首页 > 最新文献

Radiology-Artificial Intelligence最新文献

英文 中文
Vision Transformer-based Deep Learning Models Accelerate Further Research for Predicting Neurosurgical Intervention. 基于视觉转换器的深度学习模型加速了预测神经外科干预的进一步研究。
IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-01 DOI: 10.1148/ryai.240117
Kengo Takahashi, Takuma Usuzaki, Ryusei Inamori
{"title":"Vision Transformer-based Deep Learning Models Accelerate Further Research for Predicting Neurosurgical Intervention.","authors":"Kengo Takahashi, Takuma Usuzaki, Ryusei Inamori","doi":"10.1148/ryai.240117","DOIUrl":"10.1148/ryai.240117","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 4","pages":"e240117"},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging Pixels to Genes. 连接像素与基因
IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-01 DOI: 10.1148/ryai.240262
Mana Moassefi, Bradley J Erickson
{"title":"Bridging Pixels to Genes.","authors":"Mana Moassefi, Bradley J Erickson","doi":"10.1148/ryai.240262","DOIUrl":"10.1148/ryai.240262","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 4","pages":"e240262"},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical, Cultural, Computational, and Regulatory Considerations to Deploy AI in Radiology: Perspectives of RSNA and MICCAI Experts. 在放射学中部署人工智能的临床、文化、计算和监管考虑因素:RSNA 和 MICCAI 专家的观点。
IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-01 DOI: 10.1148/ryai.240225
Marius George Linguraru, Spyridon Bakas, Mariam Aboian, Peter D Chang, Adam E Flanders, Jayashree Kalpathy-Cramer, Felipe C Kitamura, Matthew P Lungren, John Mongan, Luciano M Prevedello, Ronald M Summers, Carol C Wu, Maruf Adewole, Charles E Kahn

The Radiological Society of North of America (RSNA) and the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society have led a series of joint panels and seminars focused on the present impact and future directions of artificial intelligence (AI) in radiology. These conversations have collected viewpoints from multidisciplinary experts in radiology, medical imaging, and machine learning on the current clinical penetration of AI technology in radiology and how it is impacted by trust, reproducibility, explainability, and accountability. The collective points-both practical and philosophical-define the cultural changes for radiologists and AI scientists working together and describe the challenges ahead for AI technologies to meet broad approval. This article presents the perspectives of experts from MICCAI and RSNA on the clinical, cultural, computational, and regulatory considerations-coupled with recommended reading materials-essential to adopt AI technology successfully in radiology and, more generally, in clinical practice. The report emphasizes the importance of collaboration to improve clinical deployment, highlights the need to integrate clinical and medical imaging data, and introduces strategies to ensure smooth and incentivized integration. Keywords: Adults and Pediatrics, Computer Applications-General (Informatics), Diagnosis, Prognosis © RSNA, 2024.

"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现一些可能影响内容的错误。北美放射学会(RSNA)和医学影像计算与计算机辅助介入学会(MICCAI)联合举办了一系列专题讨论会和研讨会,重点探讨人工智能(AI)在放射学领域的当前影响和未来发展方向。这些对话收集了来自放射学、医学影像和机器学习等多学科专家的观点,探讨了人工智能技术目前在放射学中的临床应用,以及它如何受到信任、可重复性、可解释性和问责制的影响。这些观点从实践和哲学角度共同定义了放射科医生和人工智能科学家合作的文化变革,并描述了人工智能技术要获得广泛认可所面临的挑战。本文介绍了来自 MICCAI 和 RSNA 的专家对临床、文化、计算和监管方面的考虑因素的观点,以及推荐的阅读材料,这些因素对于在放射学和更广泛的临床实践中成功采用人工智能技术至关重要。该报告强调了合作对于改进临床部署的重要性,强调了整合临床和医学影像数据的必要性,并介绍了确保顺利整合和激励整合的策略。©RSNA,2024。
