首页 > 最新文献

ACS Nanoscience Au最新文献

英文 中文
Plasmonic Sensing Assay for Long-Term Monitoring (PSALM) of Neurotransmitters in Urine 尿中神经递质长期监测的等离子体传感试验
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-12-24 DOI: 10.1021/acsnanoscienceau.2c00048
Wei-Hsin Chen, Wenting Wang, Qianqi Lin, David-Benjamin Grys, Marika Niihori, Junyang Huang, Shu Hu, Bart de Nijs, Oren A. Scherman and Jeremy J. Baumberg*, 

A liquid-based surface-enhanced Raman spectroscopy assay termed PSALM is developed for the selective sensing of neurotransmitters (NTs) with a limit of detection below the physiological range of NT concentrations in urine. This assay is formed by quick and simple nanoparticle (NP) “mix-and-measure” protocols, in which FeIII bridges NTs and gold NPs inside the sensing hotspots. Detection limits of NTs from PreNP PSALM are significantly lower than those of PostNP PSALM, when urine is pretreated by affinity separation. Optimized PSALM enables the long-term monitoring of NT variation in urine in conventional settings for the first time, allowing the development of NTs as predictive or correlative biomarkers for clinical diagnosis.

开发了一种称为PSALM的基于液体的表面增强拉曼光谱测定法,用于选择性传感神经递质(NT),其检测极限低于尿液中NT浓度的生理范围。该测定是通过快速简单的纳米颗粒(NP)“混合和测量”方案形成的,其中FeIII在传感热点内桥接纳米颗粒和金纳米颗粒。当尿液通过亲和分离进行预处理时,来自PreNP-PSLM的NT的检测限显著低于PostNP-PSLm的检测限。优化的PSALM首次能够在常规环境中长期监测尿液中的NT变化,从而将NT开发为临床诊断的预测或相关生物标志物。
{"title":"Plasmonic Sensing Assay for Long-Term Monitoring (PSALM) of Neurotransmitters in Urine","authors":"Wei-Hsin Chen,&nbsp;Wenting Wang,&nbsp;Qianqi Lin,&nbsp;David-Benjamin Grys,&nbsp;Marika Niihori,&nbsp;Junyang Huang,&nbsp;Shu Hu,&nbsp;Bart de Nijs,&nbsp;Oren A. Scherman and Jeremy J. Baumberg*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00048","DOIUrl":"10.1021/acsnanoscienceau.2c00048","url":null,"abstract":"<p >A liquid-based surface-enhanced Raman spectroscopy assay termed PSALM is developed for the selective sensing of neurotransmitters (NTs) with a limit of detection below the physiological range of NT concentrations in urine. This assay is formed by quick and simple nanoparticle (NP) “mix-and-measure” protocols, in which Fe<sup>III</sup> bridges NTs and gold NPs inside the sensing hotspots. Detection limits of NTs from <i>PreNP</i> PSALM are significantly lower than those of <i>PostNP</i> PSALM, when urine is pretreated by affinity separation. Optimized PSALM enables the long-term monitoring of NT variation in urine in conventional settings for the first time, allowing the development of NTs as predictive or correlative biomarkers for clinical diagnosis.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"161–171"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00048","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9390304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
One Year of ACS Nanoscience Au ACS纳米科学Au一年
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-12-21 DOI: 10.1021/acsnanoscienceau.2c00056
Raymond E. Schaak*, 
I is hard to believe that a year has passed already since the first issue of ACS Nanoscience Au was published in December of 2021. In the six issues in Volume 2, which constitute the first full year, ACS Nanoscience Au has published 44 contributions, including 3 Editorials, 1 Perspective, 11 Reviews, and 29 Articles/Letters. In total, all of the content published thus far in ACS Nanoscience Au has been viewed more than 88,000 times! This large number of views is a testament to the journal’s outstanding content, as well as its visibility and reach, which are maximized by its open access status. The published papers have been authored and accessed by researchers from around the world, highlighting the global impact and visibility of ACS Nanoscience Au. These papers also span the breadth of topics that define the field of nanoscience. To highlight the topical diversity and impact of the first year of ACS Nanoscience Au, the papers highlighted below are among the most accessed and cited so far. They represent a collection of Reviews and Perspectives in nanomedicine, nanoelectronics, active matter, environmental remediation, 1-D and 2-D materials, and energy, as well as Articles and Letters in nanoclusters, nanomedicine, nanoagriculture, nanowires, halide perovskites, SERS imaging, nanophotonics, DNA nanotechnology, and MXenes. Luciferase-Based Biosensors in the Era of the COVID-19 Pandemic (ACS Nanosci. Au 2021, 1, 15−37). Our very first published Review, by Taha Azad, Carolina Ilkow, John Bell, and co-workers, holds the current record for the highest number of article views in the journal. Viruses and proteins are inherently nanoscopic systems, and this Review highlights the development and use of biosensors to study virus biology, including SARS-CoV-2. Design of Over-1000 nm Near-Infrared Fluorescent Polymeric Micellar Nanoparticles by Matching the Solubility Parameter of the Core Polymer and Dye (ACS Nanosci. Au 2021, 1, 61−68). This Article by Masakazu Umezawa, Kohei Soga, and co-workers demonstrated a strategy for designing polymeric nanoparticles for biological imaging. They showed how near-infrared fluorescent probes could be accessed by matching the solubility parameters of a core polymer and a dye molecule. Gold Nanoparticle Smartphone Platform for Diagnosing Urinary Tract Infections (ACS Nanosci. Au 2022, 2, 324− 332). The diagnosis of urinary tract infections is important in medicine. In this Article, Warren Chan and co-workers used a gold nanoparticle colorimetric approach to detect clinically relevant bacteria concentrations, finding it both inexpensive and fast. They then used this to develop a smartphone platform for detecting urinary tract infections. Ligand Ratio Plays a Critical Role in the Design of Optimal Multifunctional Gold Nanoclusters for Targeted Gastric Cancer Therapy (ACS Nanosci. Au 2021, 1, 47−60). This Article by Mariá Francisca Matus, Sami Malola, and Hannu Hak̈kinen was the first to be accepted for publication in ACS
{"title":"One Year of ACS Nanoscience Au","authors":"Raymond E. Schaak*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00056","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.2c00056","url":null,"abstract":"I is hard to believe that a year has passed already since the first issue of ACS Nanoscience Au was published in December of 2021. In the six issues in Volume 2, which constitute the first full year, ACS Nanoscience Au has published 44 contributions, including 3 Editorials, 1 Perspective, 11 Reviews, and 29 Articles/Letters. In total, all of the content published thus far in ACS Nanoscience Au has been viewed more than 88,000 times! This large number of views is a testament to the journal’s outstanding content, as well as its visibility and reach, which are maximized by its open access status. The published papers have been authored and accessed by researchers from around the world, highlighting the global impact and visibility of ACS Nanoscience Au. These papers also span the breadth of topics that define the field of nanoscience. To highlight the topical diversity and impact of the first year of ACS Nanoscience Au, the papers highlighted below are among the most accessed and cited so far. They represent a collection of Reviews and Perspectives in nanomedicine, nanoelectronics, active matter, environmental remediation, 1-D and 2-D materials, and energy, as well as Articles and Letters in nanoclusters, nanomedicine, nanoagriculture, nanowires, halide perovskites, SERS imaging, nanophotonics, DNA nanotechnology, and MXenes. Luciferase-Based Biosensors in the Era of the COVID-19 Pandemic (ACS Nanosci. Au 2021, 1, 15−37). Our very first published Review, by Taha Azad, Carolina Ilkow, John Bell, and co-workers, holds the current record for the highest number of article views in the journal. Viruses and proteins are inherently nanoscopic systems, and this Review highlights the development