Pub Date : 2025-01-20Epub Date: 2025-01-08DOI: 10.1021/acsabm.4c01678
Panagiotis Mougkogiannis, Andrew Adamatzky
This study examines the relationship between chondroitin sulfate, proteinoids, and computational neuron models, with a specific emphasis on the Izhikevich neuron model. We investigate the effect of chondroitin sulfate-proteinoid complexes on the behavior and dynamics of simulated neurons. Through the use of computational simulations, we provide evidence that these biomolecular components have the power to regulate the responsiveness of neurons, the patterns of their firing, and the ability of their synapses to change within the Izhikevich architecture. The findings suggest that the interactions between chondroitin sulfate and proteinoid cause notable alterations in the dynamics of membrane potential and the timing of spikes. We detect adjustments in the features of neuronal responses, such as shifts in the thresholds for firing, alterations in spike frequency adaptation, and changes to bursting patterns. The findings indicate that chondroitin sulfate and proteinoids may have a role in precisely adjusting neuronal information processing and network behavior. This study offers valuable information about the complex connection between the many components of the extracellular matrix, protein-based structures, and the functioning of neurons. In addition, our analysis of the proteinoid-chondroitine system using game theory uncovers a significant Prisoner's Dilemma scenario. The system's inclination toward defection, due to the appeal of cheating and the significant penalty for cooperation, with a mean voltage of -9.19 mV, indicates that defective behaviors may prevail in the long term dynamics of these neuronal interactions.
{"title":"Chondroitin Sulfate and Proteinoids in Neuron Models.","authors":"Panagiotis Mougkogiannis, Andrew Adamatzky","doi":"10.1021/acsabm.4c01678","DOIUrl":"10.1021/acsabm.4c01678","url":null,"abstract":"<p><p>This study examines the relationship between chondroitin sulfate, proteinoids, and computational neuron models, with a specific emphasis on the Izhikevich neuron model. We investigate the effect of chondroitin sulfate-proteinoid complexes on the behavior and dynamics of simulated neurons. Through the use of computational simulations, we provide evidence that these biomolecular components have the power to regulate the responsiveness of neurons, the patterns of their firing, and the ability of their synapses to change within the Izhikevich architecture. The findings suggest that the interactions between chondroitin sulfate and proteinoid cause notable alterations in the dynamics of membrane potential and the timing of spikes. We detect adjustments in the features of neuronal responses, such as shifts in the thresholds for firing, alterations in spike frequency adaptation, and changes to bursting patterns. The findings indicate that chondroitin sulfate and proteinoids may have a role in precisely adjusting neuronal information processing and network behavior. This study offers valuable information about the complex connection between the many components of the extracellular matrix, protein-based structures, and the functioning of neurons. In addition, our analysis of the proteinoid-chondroitine system using game theory uncovers a significant Prisoner's Dilemma scenario. The system's inclination toward defection, due to the appeal of cheating and the significant penalty for cooperation, with a mean voltage of -9.19 mV, indicates that defective behaviors may prevail in the long term dynamics of these neuronal interactions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"854-869"},"PeriodicalIF":4.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The multiple enzymatic properties of the Au3+-modified metal-organic framework (Au3+-MOFs) have made it a functional catalytic system for antitumor treatment. However, in the face of insufficient catalytic substrates in tumor tissue, it is still impossible to achieve efficient treatment of tumors. Herein, Au3+-MOFs loaded with hyaluronic acid (HA)-modified calcium peroxide nanoparticles (CaO2 NPs) were used to construct a nanozyme (Au3+-MOF/CaO2/HA) for substrate self-supplied and parallel catalytic/calcium-overload-mediated therapy of cancer. Due to the specific targeted ability and retention (EPR) effect of the HA, the built nanozyme can effectively accumulate at the tumor site. Due to the oxidase-like (OXD) activity and peroxidase-like (POD) activity of Au3+-MOFs, superoxide radical anion (O2•-) and hydroxyl radicals (·OH) were cooperatively formed for parallel catalytic therapy (PCT) of cancer. Subsequently, CaO2 NPs were decomposed to Ca2+, H2O2, and O2 in the weak acidic environment of the tumor microenvironment (TME). Thus, self-supplementation of O2 as well as H2O2 was achieved, alleviating the deficiency of Au3+-MOF nanozyme catalytic substrate. In addition, Ca2+ can lead to oxidative stress for tumor calcification and calcium-overload-mediated therapy (COMT) to promote tumor necrosis in vivo. An effective paradigm of tumor PCT/COMT therapy with a self-supplying substrate has been successfully established for considerably enhanced therapeutic efficacy.