{"title":"Clinical, Cultural, Computational, and Regulatory Considerations to Deploy AI in Radiology: Perspectives of RSNA and MICCAI Experts.","authors":"Marius George Linguraru, Spyridon Bakas, Mariam Aboian, Peter D Chang, Adam E Flanders, Jayashree Kalpathy-Cramer, Felipe C Kitamura, Matthew P Lungren, John Mongan, Luciano M Prevedello, Ronald M Summers, Carol C Wu, Maruf Adewole, Charles E Kahn","doi":"10.1148/ryai.240225","DOIUrl":"10.1148/ryai.240225","url":null,"abstract":"<p><p>The Radiological Society of North of America (RSNA) and the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society have led a series of joint panels and seminars focused on the present impact and future directions of artificial intelligence (AI) in radiology. These conversations have collected viewpoints from multidisciplinary experts in radiology, medical imaging, and machine learning on the current clinical penetration of AI technology in radiology and how it is impacted by trust, reproducibility, explainability, and accountability. The collective points-both practical and philosophical-define the cultural changes for radiologists and AI scientists working together and describe the challenges ahead for AI technologies to meet broad approval. This article presents the perspectives of experts from MICCAI and RSNA on the clinical, cultural, computational, and regulatory considerations-coupled with recommended reading materials-essential to adopt AI technology successfully in radiology and, more generally, in clinical practice. The report emphasizes the importance of collaboration to improve clinical deployment, highlights the need to integrate clinical and medical imaging data, and introduces strategies to ensure smooth and incentivized integration. <b>Keywords:</b> Adults and Pediatrics, Computer Applications-General (Informatics), Diagnosis, Prognosis © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240225"},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of an Artificial Intelligence System for Breast Cancer Detection on Screening Mammograms from BreastScreen Norway. 挪威 BreastScreen 乳腺癌筛查乳房 X 线照片的人工智能乳腺癌检测系统性能。
IF 9.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-01 DOI: 10.1148/ryai.230375
Marthe Larsen, Camilla F Olstad, Christoph I Lee, Tone Hovda, Solveig R Hoff, Marit A Martiniussen, Karl Øyvind Mikalsen, Håkon Lund-Hanssen, Helene S Solli, Marko Silberhorn, Åse Ø Sulheim, Steinar Auensen, Jan F Nygård, Solveig Hofvind

Purpose To explore the stand-alone breast cancer detection performance, at different risk score thresholds, of a commercially available artificial intelligence (AI) system. Materials and Methods This retrospective study included information from 661 695 digital mammographic examinations performed among 242 629 female individuals screened as a part of BreastScreen Norway, 2004-2018. The study sample included 3807 screen-detected cancers and 1110 interval breast cancers. A continuous examination-level risk score by the AI system was used to measure performance as the area under the receiver operating characteristic curve (AUC) with 95% CIs and cancer detection at different AI risk score thresholds. Results The AUC of the AI system was 0.93 (95% CI: 0.92, 0.93) for screen-detected cancers and interval breast cancers combined and 0.97 (95% CI: 0.97, 0.97) for screen-detected cancers. In a setting where 10% of the examinations with the highest AI risk scores were defined as positive and 90% with the lowest scores as negative, 92.0% (3502 of 3807) of the screen-detected cancers and 44.6% (495 of 1110) of the interval breast cancers were identified with AI. In this scenario, 68.5% (10 987 of 16 040) of false-positive screening results (negative recall assessment) were considered negative by AI. When 50% was used as the cutoff, 99.3% (3781 of 3807) of the screen-detected cancers and 85.2% (946 of 1110) of the interval breast cancers were identified as positive by AI, whereas 17.0% (2725 of 16 040) of the false-positive results were considered negative. Conclusion The AI system showed high performance in detecting breast cancers within 2 years of screening mammography and a potential for use to triage low-risk mammograms to reduce radiologist workload. Keywords: Mammography, Breast, Screening, Convolutional Neural Network (CNN), Deep Learning Algorithms Supplemental material is available for this article. © RSNA, 2024 See also commentary by Bahl and Do in this issue.

