Pub Date : 2013-04-29DOI: 10.1109/ASPDAC.2013.6509580
Xin Zhang, Po-Hung Chen, Y. Ryu, K. Ishida, Yasuyuki Okuma, Kazunori Watanabe, T. Sakurai, M. Takamiya
A low voltage buck DC-DC converter (0.45-V input, 0.4-V output) with on-chip gate boosted (OGB) and clock frequency scaled digital PWM controller is designed in 40-nm CMOS process. The highest efficiency to date is achieved at the output power less than 40μW. In order to compensate for the die-to-die delay variations of a delay line in the proposed digital PWM controller, a linear delay trimming by a logarithmic stress voltage (LSV) scheme with good controllability is also proposed and verified in measurement.
{"title":"A low voltage buck DC-DC converter using on-chip gate boost technique in 40nm CMOS","authors":"Xin Zhang, Po-Hung Chen, Y. Ryu, K. Ishida, Yasuyuki Okuma, Kazunori Watanabe, T. Sakurai, M. Takamiya","doi":"10.1109/ASPDAC.2013.6509580","DOIUrl":"https://doi.org/10.1109/ASPDAC.2013.6509580","url":null,"abstract":"A low voltage buck DC-DC converter (0.45-V input, 0.4-V output) with on-chip gate boosted (OGB) and clock frequency scaled digital PWM controller is designed in 40-nm CMOS process. The highest efficiency to date is achieved at the output power less than 40μW. In order to compensate for the die-to-die delay variations of a delay line in the proposed digital PWM controller, a linear delay trimming by a logarithmic stress voltage (LSV) scheme with good controllability is also proposed and verified in measurement.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126550020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-29DOI: 10.1109/ASPDAC.2013.6509657
H. Tomiyama, Takuji Hieda, N. Nishiyama, Noriko Etani, Ittetsu Taniguchi
Embedded SoC architecture has shifted from single-core to multi/many-core paradigm because of better power/performance efficiency. In order to exploit the potential power/performance efficiency of the many-core architecture, a parallel computing framework is necessary. OpenCL is one of the most popular parallel computing frameworks in the field of general-purpose computing on GPUs and multicore servers. However, the existing OpenCL implementations are not suitable to embedded real-time systems because of the large runtime overhead. In this paper, we describe a lightweight OpenCL framework for embedded multi/many-core SoCs. Our OpenCL framework minimizes the runtime overhead by statically creating threads and mapping them onto cores. Preliminary experiments on an FPGA prototype board with a five-core architecture shows a significant reduction in runtime overhead compared with an existing OpenCL framework.
{"title":"SMYLE OpenCL: A programming framework for embedded many-core SoCs","authors":"H. Tomiyama, Takuji Hieda, N. Nishiyama, Noriko Etani, Ittetsu Taniguchi","doi":"10.1109/ASPDAC.2013.6509657","DOIUrl":"https://doi.org/10.1109/ASPDAC.2013.6509657","url":null,"abstract":"Embedded SoC architecture has shifted from single-core to multi/many-core paradigm because of better power/performance efficiency. In order to exploit the potential power/performance efficiency of the many-core architecture, a parallel computing framework is necessary. OpenCL is one of the most popular parallel computing frameworks in the field of general-purpose computing on GPUs and multicore servers. However, the existing OpenCL implementations are not suitable to embedded real-time systems because of the large runtime overhead. In this paper, we describe a lightweight OpenCL framework for embedded multi/many-core SoCs. Our OpenCL framework minimizes the runtime overhead by statically creating threads and mapping them onto cores. Preliminary experiments on an FPGA prototype board with a five-core architecture shows a significant reduction in runtime overhead compared with an existing OpenCL framework.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"522 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132133615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-29DOI: 10.1109/ASPDAC.2013.6509589
Zao Liu, S. Tan, Hai Wang, S. Swarup, Ashish Gupta
This paper proposes a new thermal nonlinear modeling technique for packaged integrated systems. Thermal behavior of complicated systems like packaged electronic systems may exhibit nonlinear and temperature dependent properties. As a result, it is difficult to use a low order linear model to approximate the thermal behavior of the packaged integrated systems without accuracy loss. In this paper, we try to mitigate this problem by using piecewise linear (PWL) approach to characterizing the thermal behavior of those systems. The new method (called ThermSubPWL), which is the first proposed approach to nonlinear thermal modeling problem, identifies the linear local models for different temperature ranges using the subspace identification method. A linear transformation method is proposed to transform all the identified linear local models to the common state basis to build the continuous piecewise linear model. Experimental results validate the proposed method on a realistic packaged integrated system modeled via the multi-domain/physics commercial tool, COMSOL, under practical power signal inputs. The new piecewise models can lead to much smaller model order without accuracy loss, which translates to significant savings in both the simulation time and the time required to identify the reduced models compared to applying the high order models.
