many classical particles in the fluctuating background, and composite particles of small size can have a small mass. DQM also explains the existence of rest energy, the constancy of the light velocity (velocity of quantum fluctuations) and predicts the existence and properties of gravitation as thermal diffusion in the inhomogeneous background field.
{"title":"Diffusion treatment of quantum theory and gravity. 1. Diffusion quantum mechanics.","authors":"Zahid Zakir","doi":"10.9751/qgph.1-003.7129","DOIUrl":"https://doi.org/10.9751/qgph.1-003.7129","url":null,"abstract":"On the basis of the observational fact that a wave packet, describing the localized ensemble of micro-objects, spreads according to the diffusion law, the quantum equivalence principle is formulated, that the motion of the ensemble of quantum objects is equivalent to the diffusion of the ensemble of classical objects in a fluctuating background field (physical vacuum). The observations also confirm the validity of the principle of relativity for quantum phenomena, formulating as the principle of constancy of quantum fluctuations, that these fluctuations and the describing them diffusion occur identically in all inertial frames. It is shown that these two physical principles, together with the principles of mechanics, lead to the diffusion quantum mechanics (DQM), containing the formalism of quantum mechanics as a particular case. In DKM the relation between the velocity of the diffusion flow and the probability density is given by the diffusion law (Fick’s law), while the invariance of diffusion leads to its conservatism (diffusion without friction) and the constancy of the diffusion coefficient, fixed from correspondence with quantum mechanics. In DQM the Hamiltonian includes the kinetic energies of the drift, diffusion flux, and interaction potentials, while the probability density and the drift action function of particles S form a canonical pair. The canonical equations for them then lead to the continuity equation and to the Hamilton-Jacobi-Madelung equation. The probability density in them enters nonlinearly, but in the case of a canonical transformation to the complex amplitude of the probabilities, they are linearized and pass into the Schrödinger equation. As a result, the amplitudes of probabilities add up for the alternatives, i.e. their superposition takes place. DQM based on physical principles is a more general theory than quantum mechanics, since along with classical devices and particles it introduces a third participant of all processes - the background field, which is the source of quantum fluctuations of classical particles. In DQM, the quantum potential is the potential energy associated with localization, quantum statistics appears in the system of many classical particles in the fluctuating background, and composite particles of small size can have a small mass. DQM also explains the existence of rest energy, the constancy of the light velocity (velocity of quantum fluctuations) and predicts the existence and properties of gravitation as thermal diffusion in the inhomogeneous background field.","PeriodicalId":294020,"journal":{"name":"QUANTUM AND GRAVITATIONAL PHYSICS","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129111030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the diffusion quantum mechanics (DQM) described in the first paper, the conservative diffusion of classical particles in a background field with a uniform energy density leads to the formalism of quantum mechanics. DQM provides a physical explanation for two fundamental facts - fluctuations in the energy of particles in the background field (their “thermal” energy) is manifested as their rest energy, and a corresponding decrease in the energy of the background field particle’s vicinity appears as gravity. The influence of one particle on the background field is insignificant, but a very large number of particles in a small region noticeably reduces the local energy density of the background field. This reduces the local velocity of particle fluctuations, and also leads to the thermal diffusion flux of particles into this region. The increments of velocity, due to the conservativity of diffusion, cumulative and the appearing thermal diffusion acceleration does not depend on the masses of accelerated particles. As a result, the world lines of particles are curved identically and all processes with them slowdown, which means time dilation. Thus, the local energy deficit of the background field, generating conservative thermal diffusion, reproduces the basic properties of gravity. The effective metrics, connection and curvature appear on the hypersurface of simultaneity t=const., where the background field is defined. The Einstein's equations follow from the balance of energies in the system “the source + background field”. Gravitation, as a result, appears as a consequence of the DQM, representing the manifestation of quantum fluctuations of particles in the inhomogeneous background field, i.e. as the diffusion gravity. Some observable effects of the diffusion gravity in astrophysics and cosmology are discussed.
