{"title":"Vision Transformer-based Deep Learning Models Accelerate Further Research for Predicting Neurosurgical Intervention.","authors":"Kengo Takahashi, Takuma Usuzaki, Ryusei Inamori","doi":"10.1148/ryai.240117","DOIUrl":"10.1148/ryai.240117","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 4","pages":"e240117"},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marius George Linguraru, Spyridon Bakas, Mariam Aboian, Peter D Chang, Adam E Flanders, Jayashree Kalpathy-Cramer, Felipe C Kitamura, Matthew P Lungren, John Mongan, Luciano M Prevedello, Ronald M Summers, Carol C Wu, Maruf Adewole, Charles E Kahn
Marthe Larsen, Camilla F Olstad, Christoph I Lee, Tone Hovda, Solveig R Hoff, Marit A Martiniussen, Karl Øyvind Mikalsen, Håkon Lund-Hanssen, Helene S Solli, Marko Silberhorn, Åse Ø Sulheim, Steinar Auensen, Jan F Nygård, Solveig Hofvind
{"title":"Efficient Health Care: Decreasing MRI Scan Time.","authors":"Farid GharehMohammadi, Ronnie A Sebro","doi":"10.1148/ryai.240174","DOIUrl":"10.1148/ryai.240174","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 3","pages":"e240174"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose To develop and evaluate a semi-supervised learning model for intracranial hemorrhage detection and segmentation on an out-of-distribution head CT evaluation set. Materials and Methods This retrospective study used semi-supervised learning to bootstrap performance. An initial "teacher" deep learning model was trained on 457 pixel-labeled head CT scans collected from one U.S. institution from 2010 to 2017 and used to generate pseudo labels on a separate unlabeled corpus of 25 000 examinations from the Radiological Society of North America and American Society of Neuroradiology. A second "student" model was trained on this combined pixel- and pseudo-labeled dataset. Hyperparameter tuning was performed on a validation set of 93 scans. Testing for both classification (n = 481 examinations) and segmentation (n = 23 examinations, or 529 images) was performed on CQ500, a dataset of 481 scans performed in India, to evaluate out-of-distribution generalizability. The semi-supervised model was compared with a baseline model trained on only labeled data using area under the receiver operating characteristic curve, Dice similarity coefficient, and average precision metrics. Results The semi-supervised model achieved a statistically significant higher examination area under the receiver operating characteristic curve on CQ500 compared with the baseline (0.939 [95% CI: 0.938, 0.940] vs 0.907 [95% CI: 0.906, 0.908]; P = .009). It also achieved a higher Dice similarity coefficient (0.829 [95% CI: 0.825, 0.833] vs 0.809 [95% CI: 0.803, 0.812]; P = .012) and pixel average precision (0.848 [95% CI: 0.843, 0.853]) vs 0.828 [95% CI: 0.817, 0.828]) compared with the baseline. Conclusion The addition of unlabeled data in a semi-supervised learning framework demonstrates stronger generalizability potential for intracranial hemorrhage detection and segmentation compared with a supervised baseline. Keywords: Semi-supervised Learning, Traumatic Brain Injury, CT, Machine Learning Supplemental material is available for this article. Published under a CC BY 4.0 license. See also the commentary by Swimburne in this issue.