{"title":"Compact nonlinear thermal modeling of packaged integrated systems","authors":"Zao Liu, S. Tan, Hai Wang, S. Swarup, Ashish Gupta","doi":"10.1109/ASPDAC.2013.6509589","DOIUrl":"https://doi.org/10.1109/ASPDAC.2013.6509589","url":null,"abstract":"This paper proposes a new thermal nonlinear modeling technique for packaged integrated systems. Thermal behavior of complicated systems like packaged electronic systems may exhibit nonlinear and temperature dependent properties. As a result, it is difficult to use a low order linear model to approximate the thermal behavior of the packaged integrated systems without accuracy loss. In this paper, we try to mitigate this problem by using piecewise linear (PWL) approach to characterizing the thermal behavior of those systems. The new method (called ThermSubPWL), which is the first proposed approach to nonlinear thermal modeling problem, identifies the linear local models for different temperature ranges using the subspace identification method. A linear transformation method is proposed to transform all the identified linear local models to the common state basis to build the continuous piecewise linear model. Experimental results validate the proposed method on a realistic packaged integrated system modeled via the multi-domain/physics commercial tool, COMSOL, under practical power signal inputs. The new piecewise models can lead to much smaller model order without accuracy loss, which translates to significant savings in both the simulation time and the time required to identify the reduced models compared to applying the high order models.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122229989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-29DOI: 10.1109/ASPDAC.2013.6509614
P. Cheng, Stephen J. Fink, R. Rabbah, Sunil Shukla
Programmers are increasingly turning to heterogeneous systems to achieve performance. Examples include FPGA-based systems that integrate reconfigurable architectures with conventional processors. However, the burden of managing the coding complexity that is intrinsic to these systems falls entirely on the programmer. This limits the proliferation of these systems as only highly-skilled programmers and FPGA developers can unlock their potential. The goal of the Liquid Metal project at IBM Research is to address the programming complexity attributed to heterogeneous FPGA-based systems. A feature of this work is a vertically integrated development lifecycle that appeals to skilled software developers. A primary enabler for this work is a canonical IP bridge, designed to offer a uniform communication methodology between software and hardware, and that is applicable across a wide range of platforms available off-the-shelf.
