Highlights The automatic detection and recognition of farming action in video are realized. The YOLOv7-tiny was enhanced by incorporating Coordinate Attention (CA). The performance indices mAP@.5 and mAP@.5:.95 improved by 0.1% and 6.6%, respectively. An intelligent method for detecting "inspection" and "applying pesticides" is provided. Abstract. In aquaculture, regular "inspection" and "applying pesticides" are essential to improving production efficiency and fish disease treatment, but the current aquaculture system does not effectively support these strategies. Therefore, this paper proposes a farming action recognition network (FARnet), which can accurately locate the farmers in the video and detect the actions of “applying pesticides” and “inspection.” The dataset was captured and produced by multi-angle cameras, which were consulted with relevant experts. In this network, Coordinate Attention (CA) was used to improve the Efficient Layer Aggregation Networks-tiny (ELAN-tiny) and Spatial Pyramid Pooling (SPP) structures in the YOLOv7-tiny network. The precise implementation methods are as follows: (1) The convolution in ELAN-tiny was replaced with the CA module, and a shortcut was added. (2) A CA module was added to the final layer of the Spatial Pyramid Pooling (SPP) module. (3) The improved Efficient Layer Aggregation Networks-Coordinate Attention (ELAN-CA) and Spatial Pyramid Pooling-Coordinate Attention (SPP-CA) were used to extract action features and perform feature correction by ADD (Feature fusion by feature map summation) in the backbone. The results demonstrated that the FARnet achieved significantly better detection results than the YOLOv7-tiny network, where mAP@.5 improved by 0.1% from 99.4% to 99.5%, and the mAP@.5:.95 improved by 6.6% from 78.2% to 84.8%. Therefore, the FARnet can effectively detect and identify the “inspection” and “applying pesticides” actions of farmers and provide useful input information for the intelligent management system. Keywords: Action detection, Applying pesticides, Coordinate attention, FARnet, Inspection.
{"title":"FARnet: Farming Action Recognition From Videos Based on Coordinate Attention and YOLOv7-tiny Network in Aquaculture","authors":"Xinting Yang, Liang Pan, Dinghong Wang, Yuhao Zeng, Wentao Zhu, Dongxiang Jiao, Zhenlong Sun, Chuanheng Sun, Chao Zhou","doi":"10.13031/ja.15362","DOIUrl":"https://doi.org/10.13031/ja.15362","url":null,"abstract":"Highlights The automatic detection and recognition of farming action in video are realized. The YOLOv7-tiny was enhanced by incorporating Coordinate Attention (CA). The performance indices mAP@.5 and mAP@.5:.95 improved by 0.1% and 6.6%, respectively. An intelligent method for detecting \"inspection\" and \"applying pesticides\" is provided. Abstract. In aquaculture, regular \"inspection\" and \"applying pesticides\" are essential to improving production efficiency and fish disease treatment, but the current aquaculture system does not effectively support these strategies. Therefore, this paper proposes a farming action recognition network (FARnet), which can accurately locate the farmers in the video and detect the actions of “applying pesticides” and “inspection.” The dataset was captured and produced by multi-angle cameras, which were consulted with relevant experts. In this network, Coordinate Attention (CA) was used to improve the Efficient Layer Aggregation Networks-tiny (ELAN-tiny) and Spatial Pyramid Pooling (SPP) structures in the YOLOv7-tiny network. The precise implementation methods are as follows: (1) The convolution in ELAN-tiny was replaced with the CA module, and a shortcut was added. (2) A CA module was added to the final layer of the Spatial Pyramid Pooling (SPP) module. (3) The improved Efficient Layer Aggregation Networks-Coordinate Attention (ELAN-CA) and Spatial Pyramid Pooling-Coordinate Attention (SPP-CA) were used to extract action features and perform feature correction by ADD (Feature fusion by feature map summation) in the backbone. The results demonstrated that the FARnet achieved significantly better detection results than the YOLOv7-tiny network, where mAP@.5 improved by 0.1% from 99.4% to 99.5%, and the mAP@.5:.95 improved by 6.6% from 78.2% to 84.8%. Therefore, the FARnet can effectively detect and identify the “inspection” and “applying pesticides” actions of farmers and provide useful input information for the intelligent management system. Keywords: Action detection, Applying pesticides, Coordinate attention, FARnet, Inspection.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79931100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Highlights An empirical equation was embedded in a user-friendly tool to estimate the site-specific design drainage rate. The site-specific design drainage rate was based on the local soil, weather, and economics of the area of interest. The tool uses the site-specific design drainage rate to estimate the optimum drain spacing. The optimum drain spacing maximizes the economic return on investment. Abstract. Properly estimating the subsurface drain spacing is critical to optimizing crop production. The Hooghoudt equation can be used in humid climates to approximate the drain spacing. However, the application of this equation has been limited due to site-specific data requirements and because it is a complicated process that is not usually practical for practitioners. Traditionally, drainage contractors have chosen a drain spacing without using the Hooghoudt equation. The objective of this article is to develop a user-friendly decision-support tool that estimates the site-specific optimum drain spacing for maximum economic return on investment. We developed the Drain Spacing Tool for the Midwest USA based on the Hooghoudt equation and site-specific inputs. The tool automatically acquires the site-specific equivalent saturated hydraulic conductivity of the soil profile and depth to the restrictive layer from the gSSURGO database, and the user manually enters the desired drain depth. The site-specific input of design drainage rate (DDR), that is required in the Hooghoudt equation, is estimated from an empirical equation that was developed from a DRAINMOD modeling study. The site-specific inputs for the empirical equation include site-specific 30-year average growing-season rainfall, drain depth, equivalent saturated hydraulic conductivity, and depth to the restrictive layer, all of which are automatically acquired from gSSURGO, except for the rainfall data, which was acquired from the PRISM Climate Group. The site-specific DDR value from the empirical equation was then used in the Hooghoudt equation to estimate the optimum drain spacing that maximizes economic return on investment. In conclusion, the tool estimates the site-specific optimum drain spacing based on the local soil, weather, and economics of the area of interest. Keywords: Decision-support tool, Design drainage rate, DRAINMOD, Farm profitability, Tile drainage.