"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现一些错误,从而影响文章内容。目的 探讨市售人工智能(AI)系统在不同风险评分阈值下的独立乳腺癌检测性能。材料与方法 这项回顾性研究纳入了 2004-2018 年作为 x 的一部分进行筛查的 242629 名女性中进行的 661695 次数字乳腺 X 光检查的信息。研究样本包括 3807 例筛查出的癌症(SDC)和 1110 例间期乳腺癌(IC)。采用人工智能系统的连续检查水平风险评分来衡量不同人工智能风险评分阈值下的接收者操作特征曲线下面积(AUC)及 95% CIs 和癌症检出率的性能。结果 AI 系统对 SDC 和 IC 的 AUC 值分别为 0.93(95% CI:0.92-0.93)和 0.97(95% CI:0.97-0.97)。在 AI 风险评分最高的检查中有 10% 被定义为阳性,评分最低的检查中有 90% 被定义为阴性的情况下,92.0%(3502/3807)的 SDC 和 44.6%(495/1100)的 IC 是通过 AI 识别的。在这种情况下,68.5%(10 987/16 029)的假阳性筛查结果(阴性回忆评估)被人工智能视为阴性。当以 50%为临界值时,人工智能识别出 99.3%(3781/3807)的 SDC 和 85.2%(946/1100)的 IC 为阳性,而 17.0%(2725/16 029)的假阳性结果被视为阴性。结论 人工智能系统在乳腺放射摄影筛查后两年内检测出乳腺癌方面表现出很高的性能,并有可能对低风险乳腺放射摄影进行分流,以减少放射医师的工作量。©RSNA,2024。
{"title":"Performance of an Artificial Intelligence System for Breast Cancer Detection on Screening Mammograms from BreastScreen Norway.","authors":"Marthe Larsen, Camilla F Olstad, Christoph I Lee, Tone Hovda, Solveig R Hoff, Marit A Martiniussen, Karl Øyvind Mikalsen, Håkon Lund-Hanssen, Helene S Solli, Marko Silberhorn, Åse Ø Sulheim, Steinar Auensen, Jan F Nygård, Solveig Hofvind","doi":"10.1148/ryai.230375","DOIUrl":"10.1148/ryai.230375","url":null,"abstract":"<p><p>Purpose To explore the stand-alone breast cancer detection performance, at different risk score thresholds, of a commercially available artificial intelligence (AI) system. Materials and Methods This retrospective study included information from 661 695 digital mammographic examinations performed among 242 629 female individuals screened as a part of BreastScreen Norway, 2004-2018. The study sample included 3807 screen-detected cancers and 1110 interval breast cancers. A continuous examination-level risk score by the AI system was used to measure performance as the area under the receiver operating characteristic curve (AUC) with 95% CIs and cancer detection at different AI risk score thresholds. Results The AUC of the AI system was 0.93 (95% CI: 0.92, 0.93) for screen-detected cancers and interval breast cancers combined and 0.97 (95% CI: 0.97, 0.97) for screen-detected cancers. In a setting where 10% of the examinations with the highest AI risk scores were defined as positive and 90% with the lowest scores as negative, 92.0% (3502 of 3807) of the screen-detected cancers and 44.6% (495 of 1110) of the interval breast cancers were identified with AI. In this scenario, 68.5% (10 987 of 16 040) of false-positive screening results (negative recall assessment) were considered negative by AI. When 50% was used as the cutoff, 99.3% (3781 of 3807) of the screen-detected cancers and 85.2% (946 of 1110) of the interval breast cancers were identified as positive by AI, whereas 17.0% (2725 of 16 040) of the false-positive results were considered negative. Conclusion The AI system showed high performance in detecting breast cancers within 2 years of screening mammography and a potential for use to triage low-risk mammograms to reduce radiologist workload. <b>Keywords:</b> Mammography, Breast, Screening, Convolutional Neural Network (CNN), Deep Learning Algorithms <i>Supplemental material is available for this article</i>. © RSNA, 2024 See also commentary by Bahl and Do in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230375"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Health Care: Decreasing MRI Scan Time. 高效的医疗保健:缩短磁共振成像扫描时间
IF 9.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-01 DOI: 10.1148/ryai.240174