{"title":"The Liquid Metal IP bridge","authors":"P. Cheng, Stephen J. Fink, R. Rabbah, Sunil Shukla","doi":"10.1109/ASPDAC.2013.6509614","DOIUrl":"https://doi.org/10.1109/ASPDAC.2013.6509614","url":null,"abstract":"Programmers are increasingly turning to heterogeneous systems to achieve performance. Examples include FPGA-based systems that integrate reconfigurable architectures with conventional processors. However, the burden of managing the coding complexity that is intrinsic to these systems falls entirely on the programmer. This limits the proliferation of these systems as only highly-skilled programmers and FPGA developers can unlock their potential. The goal of the Liquid Metal project at IBM Research is to address the programming complexity attributed to heterogeneous FPGA-based systems. A feature of this work is a vertically integrated development lifecycle that appeals to skilled software developers. A primary enabler for this work is a canonical IP bridge, designed to offer a uniform communication methodology between software and hardware, and that is applicable across a wide range of platforms available off-the-shelf.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115117745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-29DOI: 10.1109/ASPDAC.2013.6509680
K. Athikulwongse, Daehyun Kim, Moongon Jung, S. Lim
In 3D ICs, block-level designs provide various advantages over designs done at other granularity such as gate-level because they promote the reuse of IP blocks. In this paper, we study block-level 3D-IC designs, where the footprint of the dies in the stack are different. This happens in case of die-to-wafer bonding, which is more popular choice for near-term low-cost 3D designs. We study design quality tradeoffs among three different ways to place through-silicon vias (TSVs): TSV-farm, TSV-distributed, and TSV-whitespace. In our holistic approach, we use wirelength, power, performance, temperature, and mechanical stress metrics to conduct comprehensive comparative studies on the three design styles. In addition, we provide analysis on the impact of TSV size and pitch on the design quality of these three styles.
{"title":"Block-level designs of die-to-wafer bonded 3D ICs and their design quality tradeoffs","authors":"K. Athikulwongse, Daehyun Kim, Moongon Jung, S. Lim","doi":"10.1109/ASPDAC.2013.6509680","DOIUrl":"https://doi.org/10.1109/ASPDAC.2013.6509680","url":null,"abstract":"In 3D ICs, block-level designs provide various advantages over designs done at other granularity such as gate-level because they promote the reuse of IP blocks. In this paper, we study block-level 3D-IC designs, where the footprint of the dies in the stack are different. This happens in case of die-to-wafer bonding, which is more popular choice for near-term low-cost 3D designs. We study design quality tradeoffs among three different ways to place through-silicon vias (TSVs): TSV-farm, TSV-distributed, and TSV-whitespace. In our holistic approach, we use wirelength, power, performance, temperature, and mechanical stress metrics to conduct comprehensive comparative studies on the three design styles. In addition, we provide analysis on the impact of TSV size and pitch on the design quality of these three styles.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124913100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-29DOI: 10.1109/ASPDAC.2013.6509681
Y. Shang, Chun Zhang, Hao Yu, Chuan-Seng Tan, Xin Zhao, S. Lim
3D physical design needs accurate device model of through-silicon vias (TSVs). In this paper, physics-based electrical-thermal model is introduced for both signal and dummy thermal TSVs with the consideration of nonlinear electrical-thermal dependence. Taking thermal-reliable 3D clock-tree synthesis as a case-study to verify the effectiveness of the proposed TSV model, one nonlinear programming-based clock-skew reduction problem is formulated to allocate thermal TSVs for clock-skew reduction under non-uniform temperature distribution. With a number of 3D clock-tree benchmarks, experiments show that under the nonlinear electrical-thermal TSV model, insertion of thermal TSVs can effectively reduce temperature-gradient introduced clock-skew by 58.4% on average, and has 11.6% higher clock-skew reduction than the result under linear electrical-thermal model.