{"title":"Au<sup>3+</sup>-Functionalized Metal-Organic Framework Coordinated Nanotherapeutics for Substrate Self-Supplied Parallel Catalytic and Calcium-Overload-Mediated Therapy of Cancer.","authors":"Huairong Zhang, Zizhen Wei, Yuqi Wang, Zhiru Bi, Wenxiu Han, Minghui Shi, Tingting Chen, Yongbiao Sun, Linjing Wang, Shusheng Zhang","doi":"10.1021/acsabm.4c01423","DOIUrl":"https://doi.org/10.1021/acsabm.4c01423","url":null,"abstract":"<p><p>The multiple enzymatic properties of the Au<sup>3+</sup>-modified metal-organic framework (Au<sup>3+</sup>-MOFs) have made it a functional catalytic system for antitumor treatment. However, in the face of insufficient catalytic substrates in tumor tissue, it is still impossible to achieve efficient treatment of tumors. Herein, Au<sup>3+</sup>-MOFs loaded with hyaluronic acid (HA)-modified calcium peroxide nanoparticles (CaO<sub>2</sub> NPs) were used to construct a nanozyme (Au<sup>3+</sup>-MOF/CaO<sub>2</sub>/HA) for substrate self-supplied and parallel catalytic/calcium-overload-mediated therapy of cancer. Due to the specific targeted ability and retention (EPR) effect of the HA, the built nanozyme can effectively accumulate at the tumor site. Due to the oxidase-like (OXD) activity and peroxidase-like (POD) activity of Au<sup>3+</sup>-MOFs, superoxide radical anion (O<sub>2</sub><sup>•-</sup>) and hydroxyl radicals (·OH) were cooperatively formed for parallel catalytic therapy (PCT) of cancer. Subsequently, CaO<sub>2</sub> NPs were decomposed to Ca<sup>2+</sup>, H<sub>2</sub>O<sub>2</sub>, and O<sub>2</sub> in the weak acidic environment of the tumor microenvironment (TME). Thus, self-supplementation of O<sub>2</sub> as well as H<sub>2</sub>O<sub>2</sub> was achieved, alleviating the deficiency of Au<sup>3+</sup>-MOF nanozyme catalytic substrate. In addition, Ca<sup>2+</sup> can lead to oxidative stress for tumor calcification and calcium-overload-mediated therapy (COMT) to promote tumor necrosis in vivo. An effective paradigm of tumor PCT/COMT therapy with a self-supplying substrate has been successfully established for considerably enhanced therapeutic efficacy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 1","pages":"446-456"},"PeriodicalIF":4.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A multifunctional nanoplatform integrating multiple therapeutic functions may be an effective strategy to realize satisfactory therapeutic efficacy in the treatment of tumors. However, there is still a certain challenge in integrating multiple therapeutic agents into a single formulation using a simple method due to variations in their properties. In this work, multifunctional CuS-ICG@PDA-FA nanoparticles (CIPF NPs) with excellent ability to produce reactive oxygen species and photothermal conversion performance are fabricated by a simple and gentle method. Hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) not only have excellent loading and photothermal conversion performance but also can cause a highly efficient Fenton-like reaction for chemodynamic therapy (CDT). The loaded photosensitizer indocyanine green (ICG) imparts excellent photodynamic properties to the NPs, which in turn enhances the stability of ICG. The polydopamine (PDA) coating improves the stability and biocompatibility of the NPs and creates the conditions for surface modification of folic acid. The FA-coated NPs show precise targeting of tumor cells. The results of the cellular uptake assay demonstrate that CIPF NPs enter tumor cells through an endocytic pathway. Lysosome colocalization and escape experiments prove that CIPF NPs possess good lysosomal escape ability under irradiation of NIR. Both in vitro and in vivo antitumor studies of CIPF NPs reveal excellent efficacy in photothermal/photodynamic/chemodynamic therapy. The construction of high-performance CIPF NPs offers valuable insights into the design of a multifunctional copper sulfide-based nanoplatform for combined cancer treatment and precise theranostics.