{"title":"Diffusion treatment of quantum theory and gravity. 2. Diffusion gravity","authors":"Zahid Zakir","doi":"10.9751/qgph.1-004.7129","DOIUrl":"https://doi.org/10.9751/qgph.1-004.7129","url":null,"abstract":"In the diffusion quantum mechanics (DQM) described in the first paper, the conservative diffusion of classical particles in a background field with a uniform energy density leads to the formalism of quantum mechanics. DQM provides a physical explanation for two fundamental facts - fluctuations in the energy of particles in the background field (their “thermal” energy) is manifested as their rest energy, and a corresponding decrease in the energy of the background field particle’s vicinity appears as gravity. The influence of one particle on the background field is insignificant, but a very large number of particles in a small region noticeably reduces the local energy density of the background field. This reduces the local velocity of particle fluctuations, and also leads to the thermal diffusion flux of particles into this region. The increments of velocity, due to the conservativity of diffusion, cumulative and the appearing thermal diffusion acceleration does not depend on the masses of accelerated particles. As a result, the world lines of particles are curved identically and all processes with them slowdown, which means time dilation. Thus, the local energy deficit of the background field, generating conservative thermal diffusion, reproduces the basic properties of gravity. The effective metrics, connection and curvature appear on the hypersurface of simultaneity t=const., where the background field is defined. The Einstein's equations follow from the balance of energies in the system “the source + background field”. Gravitation, as a result, appears as a consequence of the DQM, representing the manifestation of quantum fluctuations of particles in the inhomogeneous background field, i.e. as the diffusion gravity. Some observable effects of the diffusion gravity in astrophysics and cosmology are discussed.","PeriodicalId":294020,"journal":{"name":"QUANTUM AND GRAVITATIONAL PHYSICS","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115511279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In standard quantum field theory, where free quanta have only positive energy, the antiparticle operators were introduced “manually” and this led to the diverging zero-point energy, which meant the inconsistency of the theory. In the Stueckelberg-Feynman (SF) treatment the positive-energy antiparticles are described as the negative energy particles going backward in time and here some Lagrangians do not lead to the zero-point energy. But earlier it was believed that this treatment leads to a negative norm of states and therefore is also inconsistent. In the paper a consecutive method of canonical quantization of fields and strings in the SF treatment is formulated, where a correct choice of the action function makes the norm of states positive and the choice of a minimal Lagrangian makes it free from the zero-point energy. The symmetric chronological product of operators is introduced, turning into ordinary chronological at forward and antichronological at backward in time evolution. This leads to the causal SF propagator and to the standard diagram technique for interacting fields. String theories containing the zero-point energy of modes are inconsistent, since regularization is impossible at Planck distances due to the inevitable presence of gravity. At quantization of strings in SF treatment, there are models without zero-point energy, which are therefore finite and only consistent, but they do not have a conformal anomaly and critical dimension. The effects attributed to the zero-point energy (Lamb shift, Casimir effect) are explained across the contributions of the fields of real sources and confirm the lack of zero-point vacuum energy. This partly solves the cosmological constant problem. From the SF treatment one can turn to the antiparticle picture by means of the charge conjugation or crossing symmetries. The main consequences of the proposed consistent method of quantization of fields and strings are discussed. quantum field theory, zero-point energy, cosmological constant, antiparticles, composite models, Casimir effect, chronological ordering, propagators, string theory, conformal anomaly, dimensions
{"title":"Finite quantum theory of fields and strings. 1. Consistent quantization in the Stueckelberg-Feynman treatment","authors":"Zahid Zakir","doi":"10.9751/qgph.1-001.7128","DOIUrl":"https://doi.org/10.9751/qgph.1-001.7128","url":null,"abstract":"In standard quantum field theory, where free quanta have only positive energy, the antiparticle operators were introduced “manually” and this led to the diverging zero-point energy, which meant the inconsistency of the theory. In the Stueckelberg-Feynman (SF) treatment the positive-energy antiparticles are described as the negative energy particles going backward in time and here some Lagrangians do not lead to the zero-point energy. But earlier it was believed that this treatment leads to a negative norm of states and therefore is also inconsistent. In the paper a consecutive method of canonical quantization of fields and strings in the SF treatment is formulated, where a correct choice of the action function makes the norm of states positive and the choice of a minimal Lagrangian makes it free from the zero-point energy. The symmetric chronological product of operators is introduced, turning into ordinary chronological at forward and antichronological at backward in time evolution. This leads to the causal SF propagator and to the standard diagram technique for interacting fields. String theories containing the zero-point energy of modes are inconsistent, since regularization is impossible at Planck distances due to the inevitable presence of gravity. At quantization of strings in SF treatment, there are models without zero-point energy, which are therefore finite and only consistent, but they do not have a conformal anomaly and critical dimension. The effects attributed to the zero-point energy (Lamb shift, Casimir effect) are explained across the contributions of the fields of real sources and confirm the lack of zero-point vacuum energy. This partly solves the cosmological constant problem. From the SF treatment one can turn to the antiparticle picture by means of the charge conjugation or crossing symmetries. The main consequences of the proposed consistent method of quantization of fields and strings are discussed. quantum field theory, zero-point energy, cosmological constant, antiparticles, composite models, Casimir effect, chronological ordering, propagators, string theory, conformal anomaly, dimensions","PeriodicalId":294020,"journal":{"name":"QUANTUM AND GRAVITATIONAL PHYSICS","volume":"360 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124585735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}