{"title":"Semi-supervised Learning for Generalizable Intracranial Hemorrhage Detection and Segmentation.","authors":"Emily Lin, Esther L Yuh","doi":"10.1148/ryai.230077","DOIUrl":"10.1148/ryai.230077","url":null,"abstract":"<p><p>Purpose To develop and evaluate a semi-supervised learning model for intracranial hemorrhage detection and segmentation on an out-of-distribution head CT evaluation set. Materials and Methods This retrospective study used semi-supervised learning to bootstrap performance. An initial \"teacher\" deep learning model was trained on 457 pixel-labeled head CT scans collected from one U.S. institution from 2010 to 2017 and used to generate pseudo labels on a separate unlabeled corpus of 25 000 examinations from the Radiological Society of North America and American Society of Neuroradiology. A second \"student\" model was trained on this combined pixel- and pseudo-labeled dataset. Hyperparameter tuning was performed on a validation set of 93 scans. Testing for both classification (<i>n</i> = 481 examinations) and segmentation (<i>n</i> = 23 examinations, or 529 images) was performed on CQ500, a dataset of 481 scans performed in India, to evaluate out-of-distribution generalizability. The semi-supervised model was compared with a baseline model trained on only labeled data using area under the receiver operating characteristic curve, Dice similarity coefficient, and average precision metrics. Results The semi-supervised model achieved a statistically significant higher examination area under the receiver operating characteristic curve on CQ500 compared with the baseline (0.939 [95% CI: 0.938, 0.940] vs 0.907 [95% CI: 0.906, 0.908]; <i>P</i> = .009). It also achieved a higher Dice similarity coefficient (0.829 [95% CI: 0.825, 0.833] vs 0.809 [95% CI: 0.803, 0.812]; <i>P</i> = .012) and pixel average precision (0.848 [95% CI: 0.843, 0.853]) vs 0.828 [95% CI: 0.817, 0.828]) compared with the baseline. Conclusion The addition of unlabeled data in a semi-supervised learning framework demonstrates stronger generalizability potential for intracranial hemorrhage detection and segmentation compared with a supervised baseline. <b>Keywords:</b> Semi-supervised Learning, Traumatic Brain Injury, CT, Machine Learning <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license. See also the commentary by Swimburne in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230077"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Faster, More Practical, but Still Accurate: Deep Learning for Diagnosis of Progressive Supranuclear Palsy.","authors":"Bahram Mohajer","doi":"10.1148/ryai.240181","DOIUrl":"10.1148/ryai.240181","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 3","pages":"e240181"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140513/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140858206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefano Pedemonte, Trevor Tsue, Brent Mombourquette, Yen Nhi Truong Vu, Thomas Matthews, Rodrigo Morales Hoil, Meet Shah, Nikita Ghare, Naomi Zingman-Daniels, Susan Holley, Catherine M Appleton, Jason Su, Richard L Wahl
Purpose To evaluate the ability of a semiautonomous artificial intelligence (AI) model to identify screening mammograms not suspicious for breast cancer and reduce the number of false-positive examinations. Materials and Methods The deep learning algorithm was trained using 123 248 two-dimensional digital mammograms (6161 cancers) and a retrospective study was performed on three nonoverlapping datasets of 14 831 screening mammography examinations (1026 cancers) from two U.S. institutions and one U.K. institution (2008-2017). The stand-alone performance of humans and AI was compared. Human plus AI performance was simulated to examine reductions in the cancer detection rate, number of examinations, false-positive callbacks, and benign biopsies. Metrics were adjusted to mimic the natural distribution of a screening population, and bootstrapped CIs and P values were calculated. Results Retrospective evaluation on all datasets showed minimal changes to the cancer detection rate with use of the AI device (noninferiority margin of 0.25 cancers per 1000 examinations: U.S. dataset 1, P = .02; U.S. dataset 2, P < .001; U.K. dataset, P < .001). On U.S. dataset 1 (11 592 mammograms; 101 cancers; 3810 female patients; mean age, 57.3 years ± 10.0 [SD]), the device reduced screening examinations requiring radiologist interpretation by 41.6% (95% CI: 40.6%, 42.4%; P < .001), diagnostic examinations callbacks by 31.1% (95% CI: 28.7%, 33.4%; P < .001), and benign needle biopsies by 7.4% (95% CI: 4.1%, 12.4%; P < .001). U.S. dataset 2 (1362 mammograms; 330 cancers; 1293 female patients; mean age, 55.4 years ± 10.5) was reduced by 19.5% (95% CI: 16.9%, 22.1%; P < .001), 11.9% (95% CI: 8.6%, 15.7%; P < .001), and 6.5% (95% CI: 0.0%, 19.0%; P = .08), respectively. The U.K. dataset (1877 mammograms; 595 cancers; 1491 female patients; mean age, 63.5 years ± 7.1) was reduced by 36.8% (95% CI: 34.4%, 39.7%; P < .001), 17.1% (95% CI: 5.9%, 30.1%: P < .001), and 5.9% (95% CI: 2.9%, 11.5%; P < .001), respectively. Conclusion This work demonstrates the potential of a semiautonomous breast cancer screening system to reduce false positives, unnecessary procedures, patient anxiety, and medical expenses. Keywords: Artificial Intelligence, Semiautonomous Deep Learning, Breast Cancer, Screening Mammography Supplemental material is available for this article. Published under a CC BY 4.0 license.