{"title":"A Drain Spacing Tool That Estimates the Optimum Subsurface Drain Spacing for Maximum Profit","authors":"E. Ghane, A. Nejadhashemi, Ian Kropp","doi":"10.13031/ja.15406","DOIUrl":"https://doi.org/10.13031/ja.15406","url":null,"abstract":"Highlights An empirical equation was embedded in a user-friendly tool to estimate the site-specific design drainage rate. The site-specific design drainage rate was based on the local soil, weather, and economics of the area of interest. The tool uses the site-specific design drainage rate to estimate the optimum drain spacing. The optimum drain spacing maximizes the economic return on investment. Abstract. Properly estimating the subsurface drain spacing is critical to optimizing crop production. The Hooghoudt equation can be used in humid climates to approximate the drain spacing. However, the application of this equation has been limited due to site-specific data requirements and because it is a complicated process that is not usually practical for practitioners. Traditionally, drainage contractors have chosen a drain spacing without using the Hooghoudt equation. The objective of this article is to develop a user-friendly decision-support tool that estimates the site-specific optimum drain spacing for maximum economic return on investment. We developed the Drain Spacing Tool for the Midwest USA based on the Hooghoudt equation and site-specific inputs. The tool automatically acquires the site-specific equivalent saturated hydraulic conductivity of the soil profile and depth to the restrictive layer from the gSSURGO database, and the user manually enters the desired drain depth. The site-specific input of design drainage rate (DDR), that is required in the Hooghoudt equation, is estimated from an empirical equation that was developed from a DRAINMOD modeling study. The site-specific inputs for the empirical equation include site-specific 30-year average growing-season rainfall, drain depth, equivalent saturated hydraulic conductivity, and depth to the restrictive layer, all of which are automatically acquired from gSSURGO, except for the rainfall data, which was acquired from the PRISM Climate Group. The site-specific DDR value from the empirical equation was then used in the Hooghoudt equation to estimate the optimum drain spacing that maximizes economic return on investment. In conclusion, the tool estimates the site-specific optimum drain spacing based on the local soil, weather, and economics of the area of interest. Keywords: Decision-support tool, Design drainage rate, DRAINMOD, Farm profitability, Tile drainage.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82153930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Method for Zoning Corn Based on the NDVI and the Improved SOM-K-Means Algorithm","authors":"Xiaodong Di, X. Wang","doi":"10.13031/ja.15081","DOIUrl":"https://doi.org/10.13031/ja.15081","url":null,"abstract":"","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":"281 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77495858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimating WEPP Cropland Erodibility Values From Soil Properties","authors":"W. Elliot, D. Flanagan","doi":"10.13031/ja.15218","DOIUrl":"https://doi.org/10.13031/ja.15218","url":null,"abstract":"","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77674925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mukesh Mehata, S. Datta, S. Taghvaeian, T. Ochsner, A. Mirchi, D. Moriasi
Highlights Among six manufacturer calibrations, the default calibration resulted in the largest errors. Sensor performance was negatively affected by higher clay content and salinity. Sensor-based approaches to estimating field capacity were inconsistent and spatially variable. Abstract. Maintaining the economic and environmental sustainability of crop production requires optimizing irrigation management using advanced technologies such as soil water sensors. In this study, the performance of a commercially available multi-sensor capacitance probe was evaluated under irrigated field conditions across western Oklahoma. The effects of clay content and salinity on sensor performance were investigated too. In addition, the field capacity (FC) of soil cores collected at study sites was determined in the laboratory. These laboratory FC values were used to assess the performance of two sensor-based approaches for estimating FC: the days to reach laboratory FC after major watering events and the percentile of collected sensor readings that represented laboratory FC. The results showed that among the six calibrations provided by the manufacturer, the default and silty clay loam calibrations produced the largest and smallest soil water content errors, respectively. Errors generally increased with clay and salinity, except for the heavy clay calibration, which showed improved performance with increasing clay content. The default and sand calibrations were more sensitive to increases in clay and salinity compared to other calibrations. In the case of sensor-based FC, on average, one to three days were required to reach laboratory FC, with a large range of one to nine days. The percentiles representing laboratory FC had an average of 56% and a range of 3%-97%. Overall, the sensor-based approaches produced inconsistent and highly variable estimates of FC. Keywords: Calibrations, Clay content, Irrigation scheduling, Salinity, Sensor accuracy, Soil water threshold.