{"title":"Integrating Photothermal, Photodynamic, and Chemodynamic Therapies: The Innovative Design Based on Copper Sulfide Nanoparticles for Enhanced Tumor Therapy.","authors":"Yue Yang, Wen Zheng, Jiabao Zhang, Jiangxue Guo, Qian Liu, Hanyang Wang, Fanxing Xu, Zhihong Bao","doi":"10.1021/acsabm.4c01538","DOIUrl":"https://doi.org/10.1021/acsabm.4c01538","url":null,"abstract":"<p><p>A multifunctional nanoplatform integrating multiple therapeutic functions may be an effective strategy to realize satisfactory therapeutic efficacy in the treatment of tumors. However, there is still a certain challenge in integrating multiple therapeutic agents into a single formulation using a simple method due to variations in their properties. In this work, multifunctional CuS-ICG@PDA-FA nanoparticles (CIPF NPs) with excellent ability to produce reactive oxygen species and photothermal conversion performance are fabricated by a simple and gentle method. Hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) not only have excellent loading and photothermal conversion performance but also can cause a highly efficient Fenton-like reaction for chemodynamic therapy (CDT). The loaded photosensitizer indocyanine green (ICG) imparts excellent photodynamic properties to the NPs, which in turn enhances the stability of ICG. The polydopamine (PDA) coating improves the stability and biocompatibility of the NPs and creates the conditions for surface modification of folic acid. The FA-coated NPs show precise targeting of tumor cells. The results of the cellular uptake assay demonstrate that CIPF NPs enter tumor cells through an endocytic pathway. Lysosome colocalization and escape experiments prove that CIPF NPs possess good lysosomal escape ability under irradiation of NIR. Both <i>in vitro</i> and <i>in vivo</i> antitumor studies of CIPF NPs reveal excellent efficacy in photothermal/photodynamic/chemodynamic therapy. The construction of high-performance CIPF NPs offers valuable insights into the design of a multifunctional copper sulfide-based nanoplatform for combined cancer treatment and precise theranostics.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 1","pages":"676-687"},"PeriodicalIF":4.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20Epub Date: 2025-01-06DOI: 10.1021/acsabm.4c01361
Shirley Chung, Zach Gouveia, Suja Shrestha, John G Coles, Jason T Maynes, J Paul Santerre
Contemporary therapies following heart failure center on regenerative approaches to account for the loss of cardiomyocytes and limited regenerative capacity of the adult heart. While the delivery of cardiac progenitor cells has been shown to improve cardiac function and repair following injury, recent evidence has suggested that their paracrine effects (or secretome) provides a significant contribution towards modulating regeneration, rather than the progenitor cells intrinsically. The direct delivery of secretory biomolecules, however, remains a challenge due to their lack of stability and tissue retention, limiting their prolonged therapeutic efficacy. We hypothesized that polyurethane-based nanoparticles with heteropolar-hydrophobic-ionic chemistry (DPHI-NPs) could enable the delivery of a subset of pro-regenerative cardiac progenitor cell proteins [bone morphogenetic protein-4 (BMP-4) and angiotensin 1-7 (Ang1-7)] to promote biological pathways conducive to repair processes such as antisenescence (through the quantification of β-galactosidase and interleukin-6) and vasculogenesis (through the formation of endothelial tubes), demonstrated in vitro with human cardiac fibroblasts (hCFs) and human microvascular endothelial cells (hMECs), respectively. DPHI-NPs with a diameter of 190 ± 2 nm (polydispersity index < 0.2) and a zeta potential of -40 ± 1 mV were generated using an emulsion inversion technique and loaded with both therapeutic proteins (BMP-4 and Ang1-7) by optimizing surface charge, loading solution concentration, coating duration, and coating efficiency. Senescence-induced hCFs treated with functionalized DPHI-NPs were found to exhibit a significant reduction in expressed β-galactosidase and IL-6 (p < 0.05). Additionally, hMECs treated with NPBMP-4 were found to display enhanced vasculogenesis compared to control culture conditions alone (p < 0.05). The development of a DPHI-NP vector for the delivery of pro-regenerative secretome biomolecules may present an effective translatable strategy to improve their therapeutic efficacy with respect to cell function.
