N. Gautam, Tushar Kanikdale, A. Khare, Sachin Paygude, A. A. Shaikh
Automotive industry has seen implementation of advanced emission regulations like BS-VI in India along with growing market demand for increased product performance and reduction in total cost of ownership. This has made the engine architecture more intricate leading to complex interaction among engine and vehicle level parameters. This poses technical challenge for achieving critical product attributes like increased power density, higher fluid economy and reduced oil consumption (OC). The current paper focusses on reducing engine oil consumption across diverse duty cycles using simulation tools, vehicle data analytics and test cell Design of Experiments (DOE). The contribution of oil consumption mechanisms viz. oil evaporation, oil throw and oil transport have been understood across different loads and duty cycles patterns. The critical parameters at engine and vehicle levels are identified affecting low load and high load oil consumption. Vehicle testing is conducted, and the real time data analytics was used to identify correlation of vehicle duty cycle parameters like percentageof Idling,Thermal Management Operation, Coolant Temperature, etc. with measured oil consumption. Piston ring dynamics simulation has been used to optimize critical ring parameters impacting oil consumption through directional trends. DOE was conducted in engine test cell environment to assess effect of critical parameters like combustion temperature and oil ring tension for high load oil consumption. The new test cycles for verifying oil consumption at various loads are described. Results of interaction and main effects for individual factors are discussed. The parameters having weaker co-relations are also highlighted. The proposed solution is a combination of piston ring pack geometry features, thermal management calibration strategyand vehicle idling controls. The demonstration of final recipe of solution at vehicle level showed substantial improvement in oil consumption over baseline as well as over global industry benchmark. The improvement is demonstrated in the actual vehicle applications for mining tippers and tractors
{"title":"Study of Impact of Engine and Vehicle Level Parameters for Reduction in Engine Oil Consumption for Advanced Emission Architecture Commercial Vehicles","authors":"N. Gautam, Tushar Kanikdale, A. Khare, Sachin Paygude, A. A. Shaikh","doi":"10.37285/AJMT.1.0.3","DOIUrl":"https://doi.org/10.37285/AJMT.1.0.3","url":null,"abstract":"Automotive industry has seen implementation of advanced emission regulations like BS-VI in India along with growing market demand for increased product performance and reduction in total cost of ownership. This has made the engine architecture more intricate leading to complex interaction among engine and vehicle level parameters. This poses technical challenge for achieving critical product attributes like increased power density, higher fluid economy and reduced oil consumption (OC). The current paper focusses on reducing engine oil consumption across diverse duty cycles using simulation tools, vehicle data analytics and test cell Design of Experiments (DOE). The contribution of oil consumption mechanisms viz. oil evaporation, oil throw and oil transport have been understood across different loads and duty cycles patterns. The critical parameters at engine and vehicle levels are identified affecting low load and high load oil consumption. Vehicle testing is conducted, and the real time data analytics was used to identify correlation of vehicle duty cycle parameters like percentageof Idling,Thermal Management Operation, Coolant Temperature, etc. with measured oil consumption. Piston ring dynamics simulation has been used to optimize critical ring parameters impacting oil consumption through directional trends. DOE was conducted in engine test cell environment to assess effect of critical parameters like combustion temperature and oil ring tension for high load oil consumption. The new test cycles for verifying oil consumption at various loads are described. Results of interaction and main effects for individual factors are discussed. The parameters having weaker co-relations are also highlighted. The proposed solution is a combination of piston ring pack geometry features, thermal management calibration strategyand vehicle idling controls. The demonstration of final recipe of solution at vehicle level showed substantial improvement in oil consumption over baseline as well as over global industry benchmark. The improvement is demonstrated in the actual vehicle applications for mining tippers and tractors ","PeriodicalId":294802,"journal":{"name":"ARAI Journal of Mobility Technology","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131019685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bokam Surya Sashikanth Bokam, Ch. S. K. Akhilesh Reddy, K. Ravi
As Today, conventional engines are being replaced by electric vehicles due to environmental concerns and concern about the exhaustion of fossil fuels. Li-ion cells are often used in EV’s because of their high energy density. The thermal behaviour of the batteries is crucial not only for safety operation but also for their capacity and life. This article focusses primarily on the effect of inclusion of conductive material and conditioned air on the battery module. A three-dimensional flow and thermal analysis of an air-cooled module that contains prismatic lithium-ion cells fitted in aluminum structure. The flow and thermal simulation is carried out at the peak discharge of the batteries i.e. 2C rating [17] using a commercial CFD package. The results are compared with the base line model analysis which is performed with same parameters. The temperature is decreased by 7.2oC on average for the addition of fins to the battery module. The increased load on the AC unit is calculated as well when the air is directed to battery module and sufficient modifications for the system are suggested.