{"title":"Performance of a Multi-Sensor Capacitance Probe in Estimating Soil Water Content and Field Capacity","authors":"Mukesh Mehata, S. Datta, S. Taghvaeian, T. Ochsner, A. Mirchi, D. Moriasi","doi":"10.13031/ja.15416","DOIUrl":"https://doi.org/10.13031/ja.15416","url":null,"abstract":"Highlights Among six manufacturer calibrations, the default calibration resulted in the largest errors. Sensor performance was negatively affected by higher clay content and salinity. Sensor-based approaches to estimating field capacity were inconsistent and spatially variable. Abstract. Maintaining the economic and environmental sustainability of crop production requires optimizing irrigation management using advanced technologies such as soil water sensors. In this study, the performance of a commercially available multi-sensor capacitance probe was evaluated under irrigated field conditions across western Oklahoma. The effects of clay content and salinity on sensor performance were investigated too. In addition, the field capacity (FC) of soil cores collected at study sites was determined in the laboratory. These laboratory FC values were used to assess the performance of two sensor-based approaches for estimating FC: the days to reach laboratory FC after major watering events and the percentile of collected sensor readings that represented laboratory FC. The results showed that among the six calibrations provided by the manufacturer, the default and silty clay loam calibrations produced the largest and smallest soil water content errors, respectively. Errors generally increased with clay and salinity, except for the heavy clay calibration, which showed improved performance with increasing clay content. The default and sand calibrations were more sensitive to increases in clay and salinity compared to other calibrations. In the case of sensor-based FC, on average, one to three days were required to reach laboratory FC, with a large range of one to nine days. The percentiles representing laboratory FC had an average of 56% and a range of 3%-97%. Overall, the sensor-based approaches produced inconsistent and highly variable estimates of FC. Keywords: Calibrations, Clay content, Irrigation scheduling, Salinity, Sensor accuracy, Soil water threshold.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77932961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Highlights Terminal velocities were measured for wheat stem nodes and internodes for similar particle dimensions to investigate the feasibility of aerodynamic separation. Mean measures of terminal velocities for wheat stem nodes and internodes were 4.91 and 3.35 m s-1, respectively, that coincided with values of 4.92 and 3.37 m s-1 calculated for spherical particles (Mohsenin, 1970). Wheat stem particle mass ranged from 0.015 (internode) to 0.041 g (node) that significantly correlated with terminal velocity ranging from 3.13 to 5.14 m s-1, respectively. Wheat stem particle density ranged from 112 to 297 kg m-3 that significantly correlated with terminal velocity ranging from 3.12 to 5.11 m s-1, respectively. Abstract. Efficient separation of physiological plant components potentially improved the targeting of components to best uses. The terminal velocity property used an opposing air velocity to equilibrate particle weight with the sum of the drag and buoyancy forces. This study used particles of similar dimensions to ascertain the effect of particle mass and density on experimental measures of terminal velocity in a wind tunnel and as calculated by reliable equations. Similar particle diameters, lengths, and volumes of wheat stems ranged from 0.362 to 0.376 cm, 1.25 to 1.28 cm, and 0.131 to 0.141 cm3, respectively. Moisture content was 12% wet basis. Wheat stem internodes had individual particle mass and density ranging from 0.015 to 0.019 g and 113 to 144 kg m-3, respectively, and mean Terminal Velocity Wind Tunnel (TVWT) terminal velocities for wheat stem internodes that ranged from 3.13 to 3.58 m s-1. Nodes had individual particle mass and density ranging from 0.031 to 0.041 g and 236 to 297 kg m-3, respectively, and mean TVWT terminal velocities for wheat stem nodes that ranged from 4.62 to 5.14 m s-1. Thus, no overlap in values was observed for particle mass, particle density, and terminal velocity between wheat stem internode and wheat stem node. This observation supports the potential of using terminal velocity to separate node from internode for similar-sized wheat stems at a given moisture content. Keywords: Aerodynamic separation, Anatomical component, Biomass property, Physical experiment, Sorting, Terminal velocity, Vertical wind tunnel, Wheat stem particles.