{"title":"Nanoparticles for the Delivery of Pro-regenerative Cardiac Progenitor Secretory Proteins Targeting Cellular Senescence and Vasculogenesis.","authors":"Shirley Chung, Zach Gouveia, Suja Shrestha, John G Coles, Jason T Maynes, J Paul Santerre","doi":"10.1021/acsabm.4c01361","DOIUrl":"https://doi.org/10.1021/acsabm.4c01361","url":null,"abstract":"<p><p>Contemporary therapies following heart failure center on regenerative approaches to account for the loss of cardiomyocytes and limited regenerative capacity of the adult heart. While the delivery of cardiac progenitor cells has been shown to improve cardiac function and repair following injury, recent evidence has suggested that their paracrine effects (or secretome) provides a significant contribution towards modulating regeneration, rather than the progenitor cells intrinsically. The direct delivery of secretory biomolecules, however, remains a challenge due to their lack of stability and tissue retention, limiting their prolonged therapeutic efficacy. We hypothesized that polyurethane-based nanoparticles with heteropolar-hydrophobic-ionic chemistry (DPHI-NPs) could enable the delivery of a subset of pro-regenerative cardiac progenitor cell proteins [bone morphogenetic protein-4 (BMP-4) and angiotensin 1-7 (Ang1-7)] to promote biological pathways conducive to repair processes such as antisenescence (through the quantification of β-galactosidase and interleukin-6) and vasculogenesis (through the formation of endothelial tubes), demonstrated <i>in vitro</i> with human cardiac fibroblasts (hCFs) and human microvascular endothelial cells (hMECs), respectively. DPHI-NPs with a diameter of 190 ± 2 nm (polydispersity index < 0.2) and a zeta potential of -40 ± 1 mV were generated using an emulsion inversion technique and loaded with both therapeutic proteins (BMP-4 and Ang1-7) by optimizing surface charge, loading solution concentration, coating duration, and coating efficiency. Senescence-induced hCFs treated with functionalized DPHI-NPs were found to exhibit a significant reduction in expressed β-galactosidase and IL-6 (<i>p</i> < 0.05). Additionally, hMECs treated with NP<sub>BMP-4</sub> were found to display enhanced vasculogenesis compared to control culture conditions alone (<i>p</i> < 0.05). The development of a DPHI-NP vector for the delivery of pro-regenerative secretome biomolecules may present an effective translatable strategy to improve their therapeutic efficacy with respect to cell function.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 1","pages":"386-398"},"PeriodicalIF":4.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20Epub Date: 2024-12-10DOI: 10.1021/acsabm.4c00856
Harshal V Barkale, Nilanjan Dey
Cyanogenic glycosides are plant-derived, nitrogen-containing secondary metabolites that release toxic cyanide ions upon hydrolysis by glycosidic enzymes. Therefore, consuming food items enriched with such compounds without proper remediation can cause acute cyanide intoxication. Thus, in this work, we utilize cyanide-responsive oxidized bisindole-based chromogenic probes to detect cyanogenic glycosides, such as amygdalin and linamarin (LOD: 0.12 μM), in phospholipid membranes. The bilayer surface, owing to its distinct microenvironment, enhances both the sensitivity and specificity of the probes toward amygdalin. The chromogenic response (red to yellow) is influenced by the nature of the lipid membrane (order, polarity, and interfacial hydration) as well as the number of bis-indolyl units in the probe molecules. Semiquantitative analysis of food samples before and after cooking revealed that soaking in water at room temperature significantly reduces the cyanogenic glycoside content. The ability to directly detect cyanogenic glycosides in food samples without pretreatment is a notable aspect of this investigation.