{"title":"Thermal-reliable 3D clock-tree synthesis considering nonlinear electrical-thermal-coupled TSV model","authors":"Y. Shang, Chun Zhang, Hao Yu, Chuan-Seng Tan, Xin Zhao, S. Lim","doi":"10.1109/ASPDAC.2013.6509681","DOIUrl":"https://doi.org/10.1109/ASPDAC.2013.6509681","url":null,"abstract":"3D physical design needs accurate device model of through-silicon vias (TSVs). In this paper, physics-based electrical-thermal model is introduced for both signal and dummy thermal TSVs with the consideration of nonlinear electrical-thermal dependence. Taking thermal-reliable 3D clock-tree synthesis as a case-study to verify the effectiveness of the proposed TSV model, one nonlinear programming-based clock-skew reduction problem is formulated to allocate thermal TSVs for clock-skew reduction under non-uniform temperature distribution. With a number of 3D clock-tree benchmarks, experiments show that under the nonlinear electrical-thermal TSV model, insertion of thermal TSVs can effectively reduce temperature-gradient introduced clock-skew by 58.4% on average, and has 11.6% higher clock-skew reduction than the result under linear electrical-thermal model.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127316951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-29DOI: 10.1109/ASPDAC.2013.6509645
Yang Ge, Yukan Zhang, Qinru Qiu
While the energy harvesting system (EHS) supplies green energy to the embedded system, it also suffers from uncertainty and large variation in harvesting rate. This constraint can be remedied by using efficient energy storage. Hybrid Electrical Energy Storage (HEES) system is proposed recently as a cost effective approach with high power conversion efficiency and low self-discharge. In this paper, we propose a fast heuristic algorithm to improve the efficiency of charge allocation and replacement in an EHS/HEES equipped embedded system. The goal of our algorithm is to minimize the energy overhead on the DC-DC converter while satisfying the task deadline constraints of the embedded workload and maximizing the energy stored in the HEES system. We first provide an approximated but accurate power consumption model of the DC-DC converter. Based on this model, the optimal operating point of the system can be analytically solved. Integrated with the dynamic reconfiguration of the HEES bank, our algorithm provides energy efficiency improvement and runtime overhead reduction compared to previous approaches.
{"title":"Improving energy efficiency for energy harvesting embedded systems","authors":"Yang Ge, Yukan Zhang, Qinru Qiu","doi":"10.1109/ASPDAC.2013.6509645","DOIUrl":"https://doi.org/10.1109/ASPDAC.2013.6509645","url":null,"abstract":"While the energy harvesting system (EHS) supplies green energy to the embedded system, it also suffers from uncertainty and large variation in harvesting rate. This constraint can be remedied by using efficient energy storage. Hybrid Electrical Energy Storage (HEES) system is proposed recently as a cost effective approach with high power conversion efficiency and low self-discharge. In this paper, we propose a fast heuristic algorithm to improve the efficiency of charge allocation and replacement in an EHS/HEES equipped embedded system. The goal of our algorithm is to minimize the energy overhead on the DC-DC converter while satisfying the task deadline constraints of the embedded workload and maximizing the energy stored in the HEES system. We first provide an approximated but accurate power consumption model of the DC-DC converter. Based on this model, the optimal operating point of the system can be analytically solved. Integrated with the dynamic reconfiguration of the HEES bank, our algorithm provides energy efficiency improvement and runtime overhead reduction compared to previous approaches.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128389324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-29DOI: 10.1109/ASPDAC.2013.6509691
Yang Song, Haipeng Fu, Hao Yu, G. Shi
It is unknown to perform efficient PLL system-level verification with consideration of jitter induced by substrate or power-supply noise. With the consideration of nonlinear phase noise macromodel, this paper introduces a forward reachability analysis with stable backward correction for PLL system-level verification with jitter. By refining initial state of PLL through backward correction, one can perform an efficient PLL verification to automatically adjust the locking range with consideration of environmental noise induced jitter. Moreover, to overcome the unstable nature during backward correction, a stability calibration is introduced in this paper to limit error. To validate our method, the proposed approach is applied to verify a number of PLL designs including single-LC or coupled-LC oscillators described by system-level behavioral model with jitter. Experimental results show that our forward reachability analysis with backward correction can succeed in reaching the adjusted locking range by correcting initial states in presence of environmental noise induced jitter.