为了探讨空气动力分离的可行性,对小麦茎节和茎节间相似颗粒尺寸的末端速度进行了测量。小麦茎节和节间的终端速度平均值分别为4.91和3.35 m s-1,这与球形颗粒的计算值4.92和3.37 m s-1相吻合(Mohsenin, 1970)。小麦茎粒质量在0.015 ~ 0.041 g(节)之间,与末速在3.13 ~ 5.14 m s-1之间显著相关。小麦茎秆颗粒密度在112 ~ 297 kg m-3之间,与终速在3.12 ~ 5.11 m s-1之间显著相关。摘要植物生理成分的有效分离有可能提高成分的靶向性。终端速度特性使用相反的空气速度来平衡颗粒重量与阻力和浮力的总和。本研究使用相似尺寸的粒子来确定粒子质量和密度对风洞中终端速度的实验测量的影响,并通过可靠的方程计算。小麦茎的相似粒径、长度和体积分别为0.362 ~ 0.376 cm、1.25 ~ 1.28 cm和0.131 ~ 0.141 cm3。水分含量为12%湿基。小麦茎秆节间的个体颗粒质量和密度分别为0.015 ~ 0.019 g和113 ~ 144 kg m-3,茎秆节间的平均终端风速(TVWT)为3.13 ~ 3.58 m s-1。小麦茎秆节点的粒子质量和密度分别为0.031 ~ 0.041 g和236 ~ 297 kg m-3,平均TVWT终端速度为4.62 ~ 5.14 m s-1。因此,小麦茎秆节间和茎秆节间的颗粒质量、颗粒密度和终端速度值没有重叠。这一观察结果支持了在一定含水量条件下,利用末端速度将类似大小的小麦茎节与节间分离的可能性。关键词:气动分离,解剖组分,生物量特性,物理实验,分选,终端速度,垂直风洞,小麦茎秆颗粒
{"title":"Terminal Velocity of Wheat Stem Nodes versus Internodes for Similar Particle Dimensions","authors":"A. Womac, S. E. Klasek, D. Yoder, Doug G. Hayes","doi":"10.13031/ja.15580","DOIUrl":"https://doi.org/10.13031/ja.15580","url":null,"abstract":"Highlights Terminal velocities were measured for wheat stem nodes and internodes for similar particle dimensions to investigate the feasibility of aerodynamic separation. Mean measures of terminal velocities for wheat stem nodes and internodes were 4.91 and 3.35 m s-1, respectively, that coincided with values of 4.92 and 3.37 m s-1 calculated for spherical particles (Mohsenin, 1970). Wheat stem particle mass ranged from 0.015 (internode) to 0.041 g (node) that significantly correlated with terminal velocity ranging from 3.13 to 5.14 m s-1, respectively. Wheat stem particle density ranged from 112 to 297 kg m-3 that significantly correlated with terminal velocity ranging from 3.12 to 5.11 m s-1, respectively. Abstract. Efficient separation of physiological plant components potentially improved the targeting of components to best uses. The terminal velocity property used an opposing air velocity to equilibrate particle weight with the sum of the drag and buoyancy forces. This study used particles of similar dimensions to ascertain the effect of particle mass and density on experimental measures of terminal velocity in a wind tunnel and as calculated by reliable equations. Similar particle diameters, lengths, and volumes of wheat stems ranged from 0.362 to 0.376 cm, 1.25 to 1.28 cm, and 0.131 to 0.141 cm3, respectively. Moisture content was 12% wet basis. Wheat stem internodes had individual particle mass and density ranging from 0.015 to 0.019 g and 113 to 144 kg m-3, respectively, and mean Terminal Velocity Wind Tunnel (TVWT) terminal velocities for wheat stem internodes that ranged from 3.13 to 3.58 m s-1. Nodes had individual particle mass and density ranging from 0.031 to 0.041 g and 236 to 297 kg m-3, respectively, and mean TVWT terminal velocities for wheat stem nodes that ranged from 4.62 to 5.14 m s-1. Thus, no overlap in values was observed for particle mass, particle density, and terminal velocity between wheat stem internode and wheat stem node. This observation supports the potential of using terminal velocity to separate node from internode for similar-sized wheat stems at a given moisture content. Keywords: Aerodynamic separation, Anatomical component, Biomass property, Physical experiment, Sorting, Terminal velocity, Vertical wind tunnel, Wheat stem particles.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82458995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Te Xi, Lunqing Sun, Yongwei Wang, Dong-Lin Li, Fake Shanno, Fuqiang Yao, Jun Wang
Highlights The effect of airflow velocity on pollen distribution was investigated under a large-scale planting mode. The response surface model between pollen distribution and airflow velocity was constructed. Multi-objective optimization of airflow velocity combinations was carried out using a genetic algorithm. The optimal airflow velocity ranges of the male parents are from 22.4 to 24 m/s, 23.1 to 27 m/s, and 23.5 to 24.1 m/s. Abstract. Pollination is the key link in hybrid rice seed production. The pneumatic pollination method can significantly improve pollination efficiency under large-scale planting mode. To investigate the effect of airflow velocity on pollen distribution in hybrid rice pollination, the velocities of airflow acting on different male parent rows were taken as the experimental factors. The pollen amount in per view and the variation rate of pollen distribution in female parent rows were used as experimental indices. Field experiments were carried out using a self-made pneumatic pollination experimental platform. The results showed that when the airflow acted on the male parents in the first and second rows of the adjacent female parent, the pollen dissemination distance was short when the airflow velocity was low, and the pollen was mainly deposited in the area near the male parents. With the increase in airflow velocity, the peak pollen amount in per view in the female parent rows gradually moved away from the male parent rows. But they are all in the female parent rows of the effective area. The total amount of pollen also increased. Due to the blocking effect of the outer male parent row, the pollen dissemination was restricted