{"title":"Membrane-Bound Bisindolyl-Based Chromogenic Probes: Analysis of Cyanogenic Glycosides in Agricultural Crops for Possible Remediation.","authors":"Harshal V Barkale, Nilanjan Dey","doi":"10.1021/acsabm.4c00856","DOIUrl":"10.1021/acsabm.4c00856","url":null,"abstract":"<p><p>Cyanogenic glycosides are plant-derived, nitrogen-containing secondary metabolites that release toxic cyanide ions upon hydrolysis by glycosidic enzymes. Therefore, consuming food items enriched with such compounds without proper remediation can cause acute cyanide intoxication. Thus, in this work, we utilize cyanide-responsive oxidized bisindole-based chromogenic probes to detect cyanogenic glycosides, such as amygdalin and linamarin (LOD: 0.12 μM), in phospholipid membranes. The bilayer surface, owing to its distinct microenvironment, enhances both the sensitivity and specificity of the probes toward amygdalin. The chromogenic response (red to yellow) is influenced by the nature of the lipid membrane (order, polarity, and interfacial hydration) as well as the number of bis-indolyl units in the probe molecules. Semiquantitative analysis of food samples before and after cooking revealed that soaking in water at room temperature significantly reduces the cyanogenic glycoside content. The ability to directly detect cyanogenic glycosides in food samples without pretreatment is a notable aspect of this investigation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"189-198"},"PeriodicalIF":4.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
COVID-19 has become one of the deadliest epidemics in the past years. In efforts to combat the deadly disease besides vaccines, drug therapies, and facemasks, significant focus has been on designing specific methods for the sensitive and accurate detection of SARS-CoV-2. Of these, surface-enhanced Raman scattering (SERS) is an attractive analytical tool for the identification of SARS-CoV-2. SERS is the phenomenon of enhancement of Raman intensity signals from molecular analytes anchored onto the surfaces of roughened plasmonic nanomaterials. This work gives an updated summary of plasmonic gold nanomaterials (AuNMs) and silver nanomaterials (AgNMs)-based SERS technologies to identify SARS-CoV-2. Due to extreme "hot spots" promoting higher electromagnetic fields on their surfaces, different shapes of AuNMs and AgNMs combined with Raman probes have been reviewed for enhancing Raman signals of probe molecules for quantifying the virus. It also reviews progress made recently in the design of certain specific Raman probe molecules capable of imparting characteristic SERS response/tags for SARS-CoV-2 detection.