Farid GharehMohammadi, Ronnie A Sebro
{"title":"Efficient Health Care: Decreasing MRI Scan Time.","authors":"Farid GharehMohammadi, Ronnie A Sebro","doi":"10.1148/ryai.240174","DOIUrl":"10.1148/ryai.240174","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 3","pages":"e240174"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-supervised Learning for Generalizable Intracranial Hemorrhage Detection and Segmentation. 用于颅内出血检测和分割的半监督学习。
IF 9.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-01 DOI: 10.1148/ryai.230077
Emily Lin, Esther L Yuh

Purpose To develop and evaluate a semi-supervised learning model for intracranial hemorrhage detection and segmentation on an out-of-distribution head CT evaluation set. Materials and Methods This retrospective study used semi-supervised learning to bootstrap performance. An initial "teacher" deep learning model was trained on 457 pixel-labeled head CT scans collected from one U.S. institution from 2010 to 2017 and used to generate pseudo labels on a separate unlabeled corpus of 25 000 examinations from the Radiological Society of North America and American Society of Neuroradiology. A second "student" model was trained on this combined pixel- and pseudo-labeled dataset. Hyperparameter tuning was performed on a validation set of 93 scans. Testing for both classification (n = 481 examinations) and segmentation (n = 23 examinations, or 529 images) was performed on CQ500, a dataset of 481 scans performed in India, to evaluate out-of-distribution generalizability. The semi-supervised model was compared with a baseline model trained on only labeled data using area under the receiver operating characteristic curve, Dice similarity coefficient, and average precision metrics. Results The semi-supervised model achieved a statistically significant higher examination area under the receiver operating characteristic curve on CQ500 compared with the baseline (0.939 [95% CI: 0.938, 0.940] vs 0.907 [95% CI: 0.906, 0.908]; P = .009). It also achieved a higher Dice similarity coefficient (0.829 [95% CI: 0.825, 0.833] vs 0.809 [95% CI: 0.803, 0.812]; P = .012) and pixel average precision (0.848 [95% CI: 0.843, 0.853]) vs 0.828 [95% CI: 0.817, 0.828]) compared with the baseline. Conclusion The addition of unlabeled data in a semi-supervised learning framework demonstrates stronger generalizability potential for intracranial hemorrhage detection and segmentation compared with a supervised baseline. Keywords: Semi-supervised Learning, Traumatic Brain Injury, CT, Machine Learning Supplemental material is available for this article. Published under a CC BY 4.0 license. See also the commentary by Swimburne in this issue.

"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现影响文章内容的错误。目的 在分布外头部 CT 评估集上开发和评估用于颅内出血检测和分割的半监督学习模型。材料与方法 这项回顾性研究使用半监督学习来引导性能。最初的 "教师 "深度学习模型是在 2010-2017 年间从一家美国机构收集的 457 个像素标记的头部 CT 扫描上训练的,并用于在来自 RSNA 和 ASNR 的 25,000 次检查的单独无标记语料库上生成伪标签。第二个 "学生 "模型是在这个像素与伪标签相结合的数据集上进行训练的。超参数调整在 93 个扫描的验证集上进行。分类(n = 481 次检查)和分割(n = 23 次检查,或 529 张图像)测试在 CQ500(印度进行的 481 次扫描的数据集)上进行,以评估分布外的通用性。使用接收者工作特征曲线下面积 (AUC)、Dice 相似性系数 (DSC) 和平均精确度 (AP) 指标,将半监督模型与仅在标记数据上训练的基线模型进行比较。结果 与基线模型相比,半监督模型在 CQ500 上的检查 AUC 明显更高(0.939 [0.938, 0.940] 对 0.907 [0.906, 0.908])(P = .009)。与基线相比,DSC(0.829 [0.825, 0.833] 对 0.809 [0.803, 0.812])(P = .012)和 Pixel AP(0.848 [0.843, 0.853])对 0.828 [0.817, 0.828])也更高。结论 与监督基线相比,在半监督学习框架中加入无标记数据,可为颅内出血检测和分割提供更强的通用性。©RSNA, 2024.