{"title":"Stable backward reachability correction for PLL verification with consideration of environmental noise induced jitter","authors":"Yang Song, Haipeng Fu, Hao Yu, G. Shi","doi":"10.1109/ASPDAC.2013.6509691","DOIUrl":"https://doi.org/10.1109/ASPDAC.2013.6509691","url":null,"abstract":"It is unknown to perform efficient PLL system-level verification with consideration of jitter induced by substrate or power-supply noise. With the consideration of nonlinear phase noise macromodel, this paper introduces a forward reachability analysis with stable backward correction for PLL system-level verification with jitter. By refining initial state of PLL through backward correction, one can perform an efficient PLL verification to automatically adjust the locking range with consideration of environmental noise induced jitter. Moreover, to overcome the unstable nature during backward correction, a stability calibration is introduced in this paper to limit error. To validate our method, the proposed approach is applied to verify a number of PLL designs including single-LC or coupled-LC oscillators described by system-level behavioral model with jitter. Experimental results show that our forward reachability analysis with backward correction can succeed in reaching the adjusted locking range by correcting initial states in presence of environmental noise induced jitter.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126276850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-29DOI: 10.1109/ASPDAC.2013.6509584
N. Dutt, Puneet Gupta, A. Nicolau, L. A. Bathen, Mark Gottscho
As the semiconductor industry continues to push the limits of sub-micron technology, the ITRS expects hardware (e.g., die-to-die, wafer-to-wafer, and chip-to-chip) variations to continue increasing over the next few decades. As a result, it is imperative for designers to build variation-aware software stacks that may adapt and opportunistically exploit said variations to increase system performance/responsiveness as well as minimize power consumption. The memory subsystem is one of the largest components in today's computing system, a main contributor to the overall power consumption of the system, and therefore one of the most vulnerable components to the effects of variations (e.g., power). This paper discusses the concept of variability-aware memory management for nanoscale computing systems. We show how to opportunistically exploit the hardware variations in on-chip and off-chip memory at the system level through the deployment of variation-aware software stacks.
{"title":"Variability-aware memory management for nanoscale computing","authors":"N. Dutt, Puneet Gupta, A. Nicolau, L. A. Bathen, Mark Gottscho","doi":"10.1109/ASPDAC.2013.6509584","DOIUrl":"https://doi.org/10.1109/ASPDAC.2013.6509584","url":null,"abstract":"As the semiconductor industry continues to push the limits of sub-micron technology, the ITRS expects hardware (e.g., die-to-die, wafer-to-wafer, and chip-to-chip) variations to continue increasing over the next few decades. As a result, it is imperative for designers to build variation-aware software stacks that may adapt and opportunistically exploit said variations to increase system performance/responsiveness as well as minimize power consumption. The memory subsystem is one of the largest components in today's computing system, a main contributor to the overall power consumption of the system, and therefore one of the most vulnerable components to the effects of variations (e.g., power). This paper discusses the concept of variability-aware memory management for nanoscale computing systems. We show how to opportunistically exploit the hardware variations in on-chip and off-chip memory at the system level through the deployment of variation-aware software stacks.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125868141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-29DOI: 10.1109/ASPDAC.2013.6509572
S. Iguchi, Akira Saito, Kentaro Honda, Y. Zheng, Kazunori Watanabe, T. Sakurai, M. Takamiya
A 1-Mbps, 315MHz OOK transceiver in 40-nm CMOS for body area networks is developed. Both a 38-pJ/bit carrier-frequency-free intermittent sampling receiver with -55dBm sensitivity and a 36-pJ/bit transmitter applied dual supply voltage scheme with -20dBm output power achieve the lowest energy in the published transceivers for wireless sensor networks.
{"title":"315MHz OOK transceiver with 38-µW receiver and 36-µW transmitter in 40-nm CMOS","authors":"S. Iguchi, Akira Saito, Kentaro Honda, Y. Zheng, Kazunori Watanabe, T. Sakurai, M. Takamiya","doi":"10.1109/ASPDAC.2013.6509572","DOIUrl":"https://doi.org/10.1109/ASPDAC.2013.6509572","url":null,"abstract":"A 1-Mbps, 315MHz OOK transceiver in 40-nm CMOS for body area networks is developed. Both a 38-pJ/bit carrier-frequency-free intermittent sampling receiver with -55dBm sensitivity and a 36-pJ/bit transmitter applied dual supply voltage scheme with -20dBm output power achieve the lowest energy in the published transceivers for wireless sensor networks.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124083202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}