{"title":"Recent Plasmonic Gold- and Silver-Assisted Raman Spectra for Advanced SARS-CoV-2 Detection.","authors":"Nguyễn Hoàng Ly, Jaebum Choo, Lalitha Gnanasekaran, Tejraj Malleshappa Aminabhavi, Yasser Vasseghian, Sang-Woo Joo","doi":"10.1021/acsabm.4c01457","DOIUrl":"10.1021/acsabm.4c01457","url":null,"abstract":"<p><p>COVID-19 has become one of the deadliest epidemics in the past years. In efforts to combat the deadly disease besides vaccines, drug therapies, and facemasks, significant focus has been on designing specific methods for the sensitive and accurate detection of SARS-CoV-2. Of these, surface-enhanced Raman scattering (SERS) is an attractive analytical tool for the identification of SARS-CoV-2. SERS is the phenomenon of enhancement of Raman intensity signals from molecular analytes anchored onto the surfaces of roughened plasmonic nanomaterials. This work gives an updated summary of plasmonic gold nanomaterials (AuNMs) and silver nanomaterials (AgNMs)-based SERS technologies to identify SARS-CoV-2. Due to extreme \"hot spots\" promoting higher electromagnetic fields on their surfaces, different shapes of AuNMs and AgNMs combined with Raman probes have been reviewed for enhancing Raman signals of probe molecules for quantifying the virus. It also reviews progress made recently in the design of certain specific Raman probe molecules capable of imparting characteristic SERS response/tags for SARS-CoV-2 detection.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"88-107"},"PeriodicalIF":4.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The synthesis of nanomaterials from renewable resources has emerged as an environmentally friendly alternative. This approach helps to reduce the use of chemical fertilizers in agricultural production, further reducing the potential harm to the ecosystem and effectively reducing the burden on the environment. In this work, we synthesized Rosa roxburghii derived carbon dots (CDs) using the microwave hydrothermal method (RR-CDs) and the electrolytic oxidation method (GRR-CDs), and the results showed that RR-CDs had a wider ultraviolet absorption range and emitted blue fluorescence. These properties make RR-CDs more effective as light-harvesting materials in plants, thus promoting photosynthesis. In the cultivation of lettuce, RR-CDs significantly enhanced both the biomass and the quality of the lettuce. In addition, compared to the control group, the chlorophyll content of lettuce treated with RR-CDs increased by 31.83%, the net photosynthetic rate increased by 60.76%, and the electron transport rate of photosystem II increased by 38.72%. Therefore, we found that the microwave hydrothermal method could bring better benefits, with a yield of up to 40.20% after just 2 h of reaction. RR-CDs promote photosynthesis by promoting light conversion and improving nutrient efficiency while also boasting the dual advantages of low cost and easy large-scale production, thus opening up avenues for sustainable agricultural production.
{"title":"Unlocking Photosynthetic Potential: Harnessing <i>Rosa roxburghii</i> Derived Carbon Dots as Nanofertilizers for Enhanced Plant Growth.","authors":"Qingyun Xu, Jijie Han, Dongyu Wang, Jianle Zhuang, Chaofan Hu, Hanwu Dong, Wei Li, Bingfu Lei, Yingliang Liu","doi":"10.1021/acsabm.4c01609","DOIUrl":"10.1021/acsabm.4c01609","url":null,"abstract":"<p><p>The synthesis of nanomaterials from renewable resources has emerged as an environmentally friendly alternative. This approach helps to reduce the use of chemical fertilizers in agricultural production, further reducing the potential harm to the ecosystem and effectively reducing the burden on the environment. In this work, we synthesized <i>Rosa roxburghii</i> derived carbon dots (CDs) using the microwave hydrothermal method (RR-CDs) and the electrolytic oxidation method (GRR-CDs), and the results showed that RR-CDs had a wider ultraviolet absorption range and emitted blue fluorescence. These properties make RR-CDs more effective as light-harvesting materials in plants, thus promoting photosynthesis. In the cultivation of lettuce, RR-CDs significantly enhanced both the biomass and the quality of the lettuce. In addition, compared to the control group, the chlorophyll content of lettuce treated with RR-CDs increased by 31.83%, the net photosynthetic rate increased by 60.76%, and the electron transport rate of photosystem II increased by 38.72%. Therefore, we found that the microwave hydrothermal method could bring better benefits, with a yield of up to 40.20% after just 2 h of reaction. RR-CDs promote photosynthesis by promoting light conversion and improving nutrient efficiency while also boasting the dual advantages of low cost and easy large-scale production, thus opening up avenues for sustainable agricultural production.