{"title":"Semi-supervised Learning for Generalizable Intracranial Hemorrhage Detection and Segmentation.","authors":"Emily Lin, Esther L Yuh","doi":"10.1148/ryai.230077","DOIUrl":"10.1148/ryai.230077","url":null,"abstract":"<p><p>Purpose To develop and evaluate a semi-supervised learning model for intracranial hemorrhage detection and segmentation on an out-of-distribution head CT evaluation set. Materials and Methods This retrospective study used semi-supervised learning to bootstrap performance. An initial \"teacher\" deep learning model was trained on 457 pixel-labeled head CT scans collected from one U.S. institution from 2010 to 2017 and used to generate pseudo labels on a separate unlabeled corpus of 25 000 examinations from the Radiological Society of North America and American Society of Neuroradiology. A second \"student\" model was trained on this combined pixel- and pseudo-labeled dataset. Hyperparameter tuning was performed on a validation set of 93 scans. Testing for both classification (<i>n</i> = 481 examinations) and segmentation (<i>n</i> = 23 examinations, or 529 images) was performed on CQ500, a dataset of 481 scans performed in India, to evaluate out-of-distribution generalizability. The semi-supervised model was compared with a baseline model trained on only labeled data using area under the receiver operating characteristic curve, Dice similarity coefficient, and average precision metrics. Results The semi-supervised model achieved a statistically significant higher examination area under the receiver operating characteristic curve on CQ500 compared with the baseline (0.939 [95% CI: 0.938, 0.940] vs 0.907 [95% CI: 0.906, 0.908]; <i>P</i> = .009). It also achieved a higher Dice similarity coefficient (0.829 [95% CI: 0.825, 0.833] vs 0.809 [95% CI: 0.803, 0.812]; <i>P</i> = .012) and pixel average precision (0.848 [95% CI: 0.843, 0.853]) vs 0.828 [95% CI: 0.817, 0.828]) compared with the baseline. Conclusion The addition of unlabeled data in a semi-supervised learning framework demonstrates stronger generalizability potential for intracranial hemorrhage detection and segmentation compared with a supervised baseline. <b>Keywords:</b> Semi-supervised Learning, Traumatic Brain Injury, CT, Machine Learning <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license. See also the commentary by Swimburne in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230077"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Faster, More Practical, but Still Accurate: Deep Learning for Diagnosis of Progressive Supranuclear Palsy. 更快、更实用,但仍然准确:深度学习诊断进行性核上性麻痹。
IF 9.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-01 DOI: 10.1148/ryai.240181
Bahram Mohajer
{"title":"Faster, More Practical, but Still Accurate: Deep Learning for Diagnosis of Progressive Supranuclear Palsy.","authors":"Bahram Mohajer","doi":"10.1148/ryai.240181","DOIUrl":"10.1148/ryai.240181","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 3","pages":"e240181"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140513/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140858206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Semiautonomous Deep Learning System to Reduce False Positives in Screening Mammography. 减少乳腺 X 射线筛查假阳性结果的半自主深度学习系统。
IF 9.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-01 DOI: 10.1148/ryai.230033
Stefano Pedemonte, Trevor Tsue, Brent Mombourquette, Yen Nhi Truong Vu, Thomas Matthews, Rodrigo Morales Hoil, Meet Shah, Nikita Ghare, Naomi Zingman-Daniels, Susan Holley, Catherine M Appleton, Jason Su, Richard L Wahl

Purpose To evaluate the ability of a semiautonomous artificial intelligence (AI) model to identify screening mammograms not suspicious for breast cancer and reduce the number of false-positive examinations. Materials and Methods The deep learning algorithm was trained using 123 248 two-dimensional digital mammograms (6161 cancers) and a retrospective study was performed on three nonoverlapping datasets of 14 831 screening mammography examinations (1026 cancers) from two U.S. institutions and one U.K. institution (2008-2017). The stand-alone performance of humans and AI was compared. Human plus AI performance was simulated to examine reductions in the cancer detection rate, number of examinations, false-positive callbacks, and benign biopsies. Metrics were adjusted to mimic the natural distribution of a screening population, and bootstrapped CIs and P values were calculated. Results Retrospective evaluation on all datasets showed minimal changes to the cancer detection rate with use of the AI device (noninferiority margin of 0.25 cancers per 1000 examinations: U.S. dataset 1, P = .02; U.S. dataset 2, P < .001; U.K. dataset, P < .001). On U.S. dataset 1 (11 592 mammograms; 101 cancers; 3810 female patients; mean age, 57.3 years ± 10.0 [SD]), the device reduced screening examinations requiring radiologist interpretation by 41.6% (95% CI: 40.6%, 42.4%; P < .001), diagnostic examinations callbacks by 31.1% (95% CI: 28.7%, 33.4%; P < .001), and benign needle biopsies by 7.4% (95% CI: 4.1%, 12.4%; P < .001). U.S. dataset 2 (1362 mammograms; 330 cancers; 1293 female patients; mean age, 55.4 years ± 10.5) was reduced by 19.5% (95% CI: 16.9%, 22.1%; P < .001), 11.9% (95% CI: 8.6%, 15.7%; P < .001), and 6.5% (95% CI: 0.0%, 19.0%; P = .08), respectively. The U.K. dataset (1877 mammograms; 595 cancers; 1491 female patients; mean age, 63.5 years ± 7.1) was reduced by 36.8% (95% CI: 34.4%, 39.7%; P < .001), 17.1% (95% CI: 5.9%, 30.1%: P < .001), and 5.9% (95% CI: 2.9%, 11.5%; P < .001), respectively. Conclusion This work demonstrates the potential of a semiautonomous breast cancer screening system to reduce false positives, unnecessary procedures, patient anxiety, and medical expenses. Keywords: Artificial Intelligence, Semiautonomous Deep Learning, Breast Cancer, Screening Mammography Supplemental material is available for this article. Published under a CC BY 4.0 license.