when the airflow alone acted on the third male parent row. The effect of airflow velocity on pollen distribution was not obvious. The experimental results of different airflow velocities acting on the parent row alone are used as the basis. The objective functions of pollen amount, distribution variation rate, and airflow velocities of each male parent row were established by response surface methodology. The multi-objective optimization of airflow velocity combinations was carried out by a genetic algorithm. The pollen distribution under different air velocity combinations was obtained. When the optimal airflow velocity ranges of the male parents in rows 1, 2, and 3 are 22.4 to 24 m/s, 23.1 to 27 m/s, and 23.5 to 24.1 m/s, respectively, pollination is uniform and sufficient. The research results can provide a basis for the development of pneumatic pollinators and the optimization of working parameters under large-scale planting mode. Keywords: Multi-objective parameter optimization, Pneumatic pollination machinery, Response surface modeling, Rice pollination.
{"title":"Optimizing the Airflow Velocity Combinations Acting on Male Parent Rows for Hybrid Rice Pollination","authors":"Te Xi, Lunqing Sun, Yongwei Wang, Dong-Lin Li, Fake Shanno, Fuqiang Yao, Jun Wang","doi":"10.13031/ja.15233","DOIUrl":"https://doi.org/10.13031/ja.15233","url":null,"abstract":"Highlights The effect of airflow velocity on pollen distribution was investigated under a large-scale planting mode. The response surface model between pollen distribution and airflow velocity was constructed. Multi-objective optimization of airflow velocity combinations was carried out using a genetic algorithm. The optimal airflow velocity ranges of the male parents are from 22.4 to 24 m/s, 23.1 to 27 m/s, and 23.5 to 24.1 m/s. Abstract. Pollination is the key link in hybrid rice seed production. The pneumatic pollination method can significantly improve pollination efficiency under large-scale planting mode. To investigate the effect of airflow velocity on pollen distribution in hybrid rice pollination, the velocities of airflow acting on different male parent rows were taken as the experimental factors. The pollen amount in per view and the variation rate of pollen distribution in female parent rows were used as experimental indices. Field experiments were carried out using a self-made pneumatic pollination experimental platform. The results showed that when the airflow acted on the male parents in the first and second rows of the adjacent female parent, the pollen dissemination distance was short when the airflow velocity was low, and the pollen was mainly deposited in the area near the male parents. With the increase in airflow velocity, the peak pollen amount in per view in the female parent rows gradually moved away from the male parent rows. But they are all in the female parent rows of the effective area. The total amount of pollen also increased. Due to the blocking effect of the outer male parent row, the pollen dissemination was restricted when the airflow alone acted on the third male parent row. The effect of airflow velocity on pollen distribution was not obvious. The experimental results of different airflow velocities acting on the parent row alone are used as the basis. The objective functions of pollen amount, distribution variation rate, and airflow velocities of each male parent row were established by response surface methodology. The multi-objective optimization of airflow velocity combinations was carried out by a genetic algorithm. The pollen distribution under different air velocity combinations was obtained. When the optimal airflow velocity ranges of the male parents in rows 1, 2, and 3 are 22.4 to 24 m/s, 23.1 to 27 m/s, and 23.5 to 24.1 m/s, respectively, pollination is uniform and sufficient. The research results can provide a basis for the development of pneumatic pollinators and the optimization of working parameters under large-scale planting mode. Keywords: Multi-objective parameter optimization, Pneumatic pollination machinery, Response surface modeling, Rice pollination.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81353221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toby A. Adjuik, S. Nokes, M. Montross, O. Wendroth, R. Walton
Highlights A lignin-based hydrogel was synthesized and shown to possess a swelling ratio of 2013%. The hydrogel contained important hydrophilic hydroxyl groups and macropores for water retention. The hydrogel improved soil water retention in silt loam soil at high matric potentials and in the dry soil range. Increasing hydrogel concentration increased water retention in a loamy fine sand soil at high and low matric potentials. Abstract. Superabsorbent polymers (hydrogels) have been proposed as soil amendments to increase the amount of plant-available water in the soil. Synthetic hydrogels have been widely investigated for use in agriculture. Due to increasing environmental concerns related to synthetic hydrogels, naturally sourced hydrogels are of interest because of their potential for increased biodegradability and