and use of biosensors to study virus biology, including SARS-CoV-2. Design of Over-1000 nm Near-Infrared Fluorescent Polymeric Micellar Nanoparticles by Matching the Solubility Parameter of the Core Polymer and Dye (ACS Nanosci. Au 2021, 1, 61−68). This Article by Masakazu Umezawa, Kohei Soga, and co-workers demonstrated a strategy for designing polymeric nanoparticles for biological imaging. They showed how near-infrared fluorescent probes could be accessed by matching the solubility parameters of a core polymer and a dye molecule. Gold Nanoparticle Smartphone Platform for Diagnosing Urinary Tract Infections (ACS Nanosci. Au 2022, 2, 324− 332). The diagnosis of urinary tract infections is important in medicine. In this Article, Warren Chan and co-workers used a gold nanoparticle colorimetric approach to detect clinically relevant bacteria concentrations, finding it both inexpensive and fast. They then used this to develop a smartphone platform for detecting urinary tract infections. Ligand Ratio Plays a Critical Role in the Design of Optimal Multifunctional Gold Nanoclusters for Targeted Gastric Cancer Therapy (ACS Nanosci. Au 2021, 1, 47−60). This Article by Mariá Francisca Matus, Sami Malola, and Hannu Hak̈kinen was the first to be accepted for publication in ACS ","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"2 6","pages":"448–449"},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71565287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Label-Free Digital Holotomography Reveals Ibuprofen-Induced Morphological Changes to Red Blood Cells 无标签数字全息断层扫描揭示布洛芬诱导红细胞形态学改变
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-12-14 DOI: 10.1101/2022.12.13.519447
Talia Bergaglio, Shayon Bhattacharya, Damien Thompson, P. Nirmalraj
Understanding the dose-dependent effect of over-the-counter drugs on red blood cells (RBCs) is crucial for hematology and digital pathology. Yet, it is challenging to continuously record the real-time, drug-induced nanoscopic shape changes of RBCs in a label-free manner. Here, we demonstrate digital holotomography (DHTM) enabled real-time, label-free concentration-dependent and time-dependent monitoring of ibuprofen on RBCs from a healthy donor. The RBCs are segmented based on 3D and 4D refractive index tomograms and their morphological and chemical parameters are retrieved with their shapes classified using machine learning. We directly observed the formation and motion of spicules on the RBC membranes when aqueous solutions of ibuprofen were drop cast on wet blood, creating rough-membraned echinocyte forms. At low concentrations of 0.25-0.50 mM, the ibuprofen-induced morphological change was transient but at high concentrations (1.5-3 mM) the spiculated RBC remained over a period of up to 1.5 hours. Molecular simulations confirmed that aggregates of ibuprofen molecules at high concentrations significantly disrupted the RBC membrane structural integrity and lipid order, but produced negligible effect at low ibuprofen concentrations. Control experiments on the effect of urea, hydrogen peroxide and aqueous solutions on RBCs showed zero spicule formation. Our work elucidates the dose-dependent chemical effects on RBCs using label-free microscopes that can be deployed for the rapid detection of overdosage of over-the-counter and prescribed drugs. Significance The interaction between drugs and blood cells is an important field of study in order to understand the risk for drug-induced haematological adverse effects. Using digital holo-tomographic microscopy (DHTM), we can resolve the real-time effect of medications on the morphological and chemical properties of red blood cells with high spatial and temporal resolution and in a label-free manner. We show that our approach can be used as a haematology platform for the diagnosis of blood disorders and for monitoring the dose-dependent effect of prescribed and over-the-counter medications in a cost-effective manner, with significant implications for its applicability in resource-limited settings and in the field of personalized medicine.
了解非处方药对红细胞(RBCs)的剂量依赖性作用对血液学和数字病理学至关重要。然而,以无标记的方式连续记录RBCs的实时、药物诱导的纳米级形状变化是一项挑战。在这里,我们展示了数字全息断层扫描(DHTM)能够实时、无标记、浓度依赖性和时间依赖性地监测布洛芬对健康供体红细胞的影响。基于3D和4D折射率断层图像对RBC进行分割,并利用机器学习对其形状进行分类来检索其形态和化学参数。当布洛芬水溶液滴注在湿血上时,我们直接观察到红细胞膜上针状物的形成和运动,产生粗糙的膜棘细胞形式。在0.25-0.50mM的低浓度下,布洛芬诱导的形态变化是短暂的,但在高浓度(1.5-3mM)下,加香料的RBC保持长达1.5小时。分子模拟证实,高浓度的布洛芬分子聚集体显著破坏了红细胞膜的结构完整性和脂质秩序,但在低浓度的布洛芬下产生的影响可以忽略不计。尿素、过氧化氢和水溶液对RBCs影响的对照实验显示,无毛刺形成。我们的工作使用无标记显微镜阐明了RBCs的剂量依赖性化学效应,该显微镜可用于快速检测非处方药和处方药的过量使用。意义药物和血细胞之间的相互作用是一个重要的研究领域,以了解药物引起的血液学不良反应的风险。使用数字全息断层显微镜(DHTM),我们可以以高空间和时间分辨率,以无标记的方式,实时解决药物对红细胞形态和化学性质的影响。我们表明,我们的方法可以作为血液学平台,以成本效益高的方式诊断血液疾病,并监测处方药和非处方药的剂量依赖性效果,这对其在资源有限的环境和个性化医学领域的适用性具有重要意义。
{"title":"Label-Free Digital Holotomography Reveals Ibuprofen-Induced Morphological Changes to Red Blood Cells","authors":"Talia Bergaglio, Shayon Bhattacharya, Damien Thompson, P. Nirmalraj","doi":"10.1101/2022.12.13.519447","DOIUrl":"https://doi.org/10.1101/2022.12.13.519447","url":null,"abstract":"Understanding the dose-dependent effect of over-the-counter drugs on red blood cells (RBCs) is crucial for hematology and digital pathology. Yet, it is challenging to continuously record the real-time, drug-induced nanoscopic shape changes of RBCs in a label-free manner. Here, we demonstrate digital holotomography (DHTM) enabled real-time, label-free concentration-dependent and time-dependent monitoring of ibuprofen on RBCs from a healthy donor. The RBCs are segmented based on 3D and 4D refractive index tomograms and their morphological and chemical parameters are retrieved with their shapes classified using machine learning. We directly observed the formation and motion of spicules on the RBC membranes when aqueous solutions of ibuprofen were drop cast on wet blood, creating rough-membraned echinocyte forms. At low concentrations of 0.25-0.50 mM, the ibuprofen-induced morphological change was transient but at high concentrations (1.5-3 mM) the spiculated RBC remained over a period of up to 1.5 hours. Molecular simulations confirmed that aggregates of ibuprofen molecules at high concentrations significantly disrupted the RBC membrane structural integrity and lipid order, but produced negligible effect at low ibuprofen concentrations. Control experiments on the effect of urea, hydrogen peroxide and aqueous solutions on RBCs showed zero spicule formation. Our work elucidates the dose-dependent chemical effects on RBCs using label-free microscopes that can be deployed for the rapid detection of overdosage of over-the-counter and prescribed drugs. Significance The interaction between drugs and blood cells is an important field of study in order to understand the risk for drug-induced haematological adverse effects. Using digital holo-tomographic microscopy (DHTM), we can resolve the real-time effect of medications on the morphological and chemical properties of red blood cells with high spatial and temporal resolution and in a label-free manner. We show that our approach can be used as a haematology platform for the diagnosis of blood disorders and for monitoring the dose-dependent effect of prescribed and over-the-counter medications in a cost-effective manner, with significant implications for its applicability in resource-limited settings and in the field of personalized medicine.","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 1","pages":"241 - 255"},"PeriodicalIF":0.0,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45665549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Efficient Preparation of a Magnetic Helical Carbon Nanomotor for Targeted Anticancer Drug Delivery 用于靶向抗癌药物递送的磁性螺旋碳纳米马达的高效制备
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-11-25 DOI: 10.1021/acsnanoscienceau.2c00042
Yanming Sun, Renjie Pan, Yuduo Chen, Yong Wang, Lei Sun, Neng Wang, Xing Ma* and Guo Ping Wang*, 