{"title":"Thermal Modelling of Battery Pack of an Electric Vehicle using Computational Fluid Dynamics","authors":"Bokam Surya Sashikanth Bokam, Ch. S. K. Akhilesh Reddy, K. Ravi","doi":"10.37285/AJMT.1.0.8","DOIUrl":"https://doi.org/10.37285/AJMT.1.0.8","url":null,"abstract":"As Today, conventional engines are being replaced by electric vehicles due to environmental concerns and concern about the exhaustion of fossil fuels. Li-ion cells are often used in EV’s because of their high energy density. The thermal behaviour of the batteries is crucial not only for safety operation but also for their capacity and life. This article focusses primarily on the effect of inclusion of conductive material and conditioned air on the battery module. A three-dimensional flow and thermal analysis of an air-cooled module that contains prismatic lithium-ion cells fitted in aluminum structure. The flow and thermal simulation is carried out at the peak discharge of the batteries i.e. 2C rating [17] using a commercial CFD package. The results are compared with the base line model analysis which is performed with same parameters. The temperature is decreased by 7.2oC on average for the addition of fins to the battery module. The increased load on the AC unit is calculated as well when the air is directed to battery module and sufficient modifications for the system are suggested. ","PeriodicalId":294802,"journal":{"name":"ARAI Journal of Mobility Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123199665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ethanol is considered as a potential biofuel for blending with gasoline and, in India, it is planned to increase the ethanol content to 20 percent in gasoline by year 2025 from present allowable limit of maximum 10 percent. It is important to evaluate the impact of E20 fuel on the materials used in fuel-system components. An evaluation of 8 metals, 6 elastomers and 4 plastics used in various fuel-system components was conducted through systematic exercise of laboratory immersion following standard methods like SAE J1747 and SAE J 1748 with all the quality and quality assurance measures. The study was conducted with E20 as test fuel and commercial gasoline (BS IV) as a baseline fuel for comparative assessment. Impact of E20 on metals was evaluated through calculation of corrosion rates in mm/year based on data obtained for change in mass post-immersion in above fuels. Similarly, impact of elastomers and plastics was evaluated through observed changes in properties like mass, volume, tensile strength, elongation, impact strength and hardness. Impact of E20 on metals tested was found to be insignificant based on the corrosion rates. Polychloroprene, SBR, HNBR and Fluoroelastomer were found to perform similar or better in most of the properties with E20. Impact of E20 on NBR-PVC and Epichlorohydrin was more as compared to commercial gasoline. Similar changes in properties of PA12, PBT and Acetal were observed in both the fuels. Impact of E20 on tensile strength and volume change properties of PA66 was found to be more than commercial gasoline. The vital information generated can be utilised by design engineers for selection, modification of materials for various components of fuel-system of vehicles
{"title":"Impact of 20% Ethanol-blended Gasoline (E20) on Metals and Non-metals used in Fuel-system Components of Vehicles","authors":"M. Bawase, S. Thipse","doi":"10.37285/AJMT.1.0.1","DOIUrl":"https://doi.org/10.37285/AJMT.1.0.1","url":null,"abstract":"Ethanol is considered as a potential biofuel for blending with gasoline and, in India, it is planned to increase the ethanol content to 20 percent in gasoline by year 2025 from present allowable limit of maximum 10 percent. It is important to evaluate the impact of E20 fuel on the materials used in fuel-system components. An evaluation of 8 metals, 6 elastomers and 4 plastics used in various fuel-system components was conducted through systematic exercise of laboratory immersion following standard methods like SAE J1747 and SAE J 1748 with all the quality and quality assurance measures. The study was conducted with E20 as test fuel and commercial gasoline (BS IV) as a baseline fuel for comparative assessment. Impact of E20 on metals was evaluated through calculation of corrosion rates in mm/year based on data obtained for change in mass post-immersion in above fuels. Similarly, impact of elastomers and plastics was evaluated through observed changes in properties like mass, volume, tensile strength, elongation, impact strength and hardness. Impact of E20 on metals tested was found to be insignificant based on the corrosion rates. Polychloroprene, SBR, HNBR and Fluoroelastomer were found to perform similar or better in most of the properties with E20. Impact of E20 on NBR-PVC and Epichlorohydrin was more as compared to commercial gasoline. Similar changes in properties of PA12, PBT and Acetal were observed in both the fuels. Impact of E20 on tensile strength and volume change properties of PA66 was found to be more than commercial gasoline. The vital information generated can be utilised by design engineers for selection, modification of materials for various components of fuel-system of vehicles","PeriodicalId":294802,"journal":{"name":"ARAI Journal of Mobility Technology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132800784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}