{"title":"A Semiautonomous Deep Learning System to Reduce False Positives in Screening Mammography.","authors":"Stefano Pedemonte, Trevor Tsue, Brent Mombourquette, Yen Nhi Truong Vu, Thomas Matthews, Rodrigo Morales Hoil, Meet Shah, Nikita Ghare, Naomi Zingman-Daniels, Susan Holley, Catherine M Appleton, Jason Su, Richard L Wahl","doi":"10.1148/ryai.230033","DOIUrl":"10.1148/ryai.230033","url":null,"abstract":"<p><p>Purpose To evaluate the ability of a semiautonomous artificial intelligence (AI) model to identify screening mammograms not suspicious for breast cancer and reduce the number of false-positive examinations. Materials and Methods The deep learning algorithm was trained using 123 248 two-dimensional digital mammograms (6161 cancers) and a retrospective study was performed on three nonoverlapping datasets of 14 831 screening mammography examinations (1026 cancers) from two U.S. institutions and one U.K. institution (2008-2017). The stand-alone performance of humans and AI was compared. Human plus AI performance was simulated to examine reductions in the cancer detection rate, number of examinations, false-positive callbacks, and benign biopsies. Metrics were adjusted to mimic the natural distribution of a screening population, and bootstrapped CIs and <i>P</i> values were calculated. Results Retrospective evaluation on all datasets showed minimal changes to the cancer detection rate with use of the AI device (noninferiority margin of 0.25 cancers per 1000 examinations: U.S. dataset 1, <i>P</i> = .02; U.S. dataset 2, <i>P</i> < .001; U.K. dataset, <i>P</i> < .001). On U.S. dataset 1 (11 592 mammograms; 101 cancers; 3810 female patients; mean age, 57.3 years ± 10.0 [SD]), the device reduced screening examinations requiring radiologist interpretation by 41.6% (95% CI: 40.6%, 42.4%; <i>P</i> < .001), diagnostic examinations callbacks by 31.1% (95% CI: 28.7%, 33.4%; <i>P</i> < .001), and benign needle biopsies by 7.4% (95% CI: 4.1%, 12.4%; <i>P</i> < .001). U.S. dataset 2 (1362 mammograms; 330 cancers; 1293 female patients; mean age, 55.4 years ± 10.5) was reduced by 19.5% (95% CI: 16.9%, 22.1%; <i>P</i> < .001), 11.9% (95% CI: 8.6%, 15.7%; <i>P</i> < .001), and 6.5% (95% CI: 0.0%, 19.0%; <i>P</i> = .08), respectively. The U.K. dataset (1877 mammograms; 595 cancers; 1491 female patients; mean age, 63.5 years ± 7.1) was reduced by 36.8% (95% CI: 34.4%, 39.7%; <i>P</i> < .001), 17.1% (95% CI: 5.9%, 30.1%: <i>P</i> < .001), and 5.9% (95% CI: 2.9%, 11.5%; <i>P</i> < .001), respectively. Conclusion This work demonstrates the potential of a semiautonomous breast cancer screening system to reduce false positives, unnecessary procedures, patient anxiety, and medical expenses. <b>Keywords:</b> Artificial Intelligence, Semiautonomous Deep Learning, Breast Cancer, Screening Mammography <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230033"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ghee Rye Lee, Adam E Flanders, Tyler Richards, Felipe Kitamura, Errol Colak, Hui Ming Lin, Robyn L Ball, Jason Talbott, Luciano M Prevedello
{"title":"Erratum for: Performance of the Winning Algorithms of the RSNA 2022 Cervical Spine Fracture Detection Challenge.","authors":"Ghee Rye Lee, Adam E Flanders, Tyler Richards, Felipe Kitamura, Errol Colak, Hui Ming Lin, Robyn L Ball, Jason Talbott, Luciano M Prevedello","doi":"10.1148/ryai.249002","DOIUrl":"10.1148/ryai.249002","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 3","pages":"e249002"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Artificial Intelligence for Breast Cancer Screening: Trade-offs between Sensitivity and Specificity.","authors":"Manisha Bahl, Synho Do","doi":"10.1148/ryai.240184","DOIUrl":"10.1148/ryai.240184","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 3","pages":"e240184"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}