biocompatibility. A lignin-based hydrogel was synthesized for this study, and its swelling properties and water absorption capacity were determined. The hydrogel was characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and gas pycnometry. A hanging water column, pressure plate apparatus, and dew point potentiometer were used to measure the soil water retention curve from saturation to oven-dryness for silt loam and loamy fine sand soils after amendment with the lignin-based hydrogel. Results showed a maximum swelling ratio in deionized water of 2013% of the hydrogel’s original mass, 1092% in tap water, and 825% in a 0.9% NaCl solution. The FTIR spectra of the hydrogel showed the presence of O-H bonds from the lignin structure, which renders the hydrogel reactive to a crosslinker and forms insoluble bonds, thereby allowing the hydrogel to swell when exposed to water. SEM images of the lignin hydrogels indicate large macropores, which allowed for water absorption. Applying hydrogels significantly increased the soil's water-holding capacity at 0.3% (w/w) treatment. Hydrogel treatment significantly increased water retention at saturation or near saturation by 0.12 cm3 cm-3 and at field capacity by 0.08 cm3 cm-3 for silt loam soil at 1% (w/w) treatment compared to the control treatment with no added lignin hydrogel. Hydrogel application increased water retention over the range of the soil water retention curve from -3 to -15,000 cm for the loamy fine sand soil at 1% (w/w) treatment. However, the application of lignin-based hydrogel did not affect plant available water capacity (PAWC) in either soil tested. These results serve as preliminary evidence upon which further lignin-based hydrogel amendment studies could be built by testing higher concentrations of hydrogel in the soil. Keywords: Lignin, Soil water retention curve, Super absorbent polymers, Swelling capacity, Water retention.
{"title":"Alkali Lignin-Based Hydrogel: Synthesis, Characterization, and Impact on Soil Water Retention From Near Saturation to Dryness","authors":"Toby A. Adjuik, S. Nokes, M. Montross, O. Wendroth, R. Walton","doi":"10.13031/ja.15207","DOIUrl":"https://doi.org/10.13031/ja.15207","url":null,"abstract":"Highlights A lignin-based hydrogel was synthesized and shown to possess a swelling ratio of 2013%. The hydrogel contained important hydrophilic hydroxyl groups and macropores for water retention. The hydrogel improved soil water retention in silt loam soil at high matric potentials and in the dry soil range. Increasing hydrogel concentration increased water retention in a loamy fine sand soil at high and low matric potentials. Abstract. Superabsorbent polymers (hydrogels) have been proposed as soil amendments to increase the amount of plant-available water in the soil. Synthetic hydrogels have been widely investigated for use in agriculture. Due to increasing environmental concerns related to synthetic hydrogels, naturally sourced hydrogels are of interest because of their potential for increased biodegradability and biocompatibility. A lignin-based hydrogel was synthesized for this study, and its swelling properties and water absorption capacity were determined. The hydrogel was characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and gas pycnometry. A hanging water column, pressure plate apparatus, and dew point potentiometer were used to measure the soil water retention curve from saturation to oven-dryness for silt loam and loamy fine sand soils after amendment with the lignin-based hydrogel. Results showed a maximum swelling ratio in deionized water of 2013% of the hydrogel’s original mass, 1092% in tap water, and 825% in a 0.9% NaCl solution. The FTIR spectra of the hydrogel showed the presence of O-H bonds from the lignin structure, which renders the hydrogel reactive to a crosslinker and forms insoluble bonds, thereby allowing the hydrogel to swell when exposed to water. SEM images of the lignin hydrogels indicate large macropores, which allowed for water absorption. Applying hydrogels significantly increased the soil's water-holding capacity at 0.3% (w/w) treatment. Hydrogel treatment significantly increased water retention at saturation or near saturation by 0.12 cm3 cm-3 and at field capacity by 0.08 cm3 cm-3 for silt loam soil at 1% (w/w) treatment compared to the control treatment with no added lignin hydrogel. Hydrogel application increased water retention over the range of the soil water retention curve from -3 to -15,000 cm for the loamy fine sand soil at 1% (w/w) treatment. However, the application of lignin-based hydrogel did not affect plant available water capacity (PAWC) in either soil tested. These results serve as preliminary evidence upon which further lignin-based hydrogel amendment studies could be built by testing higher concentrations of hydrogel in the soil. Keywords: Lignin, Soil water retention curve, Super absorbent polymers, Swelling capacity, Water retention.