"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现一些可能影响内容的错误。目的 评估半自主人工智能(AI)模型识别乳腺癌筛查乳房X光照片的能力,并减少假阳性检查的数量。材料与方法 使用 123,248 张二维数字乳房 X 光照片(6,161 例癌症)对深度学习算法进行了训练,并对来自 2 个美国机构和 1 个英国机构(2008-2017 年)的 3 个非重叠数据集 14,831 例乳房 X 光筛查检查(1,026 例癌症)进行了回顾性研究。比较了人类和人工智能的独立性能。模拟了人类+人工智能的性能,以检查癌症检出率、检查次数、假阳性回调和良性活检的减少情况。对指标进行了调整,以模拟筛查人群的自然分布,并计算了引导置信区间(CI)和 P 值。结果 对所有数据集进行的回顾性评估显示,使用人工智能设备对癌症检出率的影响微乎其微(美国数据集 1 P = .02,美国数据集 2 P < .001,英国 P < .001,非劣效差为每 1000 例检查中发现 0.25 例癌症)。在美国数据集 1(11,592 例乳腺 X 光检查,101 例癌症,3810 名女性患者,平均年龄 57.3 ± [SD] 10.0 岁)中,该设备将需要放射医师判读的筛查减少了 41.6% [95% CI:40.6%, 42.4%] (P < .001),诊断检查回调减少了 31.1% [28.7%, 33.4%] (P < .001),良性针活检减少了 7.4% [4.1%, 12.4%] (P < .001)。美国数据集 2(1362 例乳腺 X 光检查,330 例癌症,1293 例女性患者,平均年龄 55.4 ± 10.5 岁)分别减少了 19.5% [16.9%, 22.1%] (P < .001), 11.9% [8.6%, 15.7%] (P < .001), 和 6.5% [0.0%, 19.0%] (P = .08)。英国数据集(1877 次乳房 X 光检查,595 例癌症,1491 名女性患者,平均年龄为 63.5 ± 7.1 SD)分别减少了 36.8% [34.4%, 39.7%] (P < .001), 17.1% [5.9%, 30.1%] (P < .001), 和 5.9% [2.9%, 11.5%] (P < .001)。结论 这项工作证明了半自主乳腺癌筛查系统在减少假阳性、不必要的手术、患者焦虑和医疗费用方面的潜力。以 CC BY 4.0 许可发布。
{"title":"A Semiautonomous Deep Learning System to Reduce False Positives in Screening Mammography.","authors":"Stefano Pedemonte, Trevor Tsue, Brent Mombourquette, Yen Nhi Truong Vu, Thomas Matthews, Rodrigo Morales Hoil, Meet Shah, Nikita Ghare, Naomi Zingman-Daniels, Susan Holley, Catherine M Appleton, Jason Su, Richard L Wahl","doi":"10.1148/ryai.230033","DOIUrl":"10.1148/ryai.230033","url":null,"abstract":"<p><p>Purpose To evaluate the ability of a semiautonomous artificial intelligence (AI) model to identify screening mammograms not suspicious for breast cancer and reduce the number of false-positive examinations. Materials and Methods The deep learning algorithm was trained using 123 248 two-dimensional digital mammograms (6161 cancers) and a retrospective study was performed on three nonoverlapping datasets of 14 831 screening mammography examinations (1026 cancers) from two U.S. institutions and one U.K. institution (2008-2017). The stand-alone performance of humans and AI was compared. Human plus AI performance was simulated to examine reductions in the cancer detection rate, number of examinations, false-positive callbacks, and benign biopsies. Metrics were adjusted to mimic the natural distribution of a screening population, and bootstrapped CIs and <i>P</i> values were calculated. Results Retrospective evaluation on all datasets showed minimal changes to the cancer detection rate with use of the AI device (noninferiority margin of 0.25 cancers per 1000 examinations: U.S. dataset 1, <i>P</i> = .02; U.S. dataset 2, <i>P</i> < .001; U.K. dataset, <i>P</i> < .001). On U.S. dataset 1 (11 592 mammograms; 101 cancers; 3810 female