The applications of nanomotors in the biomedical field have been attracting extensive attention. However, it remains a challenge to fabricate nanomotors in a facile way and effectively load drugs for active targeted therapy. In this work, we combine the microwave heating method and chemical vapor deposition (CVD) to fabricate magnetic helical nanomotors efficiently. The microwave heating method can accelerate intermolecular movement, which converts kinetic energy into heat energy and shortens the preparation time of the catalyst used for carbon nanocoil (CNC) synthesis by 15 times. Fe3O4 nanoparticles are in situ nucleated on the CNC surface by the microwave heating method to fabricate magnetically driven CNC/Fe3O4 nanomotors. In addition, we achieved precise control of the magnetically driven CNC/Fe3O4 nanomotors through remote manipulation of magnetic fields. Anticancer drug doxorubicin (DOX) is then efficiently loaded onto the nanomotors via π–π stacking interactions. Finally, the drug-loaded CNC/Fe3O4@DOX nanomotor can accurately accomplish cell targeting under external magnetic field control. Under short-time irradiation of near-infrared light, DOX can be quickly released onto target cells to effectively kill the cells. More importantly, CNC/Fe3O4@DOX nanomotors allow for single-cell or cell-cluster-targeted anticancer drug delivery, providing a dexterous platform to potentially perform many medically relevant tasks in vivo. The efficient preparation method and application in drug delivery are beneficial for future industrial production and provide inspiration for advanced micro/nanorobotic systems using the CNC as a carrier for a wide range of biomedical applications.