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"774-783"},"PeriodicalIF":4.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Coronavirus Disease 2019 (COVID-19) recently emerged as a life-threatening global pandemic that has ravaged millions of lives. The affected patients are known to frequently register numerous comorbidities induced by COVID-19 such as diabetes, asthma, cardiac arrest, hypertension, and neurodegenerative diseases, to name a few. The expensiveness and probability of false negative results of conventional screening tests often delay timely diagnosis and treatment. In such cases, the deployment of a suitable biosensing platform can readily expedite the rapid diagnosis process for enhanced patient outcomes. We report the development of an electrochemical genosensor based on DNA/OGCN (DNA/oxygenated graphitic carbon nitride) nanohybrids for the quantification of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) DNA─the key biomarker for COVID-19. This is achieved by exploiting the molecular nanowire-formation capability of the [Ru(NH3)6]2+/3+ redox probe onto the DNA phosphate backbone via electrostatic interactions. The microstructural characterization of OGCN was performed using scanning electron microscopy (SEM) coupled with an energy-dispersive X-ray (EDX) module, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. The electrochemical analyses were performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), while the analytical performance of the sensor was evaluated using square wave voltammetry (SWV). The developed sensor exhibited a wide linear detection range within 10 fM-10 μM, with a limit of detection (LoD) of ∼7.23 fM with a high degree of selectivity toward SARS-CoV-2 target DNA, thereby indicating its potential to be employed in a point-of-care scenario toward providing affordable healthcare to the global populace.
{"title":"Exploiting the Electrostatic Binding of Ruthenium Hexamine Molecular Redox Nanowires onto DNA/OGCN Biohybrid Electrodes toward the Electrochemical Detection of COVID-19.","authors":"Souradeep Roy, Sonam Singh, Reema Rawat, Shikha Wadhwa, Dhanunjaya Munthala, Soodkhet Pojprapai, Ashish Mathur, Devesh Kumar Avasthi","doi":"10.1021/acsabm.4c01573","DOIUrl":"10.1021/acsabm.4c01573","url":null,"abstract":"<p><p>The Coronavirus Disease 2019 (COVID-19) recently emerged as a life-threatening global pandemic that has ravaged millions of lives. The affected patients are known to frequently register numerous comorbidities induced by COVID-19 such as diabetes, asthma, cardiac arrest, hypertension, and neurodegenerative diseases, to name a few. The expensiveness and probability of false negative results of conventional screening tests often delay timely diagnosis and treatment. In such cases, the deployment of a suitable biosensing platform can readily expedite the rapid diagnosis process for enhanced patient outcomes. We report the development of an electrochemical genosensor based on DNA/OGCN (DNA/oxygenated graphitic carbon nitride) nanohybrids for the quantification of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) DNA─the key biomarker for COVID-19. This is achieved by exploiting the molecular nanowire-formation capability of the [Ru(NH<sub>3</sub>)<sub>6</sub>]<sup>2+/3+</sup> redox probe onto the DNA phosphate backbone via electrostatic interactions. The microstructural characterization of OGCN was performed using scanning electron microscopy (SEM) coupled with an energy-dispersive X-ray (EDX) module, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. The electrochemical analyses were performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), while the analytical performance of the sensor was evaluated using square wave voltammetry (SWV). The developed sensor exhibited a wide linear detection range within 10 fM-10 μM, with a limit of detection (LoD) of ∼7.23 fM with a high degree of selectivity toward SARS-CoV-2 target DNA, thereby indicating its potential to be employed in a point-of-care scenario toward providing affordable healthcare to the global populace.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"715-725"},"PeriodicalIF":4.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20Epub Date: 2025-01-08DOI: 10.1021/acsabm.4c01418