patients; mean age, 57.3 years ± 10.0 [SD]), the device reduced screening examinations requiring radiologist interpretation by 41.6% (95% CI: 40.6%, 42.4%; <i>P</i> < .001), diagnostic examinations callbacks by 31.1% (95% CI: 28.7%, 33.4%; <i>P</i> < .001), and benign needle biopsies by 7.4% (95% CI: 4.1%, 12.4%; <i>P</i> < .001). U.S. dataset 2 (1362 mammograms; 330 cancers; 1293 female patients; mean age, 55.4 years ± 10.5) was reduced by 19.5% (95% CI: 16.9%, 22.1%; <i>P</i> < .001), 11.9% (95% CI: 8.6%, 15.7%; <i>P</i> < .001), and 6.5% (95% CI: 0.0%, 19.0%; <i>P</i> = .08), respectively. The U.K. dataset (1877 mammograms; 595 cancers; 1491 female patients; mean age, 63.5 years ± 7.1) was reduced by 36.8% (95% CI: 34.4%, 39.7%; <i>P</i> < .001), 17.1% (95% CI: 5.9%, 30.1%: <i>P</i> < .001), and 5.9% (95% CI: 2.9%, 11.5%; <i>P</i> < .001), respectively. Conclusion This work demonstrates the potential of a semiautonomous breast cancer screening system to reduce false positives, unnecessary procedures, patient anxiety, and medical expenses. <b>Keywords:</b> Artificial Intelligence, Semiautonomous Deep Learning, Breast Cancer, Screening Mammography <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230033"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum for: Performance of the Winning Algorithms of the RSNA 2022 Cervical Spine Fracture Detection Challenge. 勘误:RSNA 2022 年颈椎骨折检测挑战赛获奖算法的性能。
IF 9.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-01 DOI: 10.1148/ryai.249002
Ghee Rye Lee, Adam E Flanders, Tyler Richards, Felipe Kitamura, Errol Colak, Hui Ming Lin, Robyn L Ball, Jason Talbott, Luciano M Prevedello
{"title":"Erratum for: Performance of the Winning Algorithms of the RSNA 2022 Cervical Spine Fracture Detection Challenge.","authors":"Ghee Rye Lee, Adam E Flanders, Tyler Richards, Felipe Kitamura, Errol Colak, Hui Ming Lin, Robyn L Ball, Jason Talbott, Luciano M Prevedello","doi":"10.1148/ryai.249002","DOIUrl":"10.1148/ryai.249002","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 3","pages":"e249002"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence for Breast Cancer Screening: Trade-offs between Sensitivity and Specificity. 人工智能乳腺癌筛查:灵敏度与特异性之间的权衡。
IF 9.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-01 DOI: 10.1148/ryai.240184
Manisha Bahl, Synho Do
{"title":"Artificial Intelligence for Breast Cancer Screening: Trade-offs between Sensitivity and Specificity.","authors":"Manisha Bahl, Synho Do","doi":"10.1148/ryai.240184","DOIUrl":"10.1148/ryai.240184","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 3","pages":"e240184"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Radiology-Artificial Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1