纳米电机在生物医学领域的应用引起了人们的广泛关注。然而,以一种简单的方式制造纳米马达并有效地装载用于主动靶向治疗的药物仍然是一个挑战。在这项工作中,我们将微波加热方法和化学气相沉积(CVD)相结合,有效地制备了磁性螺旋纳米电机。微波加热方法可以加速分子间运动,将动能转化为热能,并将用于碳纳米线圈(CNC)合成的催化剂的制备时间缩短15倍。采用微波加热的方法在CNC表面原位成核Fe3O4纳米颗粒,制备了磁驱动的CNC/Fe3O4纳米粒子电机。此外,我们还通过磁场的远程操作实现了对磁驱动CNC/Fe3O4纳米电机的精确控制。抗癌药物阿霉素(DOX)通过π–π堆叠相互作用有效地负载到纳米马达上。最后,装有药物的CNC/Fe3O4@DOX纳米电机可以在外部磁场控制下准确地实现细胞靶向。在近红外光的短时间照射下,DOX可以快速释放到靶细胞上,有效杀死细胞。更重要的是,CNC/Fe3O4@DOX纳米马达允许单细胞或细胞簇靶向抗癌药物递送,为在体内执行许多医学相关任务提供了一个灵活的平台。高效的制备方法和在药物递送中的应用有利于未来的工业生产,并为使用CNC作为载体的先进微/纳米机器人系统提供了灵感,用于广泛的生物医学应用。
{"title":"Efficient Preparation of a Magnetic Helical Carbon Nanomotor for Targeted Anticancer Drug Delivery","authors":"Yanming Sun,&nbsp;Renjie Pan,&nbsp;Yuduo Chen,&nbsp;Yong Wang,&nbsp;Lei Sun,&nbsp;Neng Wang,&nbsp;Xing Ma* and Guo Ping Wang*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00042","DOIUrl":"10.1021/acsnanoscienceau.2c00042","url":null,"abstract":"<p >The applications of nanomotors in the biomedical field have been attracting extensive attention. However, it remains a challenge to fabricate nanomotors in a facile way and effectively load drugs for active targeted therapy. In this work, we combine the microwave heating method and chemical vapor deposition (CVD) to fabricate magnetic helical nanomotors efficiently. The microwave heating method can accelerate intermolecular movement, which converts kinetic energy into heat energy and shortens the preparation time of the catalyst used for carbon nanocoil (CNC) synthesis by 15 times. Fe<sub>3</sub>O<sub>4</sub> nanoparticles are in situ nucleated on the CNC surface by the microwave heating method to fabricate magnetically driven CNC/Fe<sub>3</sub>O<sub>4</sub> nanomotors. In addition, we achieved precise control of the magnetically driven CNC/Fe<sub>3</sub>O<sub>4</sub> nanomotors through remote manipulation of magnetic fields. Anticancer drug doxorubicin (DOX) is then efficiently loaded onto the nanomotors via π–π stacking interactions. Finally, the drug-loaded CNC/Fe<sub>3</sub>O<sub>4</sub>@DOX nanomotor can accurately accomplish cell targeting under external magnetic field control. Under short-time irradiation of near-infrared light, DOX can be quickly released onto target cells to effectively kill the cells. More importantly, CNC/Fe<sub>3</sub>O<sub>4</sub>@DOX nanomotors allow for single-cell or cell-cluster-targeted anticancer drug delivery, providing a dexterous platform to potentially perform many medically relevant tasks in vivo. The efficient preparation method and application in drug delivery are beneficial for future industrial production and provide inspiration for advanced micro/nanorobotic systems using the CNC as a carrier for a wide range of biomedical applications.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 1","pages":"94–102"},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/d4/ng2c00042.PMC10125355.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9356633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Intermetallic Nanoarchitectures for Efficient Electrocatalysis 高效电催化的金属间纳米结构
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-11-02 DOI: 10.1021/acsnanoscienceau.2c00045
Ho Young Kim, Minki Jun, Sang Hoon Joo* and Kwangyeol Lee*, 

Intermetallic structures whose regular atomic arrays of constituent elements present unique catalytic properties have attracted considerable attention as efficient electrocatalysts for energy conversion reactions. Further performance enhancement in intermetallic catalysts hinges on constructing catalytic surfaces possessing high activity, durability, and selectivity. In this Perspective, we introduce recent endeavors to boost the performance of intermetallic catalysts by generating nanoarchitectures, which have well-defined size, shape, and dimension. We discuss the beneficial effects of nanoarchitectures compared with simple nanoparticles in catalysis. We highlight that the nanoarchitectures have high intrinsic activity owing to their inherent structural factors, including controlled facets, surface defects, strained surfaces, nanoscale confinement effects, and a high density of active sites. We next present notable examples of intermetallic nanoarchitectures, namely, facet-controlled intermetallic nanocrystals and multidimensional nanomaterials. Finally, we suggest the future research directions of intermetallic nanoarchitectures.

其组成元素的规则原子阵列具有独特催化性能的金属间结构作为用于能量转换反应的有效电催化剂已经引起了相当大的关注。金属间催化剂性能的进一步提高取决于构建具有高活性、耐久性和选择性的催化表面。从这个角度来看,我们介绍了最近通过生成具有明确尺寸、形状和尺寸的纳米结构来提高金属间催化剂性能的努力。我们讨论了纳米结构与简单纳米颗粒相比在催化方面的有益效果。我们强调,由于其固有的结构因素,包括可控的晶面、表面缺陷、应变表面、纳米级限制效应和高密度的活性位点,纳米结构具有高的固有活性。接下来,我们将介绍金属间纳米结构的显著例子,即面控金属间纳米晶体和多维纳米材料。最后,提出了金属间纳米结构的研究方向。
{"title":"Intermetallic Nanoarchitectures for Efficient Electrocatalysis","authors":"Ho Young Kim,&nbsp;Minki Jun,&nbsp;Sang Hoon Joo* and Kwangyeol Lee*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00045","DOIUrl":"10.1021/acsnanoscienceau.2c00045","url":null,"abstract":"<p >Intermetallic structures whose regular atomic arrays of constituent elements present unique catalytic properties have attracted considerable attention as efficient electrocatalysts for energy conversion reactions. Further performance enhancement in intermetallic catalysts hinges on constructing catalytic surfaces possessing high activity, durability, and selectivity. In this Perspective, we introduce recent endeavors to boost the performance of intermetallic catalysts by generating nanoarchitectures, which have well-defined size, shape, and dimension. We discuss the beneficial effects of nanoarchitectures compared with simple nanoparticles in catalysis. We highlight that the nanoarchitectures have high intrinsic activity owing to their inherent structural factors, including controlled facets, surface defects, strained surfaces, nanoscale confinement effects, and a high density of active sites. We next present notable examples of intermetallic nanoarchitectures, namely, facet-controlled intermetallic nanocrystals and multidimensional nanomaterials. Finally, we suggest the future research directions of intermetallic nanoarchitectures.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 1","pages":"28–36"},"PeriodicalIF":0.0,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/06/0f/ng2c00045.PMC10125321.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9361876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System 电化学传感器和纳米复合材料的意义:神经递质电催化检测及其在生理系统中的重要性
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-10-28 DOI: 10.1021/acsnanoscienceau.2c00039
Harjot Kaur, Samarjeet Singh Siwal*, Reena V. Saini, Nirankar Singh and Vijay Kumar Thakur*, 