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87426483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Highlights The frictional pressure drop correlation of agricultural residue-water slurry flows in vertical pipes is developed. Multiple linear regression with the backward elimination method was used in RStudio to obtain the optimal model. Some regression coefficients differ for different types of biomass feedstocks. The predicted pressure drops agree well with the experimental data within a 95% CI. Empirical models for the onset velocity of drag reduction of different particle sizes of biomass are proposed. Abstract. Large-scale biofuel production at levels equivalent to conventional oil refineries using long-distance pipeline hydro-transport of biomass can be a cleaner alternative to fossil fuels when it comes to economics and traffic congestion associated with the overland transportation of biomass. The transport of aqueous slurries of several saturated mass concentrations (5%-40%) and four particle sizes (from <3.2-19.2 mm) of two types of agricultural residue biomass (ARB) feedstock (corn stover and wheat straw) was studied through a vertical test section of a 29 m long, 50 mm diameter closed circuit pipeline facility, and frictional pressure drops were recorded at different flow rates (0.5-4.3 m s-1). A framework was developed in RStudio (4.0.5) to analyze the experimentally obtained frictional pressure drops of biomass slurries through a multiple linear regression approach using a backward elimination method and Akaike information criterion. An empirical model was proposed to predict slurry frictional pressure drop in terms of slurry velocity, slurry solid mass concentration, particle aspect ratio, and feedstock type. The model satisfactorily predicted the frictional pressure drops of both feedstocks of biomass-water slurry flows through pipes within a 95% confidence interval. The correlations introduced for onset velocities of drag reduction in terms of slurry solid mass concentrations seemed helpful to interpret the transition points of the corresponding slurries in vertical upward flows through pipes. The empirical correlation developed in this research could help select biomass slurry pumps and pipe dimensions when designing a typical long distance pipeline network for biofuel production at the commercial level. Keywords: Agricultural biomass wastes, Frictional loss prediction, Numerical model, Onset velocity correlation, Regression coefficients, Upward pipe flow.
{"title":"The Development of Empirical Correlations to Understand the Frictional Behavior of Aqueous Biomass Slurry Flows in Vertical Pipes","authors":"Kashif Javed, Vinoj Kurian, Ajay Kumar","doi":"10.13031/ja.15498","DOIUrl":"https://doi.org/10.13031/ja.15498","url":null,"abstract":"Highlights The frictional pressure drop correlation of agricultural residue-water slurry flows in vertical pipes is developed. Multiple linear regression with the backward elimination method was used in RStudio to obtain the optimal model. Some regression coefficients differ for different types of biomass feedstocks. The predicted pressure drops agree well with the experimental data within a 95% CI. Empirical models for the onset velocity of drag reduction of different particle sizes of biomass are proposed. Abstract. Large-scale biofuel production at levels equivalent to conventional oil refineries using long-distance pipeline hydro-transport of biomass can be a cleaner alternative to fossil fuels when it comes to economics and traffic congestion associated with the overland transportation of biomass. The transport of aqueous slurries of several saturated mass concentrations (5%-40%) and four particle sizes (from <3.2-19.2 mm) of two types of agricultural residue biomass (ARB) feedstock (corn stover and wheat straw) was studied through a vertical test section of a 29 m long, 50 mm diameter closed circuit pipeline facility, and frictional pressure drops were recorded at different flow rates (0.5-4.3 m s-1). A framework was developed in RStudio (4.0.5) to analyze the experimentally obtained frictional pressure drops of biomass slurries through a multiple linear regression approach using a backward elimination method and Akaike information criterion. An empirical model was proposed to predict slurry frictional pressure drop in terms of slurry velocity, slurry solid mass concentration, particle aspect ratio, and feedstock type. The model satisfactorily predicted the frictional pressure drops of both feedstocks of biomass-water slurry flows through pipes within a 95% confidence interval. The correlations introduced for onset velocities of drag reduction in terms of slurry solid mass concentrations seemed helpful to interpret the transition points of the corresponding slurries in vertical upward flows through pipes. The empirical correlation developed in this research could help select biomass slurry pumps and pipe dimensions when designing a typical long distance pipeline network for biofuel production at the commercial level. Keywords: Agricultural biomass wastes, Frictional loss prediction, Numerical model, Onset velocity correlation, Regression coefficients, Upward pipe flow.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81341929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Xiong, Guoming Li, B. Ramirez, R. Burns, R. Gates