Margherita Montanari, Jannika T Korkeamäki, Elisabetta Campodoni, Samih Mohamed-Ahmed, Kamal Mustafa, Monica Sandri, Ahmad Rashad
Bioprinting of nanohydroxyapatite (nHA)-based bioinks has attracted considerable interest in bone tissue engineering. However, the role and relevance of the physicochemical properties of nHA incorporated in a bioink, particularly in terms of its printability and the biological behavior of bioprinted cells, remain largely unexplored. In this study, two bioinspired nHAs with different chemical compositions, crystallinity, and morphologies were synthesized and characterized: a more crystalline, needle-like Mg2+-doped nHA (N-HA) and a more amorphous, rounded Mg2+- and CO32--doped nHA (R-HA). To investigate the effects of the different compositions and morphologies of these nanoparticles on the bioprinting of human bone marrow stromal cells (hBMSCs), gelatin and gelatin methacryloyl (GelMA) were selected as the bioink backbone. The addition of 1% (w/w) of these bioceramic nanoparticles significantly improved the printability of GelMA in terms of extrudability, buildability, and filament spreading. The biological potential of the bioinks was evaluated by examining the hBMSC viability, metabolic activity, and osteogenic differentiation over 21 days. Both nHAs showed high cell viability, with N-HA showing a significant increase in metabolic activity under nonosteogenic conditions and R-HA showing a notable increase with osteogenic stimulation. These results suggest that the two nHAs interact differently with their environment, highlighting the importance of both the chemistry and morphology in bioink performance. In addition, osteogenic differentiation further highlighted how the physicochemical properties of nHAs influence osteogenic markers at both the RNA and protein levels. Clearly, tailoring the physicochemical properties of hydroxyapatite nanoparticles is critical to developing more biomimetic bioinks with great potential for advancing bone bioprinting applications.
{"title":"Effects of Magnesium-Doped Hydroxyapatite Nanoparticles on Bioink Formulation for Bone Tissue Engineering.","authors":"Margherita Montanari, Jannika T Korkeamäki, Elisabetta Campodoni, Samih Mohamed-Ahmed, Kamal Mustafa, Monica Sandri, Ahmad Rashad","doi":"10.1021/acsabm.4c01418","DOIUrl":"10.1021/acsabm.4c01418","url":null,"abstract":"<p><p>Bioprinting of nanohydroxyapatite (nHA)-based bioinks has attracted considerable interest in bone tissue engineering. However, the role and relevance of the physicochemical properties of nHA incorporated in a bioink, particularly in terms of its printability and the biological behavior of bioprinted cells, remain largely unexplored. In this study, two bioinspired nHAs with different chemical compositions, crystallinity, and morphologies were synthesized and characterized: a more crystalline, needle-like Mg<sup>2+</sup>-doped nHA (N-HA) and a more amorphous, rounded Mg<sup>2+</sup>- and CO<sub>3</sub><sup>2-</sup>-doped nHA (R-HA). To investigate the effects of the different compositions and morphologies of these nanoparticles on the bioprinting of human bone marrow stromal cells (hBMSCs), gelatin and gelatin methacryloyl (GelMA) were selected as the bioink backbone. The addition of 1% (w/w) of these bioceramic nanoparticles significantly improved the printability of GelMA in terms of extrudability, buildability, and filament spreading. The biological potential of the bioinks was evaluated by examining the hBMSC viability, metabolic activity, and osteogenic differentiation over 21 days. Both nHAs showed high cell viability, with N-HA showing a significant increase in metabolic activity under nonosteogenic conditions and R-HA showing a notable increase with osteogenic stimulation. These results suggest that the two nHAs interact differently with their environment, highlighting the importance of both the chemistry and morphology in bioink performance. In addition, osteogenic differentiation further highlighted how the physicochemical properties of nHAs influence osteogenic markers at both the RNA and protein levels. Clearly, tailoring the physicochemical properties of hydroxyapatite nanoparticles is critical to developing more biomimetic bioinks with great potential for advancing bone bioprinting applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"535-547"},"PeriodicalIF":4.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}