A prominent neurotransmitter (NT), dopamine (DA), is a chemical messenger that transmits signals between one neuron to the next to pass on a signal to and from the central nervous system (CNS). The imbalanced concentration of DA may cause numerous neurological sicknesses and syndromes, for example, Parkinson’s disease (PD) and schizophrenia. There are many types of NTs in the brain, including epinephrine, norepinephrine (NE), serotonin, and glutamate. Electrochemical sensors have offered a creative direction to biomedical analysis and testing. Researches are in progress to improve the performance of sensors and develop new protocols for sensor design. This review article focuses on the area of sensor growth to discover the applicability of polymers and metallic particles and composite materials as tools in electrochemical sensor surface incorporation. Electrochemical sensors have attracted the attention of researchers as they possess high sensitivity, quick reaction rate, good controllability, and instantaneous detection. Efficient complex materials provide considerable benefits for biological detection as they have exclusive chemical and physical properties. Due to distinctive electrocatalytic characteristics, metallic nanoparticles add fascinating traits to materials that depend on the material’s morphology and size. Herein, we have collected much information on NTs and their importance within the physiological system. Furthermore, the electrochemical sensors and corresponding techniques (such as voltammetric, amperometry, impedance, and chronoamperometry) and the different types of electrodes’ roles in the analysis of NTs are discussed. Furthermore, other methods for detecting NTs include optical and microdialysis methods. Finally, we show the advantages and disadvantages of different techniques and conclude remarks with future perspectives.

一种重要的神经递质(NT),多巴胺(DA),是一种化学信使,在一个神经元与另一个神经元之间传递信号,将信号传递给中枢神经系统(CNS)。DA浓度不平衡可能导致许多神经系统疾病和综合征,例如帕金森病(PD)和精神分裂症。大脑中有许多类型的NT,包括肾上腺素、去甲肾上腺素(NE)、血清素和谷氨酸。电化学传感器为生物医学分析和测试提供了一个创造性的方向。提高传感器性能和开发新的传感器设计协议的研究正在进行中。这篇综述文章聚焦于传感器生长领域,以发现聚合物、金属颗粒和复合材料作为电化学传感器表面结合工具的适用性。电化学传感器具有灵敏度高、反应速度快、可控性好、检测速度快等特点,引起了研究人员的关注。高效的复杂材料具有独特的化学和物理特性,为生物检测提供了相当大的好处。由于独特的电催化特性,金属纳米颗粒为材料添加了迷人的特性,这些特性取决于材料的形态和尺寸。在此,我们收集了许多关于NT及其在生理系统中的重要性的信息。此外,还讨论了电化学传感器和相应的技术(如伏安法、电流法、阻抗法和计时电流法)以及不同类型的电极在NTs分析中的作用。此外,检测NT的其他方法包括光学和微透析方法。最后,我们展示了不同技术的优缺点,并对未来的发展前景进行了总结。
{"title":"Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System","authors":"Harjot Kaur,&nbsp;Samarjeet Singh Siwal*,&nbsp;Reena V. Saini,&nbsp;Nirankar Singh and Vijay Kumar Thakur*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00039","DOIUrl":"10.1021/acsnanoscienceau.2c00039","url":null,"abstract":"<p >A prominent neurotransmitter (NT), dopamine (DA), is a chemical messenger that transmits signals between one neuron to the next to pass on a signal to and from the central nervous system (CNS). The imbalanced concentration of DA may cause numerous neurological sicknesses and syndromes, for example, Parkinson’s disease (PD) and schizophrenia. There are many types of NTs in the brain, including epinephrine, norepinephrine (NE), serotonin, and glutamate. Electrochemical sensors have offered a creative direction to biomedical analysis and testing. Researches are in progress to improve the performance of sensors and develop new protocols for sensor design. This review article focuses on the area of sensor growth to discover the applicability of polymers and metallic particles and composite materials as tools in electrochemical sensor surface incorporation. Electrochemical sensors have attracted the attention of researchers as they possess high sensitivity, quick reaction rate, good controllability, and instantaneous detection. Efficient complex materials provide considerable benefits for biological detection as they have exclusive chemical and physical properties. Due to distinctive electrocatalytic characteristics, metallic nanoparticles add fascinating traits to materials that depend on the material’s morphology and size. Herein, we have collected much information on NTs and their importance within the physiological system. Furthermore, the electrochemical sensors and corresponding techniques (such as voltammetric, amperometry, impedance, and chronoamperometry) and the different types of electrodes’ roles in the analysis of NTs are discussed. Furthermore, other methods for detecting NTs include optical and microdialysis methods. Finally, we show the advantages and disadvantages of different techniques and conclude remarks with future perspectives.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 1","pages":"1–27"},"PeriodicalIF":0.0,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9361881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Self-Induced Core–Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations 自诱导核壳纳米棒:由从头算模拟揭示的形成和稳定性
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-10-28 DOI: 10.1021/acsnanoscienceau.2c00041
Manoel Alves Machado Filho, Ching-Lien Hsiao, Renato Batista dos Santos, Lars Hultman, Jens Birch and Gueorgui K. Gueorguiev*, 

By addressing precursor prevalence and energetics using the DFT-based synthetic growth concept (SGC), the formation mechanism of self-induced InAlN core–shell nanorods (NRs) synthesized by reactive magnetron sputter epitaxy (MSE) is explored. The characteristics of In- and Al-containing precursor species are evaluated considering the thermal conditions at a typical NR growth temperature of around 700 °C. The cohesive and dissociation energies of In-containing precursors are consistently lower than those of their Al-containing counterparts, indicating that In-containing precursors are more weakly bonded and more prone to dissociation. Therefore, In-containing species are expected to exhibit lower abundance in the NR growth environment. At increased growth temperatures, the depletion of In-based precursors is even more pronounced. A distinctive imbalance in the incorporation of Al- and In-containing precursor species (namely, AlN/AlN+, AlN2/AlN2+, Al2N2/Al2N2+, and Al2/Al2+ vs InN/InN+, InN2/InN2+, In2N2/In2N2+, and In2/In2+) is found at the growing edge of the NR side surfaces, which correlates well with the experimentally obtained core–shell structure as well as with the distinctive In-rich core and vice versa for the Al-rich shell. The performed modeling indicates that the formation of the core–shell structure is substantially driven by the precursors’ abundance and their preferential bonding onto the growing edge of the nanoclusters/islands initiated by phase separation from the beginning of the NR growth. The cohesive energies and the band gaps of the NRs show decreasing trends with an increment in the In concentration of the NRs’ core and with an increment in the overall thickness (diameter) of the NRs. These results reveal the energy and electronic reasons behind the limited growth (up to ∼25% of In atoms of all metal atoms, i.e., InxAl1–xN, x ∼ 0.25) in the NR core and may be qualitatively perceived as a limiting factor for the thickness of the grown NRs (typically <50 nm).