Highlights Draft EPA emission models for laying hen facilities were systematically evaluated. The models performed poorly on predicting the air pollutants when input variables were out of the NAEMS data range. A key finding was the unanticipated sensitivity of the draft model outputs to bird inventory and climate zones. Further revision and improvement may be necessary for draft models before they can be adopted by the egg industry. Abstract. In August 2021, the U.S. Environmental Protection Agency (EPA) released draft models to estimate daily NH3, H2S, PM10, PM2.5, and TSP emissions from egg-layer houses (high-rise and manure-belt) and manure storage using inputs of daily mean ambient temperature, relative humidity (RH), and hen inventory. These models were developed from refined datasets generated by the National Air Emissions Monitoring Study fieldwork completed in 2009. Notably, they do not include data for cage-free housing. Currently, 66% of U.S. laying hens are housed in cages; thus, these models, if adopted, will have a substantial impact on the U.S. egg industry. This study evaluated the EPA draft models’ robustness and assessed model outputs for egg production systems under differing climate scenarios. The EPA draft models distort emission factors for bird inventories to be lower or higher than those used to develop the models. With inventory held constant, the marginal influence of ambient temperature and RH on daily emissions varied substantially, with some values falling below the measurement detection threshold while others exceeding literature findings. For twelve representative U.S. locations representing differing climates, substantial differences in emission factors were found for bird inventories outside the range in the database. Annual emissions estimated from inventories used to develop the EPA models also varied by location. We conclude that the current draft EPA emission models cannot be used to the degree of precision that is suitable to apply to a wide range of layer facilities, particularly cage-free systems. Revisions are suggested to accommodate a greater range of climates, laying hen facility types, and inventories for practical emission estimations. Keywords: Air quality, Ammonia, Egg production, Emission model, Hydrogen sulfide, Particulate matter, Poultry.
{"title":"Evaluating Draft EPA Emissions Models for Laying Hen Facilities","authors":"Y. Xiong, Guoming Li, B. Ramirez, R. Burns, R. Gates","doi":"10.13031/ja.15237","DOIUrl":"https://doi.org/10.13031/ja.15237","url":null,"abstract":"Highlights Draft EPA emission models for laying hen facilities were systematically evaluated. The models performed poorly on predicting the air pollutants when input variables were out of the NAEMS data range. A key finding was the unanticipated sensitivity of the draft model outputs to bird inventory and climate zones. Further revision and improvement may be necessary for draft models before they can be adopted by the egg industry. Abstract. In August 2021, the U.S. Environmental Protection Agency (EPA) released draft models to estimate daily NH3, H2S, PM10, PM2.5, and TSP emissions from egg-layer houses (high-rise and manure-belt) and manure storage using inputs of daily mean ambient temperature, relative humidity (RH), and hen inventory. These models were developed from refined datasets generated by the National Air Emissions Monitoring Study fieldwork completed in 2009. Notably, they do not include data for cage-free housing. Currently, 66% of U.S. laying hens are housed in cages; thus, these models, if adopted, will have a substantial impact on the U.S. egg industry. This study evaluated the EPA draft models’ robustness and assessed model outputs for egg production systems under differing climate scenarios. The EPA draft models distort emission factors for bird inventories to be lower or higher than those used to develop the models. With inventory held constant, the marginal influence of ambient temperature and RH on daily emissions varied substantially, with some values falling below the measurement detection threshold while others exceeding literature findings. For twelve representative U.S. locations representing differing climates, substantial differences in emission factors were found for bird inventories outside the range in the database. Annual emissions estimated from inventories used to develop the EPA models also varied by location. We conclude that the current draft EPA emission models cannot be used to the degree of precision that is suitable to apply to a wide range of layer facilities, particularly cage-free systems. Revisions are suggested to accommodate a greater range of climates, laying hen facility types, and inventories for practical emission estimations. Keywords: Air quality, Ammonia, Egg production, Emission model, Hydrogen sulfide, Particulate matter, Poultry.","PeriodicalId":29714,"journal":{"name":"Journal of the ASABE","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72830023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}