通过使用基于DFT的合成生长概念(SGC)解决前驱体的普遍性和能量学问题,探索了通过反应磁控溅射外延(MSE)合成的自诱导InAlN核壳纳米棒(NRs)的形成机制。考虑到在700°C左右的典型NR生长温度下的热条件,评估了含In和Al前体物种的特性。含In的前体的内聚能和离解能始终低于含Al的前体,这表明含In的前驱体结合更弱,更容易离解。因此,含In物种在NR生长环境中表现出较低的丰度。在生长温度升高的情况下,铟基前体的损耗更加明显。在NR侧表面的生长边缘处发现含Al和in的前体物种(即AlN/AlN+、AlN2/AlN2+、Al2N2/Al2N2+和Al2/Al2+与InN/InN+、InN2/InN2+、In2N2/In2N2+和In2/In2+)的掺入的明显不平衡,这与实验获得的核-壳结构以及独特的富In核密切相关,反之亦然。所进行的建模表明,核壳结构的形成基本上是由前体的丰度及其在纳米团簇/岛的生长边缘上的优先键合驱动的,这是由NR生长开始的相分离引发的。NRs的内聚能和带隙随着NRs核心in浓度的增加和NRs总厚度(直径)的增加而呈下降趋势。这些结果揭示了NR核中有限生长(所有金属原子的In原子高达~25%,即InxAl1–xN,x~0.25)背后的能量和电子原因,并且可以定性地视为生长的NR厚度的限制因素(通常<;50 nm)。
{"title":"Self-Induced Core–Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations","authors":"Manoel Alves Machado Filho,&nbsp;Ching-Lien Hsiao,&nbsp;Renato Batista dos Santos,&nbsp;Lars Hultman,&nbsp;Jens Birch and Gueorgui K. Gueorguiev*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00041","DOIUrl":"10.1021/acsnanoscienceau.2c00041","url":null,"abstract":"<p >By addressing precursor prevalence and energetics using the DFT-based synthetic growth concept (SGC), the formation mechanism of self-induced InAlN core–shell nanorods (NRs) synthesized by reactive magnetron sputter epitaxy (MSE) is explored. The characteristics of In- and Al-containing precursor species are evaluated considering the thermal conditions at a typical NR growth temperature of around 700 °C. The cohesive and dissociation energies of In-containing precursors are consistently lower than those of their Al-containing counterparts, indicating that In-containing precursors are more weakly bonded and more prone to dissociation. Therefore, In-containing species are expected to exhibit lower abundance in the NR growth environment. At increased growth temperatures, the depletion of In-based precursors is even more pronounced. A distinctive imbalance in the incorporation of Al- and In-containing precursor species (namely, AlN/AlN<sup>+</sup>, AlN<sub>2</sub>/AlN<sub>2</sub><sup>+</sup>, Al<sub>2</sub>N<sub>2</sub>/Al<sub>2</sub>N<sub>2</sub><sup>+</sup>, and Al<sub>2</sub>/Al<sub>2</sub><sup>+</sup> vs InN/InN<sup>+</sup>, InN<sub>2</sub>/InN<sub>2</sub><sup>+</sup>, In<sub>2</sub>N<sub>2</sub>/In<sub>2</sub>N<sub>2</sub><sup>+</sup>, and In<sub>2</sub>/In<sub>2</sub><sup>+</sup>) is found at the growing edge of the NR side surfaces, which correlates well with the experimentally obtained core–shell structure as well as with the distinctive In-rich core and vice versa for the Al-rich shell. The performed modeling indicates that the formation of the core–shell structure is substantially driven by the precursors’ abundance and their preferential bonding onto the growing edge of the nanoclusters/islands initiated by phase separation from the beginning of the NR growth. The cohesive energies and the band gaps of the NRs show decreasing trends with an increment in the In concentration of the NRs’ core and with an increment in the overall thickness (diameter) of the NRs. These results reveal the energy and electronic reasons behind the limited growth (up to ∼25% of In atoms of all metal atoms, i.e., In<sub><i>x</i></sub>Al<sub>1–<i>x</i></sub>N, <i>x</i> ∼ 0.25) in the NR core and may be qualitatively perceived as a limiting factor for the thickness of the grown NRs (typically &lt;50 nm).</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 1","pages":"84–93"},"PeriodicalIF":0.0,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9361880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Robust Nanoparticle-Derived Lubricious Antibiofilm Coating for Difficult-to-Coat Medical Devices with Intricate Geometry 坚固的纳米颗粒衍生的有色抗生素膜涂层,用于难以涂覆复杂几何形状的医疗设备
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-10-28 DOI: 10.1021/acsnanoscienceau.2c00040
Hossein Yazdani-Ahmadabadi, Kai Yu, Sara Khoddami, Demian F. Felix, Han H. Yeh, Haiming D. Luo, Igor Moskalev, Qiong Wang, Rizhi Wang, Dana Grecov, Ladan Fazli, Dirk Lange* and Jayachandran N. Kizhakkedathu*, 

A major medical device-associated complication is the biofilm-related infection post-implantation. One promising approach to prevent this is to coat already commercialized medical devices with effective antibiofilm materials. However, developing a robust high-performance antibiofilm coating on devices with a nonflat geometry remains unmet. Here, we report the development of a facile scalable nanoparticle-based antibiofilm silver composite coating with long-term activity applicable to virtually any objects including difficult-to-coat commercially available medical devices utilizing a catecholic organic–aqueous mixture. Using a screening approach, we have identified a combination of the organic–aqueous buffer mixture which alters polycatecholamine synthesis, nanoparticle formation, and stabilization, resulting in controlled deposition of in situ formed composite silver nanoparticles in the presence of an ultra-high-molecular-weight hydrophilic polymer on diverse objects irrespective of its geometry and chemistry. Methanol-mediated synthesis of polymer–silver composite nanoparticles resulted in a biocompatible lubricious coating with high mechanical durability, long-term silver release (∼90 days), complete inhibition of bacterial adhesion, and excellent killing activity against a diverse range of bacteria over the long term. Coated catheters retained their excellent activity even after exposure to harsh mechanical challenges (rubbing, twisting, and stretching) and storage conditions (>3 months stirring in water). We confirmed its excellent bacteria-killing efficacy (>99.999%) against difficult-to-kill bacteria (Proteus mirabilis) and high biocompatibility using percutaneous catheter infection mice and subcutaneous implant rat models, respectively, in vivo. The developed coating approach opens a new avenue to transform clinically used medical devices (e.g., urinary catheters) to highly infection-resistant devices to prevent and treat implant/device-associated infections.

一个主要的医疗器械相关并发症是植入后与生物膜相关的感染。防止这种情况的一个有希望的方法是用有效的抗菌膜材料覆盖已经商业化的医疗设备。然而,在非平面几何形状的设备上开发一种坚固的高性能抗生物膜涂层仍然没有得到满足。在这里,我们报道了一种易于扩展的基于纳米颗粒的抗生物膜-银复合涂层的开发,该涂层具有长期活性,几乎适用于任何物体,包括使用邻苯二酚有机-水混合物难以涂覆的商业医疗设备。使用筛选方法,我们已经确定了一种有机-水缓冲混合物的组合,它改变了聚乙醇胺的合成、纳米颗粒的形成和稳定性,导致在超高分子量亲水性聚合物存在下原位形成的复合银纳米颗粒在不同物体上的受控沉积,而不管其几何形状和化学性质如何。甲醇介导的聚合物-银复合纳米颗粒的合成产生了一种生物相容的润滑涂层,具有高机械耐久性、长期银释放(~90天)、完全抑制细菌粘附以及长期对各种细菌的优异杀灭活性。涂层导管即使在暴露于苛刻的机械挑战(摩擦、扭曲和拉伸)和储存条件(在水中搅拌>;3个月)后仍保持其优异的活性。我们在体内分别使用经皮导管感染小鼠和皮下植入大鼠模型证实了其对难杀细菌(奇异变形杆菌)的优异杀菌效果(>;99.999%)和高生物相容性。所开发的涂层方法开辟了一条新的途径,将临床使用的医疗设备(如导尿管)转变为高度抗感染的设备,以预防和治疗植入物/设备相关感染。
{"title":"Robust Nanoparticle-Derived Lubricious Antibiofilm Coating for Difficult-to-Coat Medical Devices with Intricate Geometry","authors":"Hossein Yazdani-Ahmadabadi,&nbsp;Kai Yu,&nbsp;Sara Khoddami,&nbsp;Demian F. Felix,&nbsp;Han H. Yeh,&nbsp;Haiming D. Luo,&nbsp;Igor Moskalev,&nbsp;Qiong Wang,&nbsp;Rizhi Wang,&nbsp;Dana Grecov,&nbsp;Ladan Fazli,&nbsp;Dirk Lange* and Jayachandran N. Kizhakkedathu*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00040","DOIUrl":"10.1021/acsnanoscienceau.2c00040","url":null,"abstract":"<p >A major medical device-associated complication is the biofilm-related infection post-implantation. One promising approach to prevent this is to coat already commercialized medical devices with effective antibiofilm materials. However, developing a robust high-performance antibiofilm coating on devices with a nonflat geometry remains unmet. Here, we report the development of a facile scalable nanoparticle-based antibiofilm silver composite coating with long-term activity applicable to virtually any objects including difficult-to-coat commercially available medical devices utilizing a catecholic organic–aqueous mixture. Using a screening approach, we have identified a combination of the organic–aqueous buffer mixture which alters polycatecholamine synthesis, nanoparticle formation, and stabilization, resulting in controlled deposition of in situ formed composite silver nanoparticles in the presence of an ultra-high-molecular-weight hydrophilic polymer on diverse objects irrespective of its geometry and chemistry. Methanol-mediated synthesis of polymer–silver composite nanoparticles resulted in a biocompatible lubricious coating with high mechanical durability, long-term silver release (∼90 days), complete inhibition of bacterial adhesion, and excellent killing activity against a diverse range of bacteria over the long term. Coated catheters retained their excellent activity even after exposure to harsh mechanical challenges (rubbing, twisting, and stretching) and storage conditions (&gt;3 months stirring in water). We confirmed its excellent bacteria-killing efficacy (&gt;99.999%) against difficult-to-kill bacteria (<i>Proteus mirabilis</i>) and high biocompatibility using percutaneous catheter infection mice and subcutaneous implant rat models, respectively, <i>in vivo</i>. The developed coating approach opens a new avenue to transform clinically used medical devices (e.g., urinary catheters) to highly infection-resistant devices to prevent and treat implant/device-associated infections.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 1","pages":"67–83"},"PeriodicalIF":0.0,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/5c/ng2c00040.PMC9936578.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10774192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Interaction of the Staphylococcus aureus Surface Protein FnBPB with Corneodesmosin Involves Two Distinct, Extremely Strong Bonds 金黄色葡萄球菌表面蛋白FnBPB与角膜粘连蛋白的相互作用涉及两个不同的,极强的键
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-10-18 DOI: 10.1021/acsnanoscienceau.2c00036
Telmo O. Paiva, Albertus Viljoen, Thaina M. da Costa, Joan A. Geoghegan* and Yves F. Dufrêne*, 

Attachment of Staphylococcus aureus to human skin corneocyte cells plays a critical role in exacerbating the severity of atopic dermatitis (AD). Pathogen-skin adhesion is mediated by bacterial cell-surface proteins called adhesins, including fibronectin-binding protein B (FnBPB). FnBPB binds to corneodesmosin (CDSN), a glycoprotein exposed on AD patient corneocytes. Using single-molecule experiments, we demonstrate that CDSN binding by FnBPB relies on a sophisticated two-site mechanism. Both sites form extremely strong bonds with binding forces of ∼1 and ∼2.5 nN albeit with faster dissociation rates than those reported for homologues of the adhesin. This previously unidentified two-binding site interaction in FnBPB illustrates its remarkable variety of adhesive functions and is of biological significance as the high strength and short bond lifetime will favor efficient skin colonization by the pathogen.

金黄色葡萄球菌与人类皮肤角质细胞的粘附在加剧特应性皮炎(AD)的严重程度中起着关键作用。病原体皮肤粘附是由称为粘附素的细菌细胞表面蛋白介导的,包括纤连蛋白结合蛋白B(FnBPB)。FnBPB与角膜内皮素(CDSN)结合,CDSN是一种暴露在AD患者角膜细胞上的糖蛋白。通过单分子实验,我们证明FnBPB与CDSN的结合依赖于复杂的双位点机制。这两个位点都形成了极强的结合,结合力分别为~1和~2.5nN,尽管解离速率比粘附素同源物的解离速率更快。FnBPB中这种先前未确定的两个结合位点的相互作用说明了其显著的多种粘附功能,并且具有生物学意义,因为高强度和短的结合寿命将有利于病原体有效的皮肤定植。
{"title":"Interaction of the Staphylococcus aureus Surface Protein FnBPB with Corneodesmosin Involves Two Distinct, Extremely Strong Bonds","authors":"Telmo O. Paiva,&nbsp;Albertus Viljoen,&nbsp;Thaina M. da Costa,&nbsp;Joan A. Geoghegan* and Yves F. Dufrêne*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00036","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.2c00036","url":null,"abstract":"<p >Attachment of <i>Staphylococcus aureus</i> to human skin corneocyte cells plays a critical role in exacerbating the severity of atopic dermatitis (AD). Pathogen-skin adhesion is mediated by bacterial cell-surface proteins called adhesins, including fibronectin-binding protein B (FnBPB). FnBPB binds to corneodesmosin (CDSN), a glycoprotein exposed on AD patient corneocytes. Using single-molecule experiments, we demonstrate that CDSN binding by FnBPB relies on a sophisticated two-site mechanism. Both sites form extremely strong bonds with binding forces of ∼1 and ∼2.5 nN albeit with faster dissociation rates than those reported for homologues of the adhesin. This previously unidentified two-binding site interaction in FnBPB illustrates its remarkable variety of adhesive functions and is of biological significance as the high strength and short bond lifetime will favor efficient skin colonization by the pathogen.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 1","pages":"58–66"},"PeriodicalIF":0.0,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49768721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Importance of Metal Biotransformation in Cell Response to Metallic Nanoparticles: A Transcriptomic Meta-analysis Study 金属生物转化在细胞对金属纳米颗粒反应中的重要性:一项转录组meta分析研究
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-09-30 DOI: 10.1021/acsnanoscienceau.2c00035
Alice Balfourier, Anne-Pia Marty and Florence Gazeau*, 

Metallic nanoparticles are increasingly present in our environment, raising concerns on their interactions with living organisms and potential toxicity. Indeed, metallic nanoparticles release metal ions that can be toxic, bioessential, therapeutically active, or combine several of these features. However, human cell responses to different metallic nanoparticles and ions have rarely been compared so far. We propose here a meta-analysis of the transcriptomic responses of human cells to nanoparticles and ions of various metals (titanium, iron, copper, zinc, silver, cadmium, platinum, gold), in order to identify the commonalities and differences between cell responses to these compounds. This analysis revealed that the chemical properties of metals are more important than their known biological functions (i.e., essential metals, toxicity) in governing the cell transcriptome. Particularly, we evidence that the response to nanoparticles is dominated by the response to the ions they contain, and depend on the nanoparticles’ solubility. The formulation as nanoparticles impacts the cell response at lower intensity than the released ions, by altering genes related to vesicle intracellular transport and the cytoskeleton. Moreover, we put into light that several metals (i.e., copper, zinc, silver, cadmium, and gold) trigger a common cell response governed by metallothioneins, which coexist with singular signatures that are specific to a given element.

金属纳米颗粒越来越多地存在于我们的环境中,这引发了人们对其与生物体相互作用和潜在毒性的担忧。事实上,金属纳米颗粒释放的金属离子可以是有毒的、生物本质的、治疗活性的,或者结合了其中的几个特征。然而,到目前为止,人类细胞对不同金属纳米颗粒和离子的反应很少进行比较。我们在此提出了一项关于人类细胞对各种金属(钛、铁、铜、锌、银、镉、铂、金)的纳米颗粒和离子的转录组反应的荟萃分析,以确定细胞对这些化合物的反应之间的共性和差异。该分析表明,在控制细胞转录组方面,金属的化学性质比其已知的生物功能(即必需金属、毒性)更重要。特别是,我们证明,对纳米颗粒的反应主要由对其所含离子的反应决定,并取决于纳米颗粒的溶解度。作为纳米颗粒的制剂通过改变与囊泡细胞内运输和细胞骨架相关的基因,以比释放的离子更低的强度影响细胞反应。此外,我们发现几种金属(即铜、锌、银、镉和金)会触发由金属硫蛋白控制的常见细胞反应,金属硫蛋白与特定元素特有的奇异特征共存。
{"title":"Importance of Metal Biotransformation in Cell Response to Metallic Nanoparticles: A Transcriptomic Meta-analysis Study","authors":"Alice Balfourier,&nbsp;Anne-Pia Marty and Florence Gazeau*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00035","DOIUrl":"10.1021/acsnanoscienceau.2c00035","url":null,"abstract":"<p >Metallic nanoparticles are increasingly present in our environment, raising concerns on their interactions with living organisms and potential toxicity. Indeed, metallic nanoparticles release metal ions that can be toxic, bioessential, therapeutically active, or combine several of these features. However, human cell responses to different metallic nanoparticles and ions have rarely been compared so far. We propose here a meta-analysis of the transcriptomic responses of human cells to nanoparticles and ions of various metals (titanium, iron, copper, zinc, silver, cadmium, platinum, gold), in order to identify the commonalities and differences between cell responses to these compounds. This analysis revealed that the chemical properties of metals are more important than their known biological functions (i.e., essential metals, toxicity) in governing the cell transcriptome. Particularly, we evidence that the response to nanoparticles is dominated by the response to the ions they contain, and depend on the nanoparticles’ solubility. The formulation as nanoparticles impacts the cell response at lower intensity than the released ions, by altering genes related to vesicle intracellular transport and the cytoskeleton. Moreover, we put into light that several metals (i.e., copper, zinc, silver, cadmium, and gold) trigger a common cell response governed by metallothioneins, which coexist with singular signatures that are specific to a given element.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 1","pages":"46–57"},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/14/ce/ng2c00035.PMC9936776.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10765032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
ACS Nanoscience Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1