首页 > 最新文献

ACS Applied Bio Materials最新文献

英文 中文
Bimodal Array-Based Fluorescence Sensor and Microfluidic Technology for Protein Fingerprinting and Clinical Diagnosis. 基于双模阵列的荧光传感器和微流控技术用于蛋白质指纹识别和临床诊断
IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-12-16 Epub Date: 2024-11-12 DOI: 10.1021/acsabm.4c00938
Monica Swetha Bosco, Delphine Naud-Martin, Carlos Gonzalez-Galindo, Marie Auvray, Monica Araya-Farias, Giacomo Gropplero, Yves Rozenholc, Zeki Topcu, Jean-Francois Gaucher, Vassilis Tsatsaris, Stéphanie Descroix, Florence Mahuteau-Betzer, Nathalie Gagey-Eilstein

Proteins play a crucial role in determining disease states in humans, making them prime targets for the development of diagnostic sensors. The developed sensor array is used to investigate global proteomic changes by fingerprinting multifactorial disease states in model urine simulating phenylketonuria and in serum from preeclamptic pregnant women. Here, we report a fluorescence-based chemical sensing array that exploits the host-guest interaction between cucurbit[7]uril (CB[7]) and fluorescent triphenylamine derivatives (TPA) to detect a range of proteins. Using linear discriminant analysis, we identify fluorescence fingerprints of 14 proteins with over 98% accuracy in buffer and human serum. The array is optimized on an automated droplet microfluidic-based platform, for high-throughput sensing with controlled composition and lower sample volumes. This sensor enables the discrimination of proteins in physiological buffer and human serum, with promising applications in disease diagnosis.

蛋白质在决定人类疾病状态方面起着至关重要的作用,因此成为开发诊断传感器的首要目标。所开发的传感器阵列通过对模拟苯丙酮尿症的模型尿液和先兆子痫孕妇血清中的多因素疾病状态进行指纹识别,用于研究全球蛋白质组的变化。在这里,我们报告了一种基于荧光的化学传感阵列,它利用葫芦[7]脲(CB[7])和荧光三苯胺衍生物(TPA)之间的主客体相互作用来检测一系列蛋白质。通过线性判别分析,我们在缓冲液和人血清中识别出了 14 种蛋白质的荧光指纹,准确率超过 98%。该阵列在基于液滴微流体的自动平台上进行了优化,以实现高通量传感,控制成分和降低样品量。这种传感器能够分辨生理缓冲液和人体血清中的蛋白质,在疾病诊断中具有广阔的应用前景。
{"title":"Bimodal Array-Based Fluorescence Sensor and Microfluidic Technology for Protein Fingerprinting and Clinical Diagnosis.","authors":"Monica Swetha Bosco, Delphine Naud-Martin, Carlos Gonzalez-Galindo, Marie Auvray, Monica Araya-Farias, Giacomo Gropplero, Yves Rozenholc, Zeki Topcu, Jean-Francois Gaucher, Vassilis Tsatsaris, Stéphanie Descroix, Florence Mahuteau-Betzer, Nathalie Gagey-Eilstein","doi":"10.1021/acsabm.4c00938","DOIUrl":"10.1021/acsabm.4c00938","url":null,"abstract":"<p><p>Proteins play a crucial role in determining disease states in humans, making them prime targets for the development of diagnostic sensors. The developed sensor array is used to investigate global proteomic changes by fingerprinting multifactorial disease states in model urine simulating phenylketonuria and in serum from preeclamptic pregnant women. Here, we report a fluorescence-based chemical sensing array that exploits the host-guest interaction between cucurbit[7]uril (CB[7]) and fluorescent triphenylamine derivatives (TPA) to detect a range of proteins. Using linear discriminant analysis, we identify fluorescence fingerprints of 14 proteins with over 98% accuracy in buffer and human serum. The array is optimized on an automated droplet microfluidic-based platform, for high-throughput sensing with controlled composition and lower sample volumes. This sensor enables the discrimination of proteins in physiological buffer and human serum, with promising applications in disease diagnosis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8236-8247"},"PeriodicalIF":4.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-Infrared Visualization of NAD(P)H Dynamics in Live Cells and Drosophila melanogaster Larvae Using a Coumarin-Based Pyridinium Fluorescent Probe. 使用基于香豆素的吡啶荧光探针对活细胞和黑腹果蝇幼虫中的 NAD(P)H 动态进行近红外可视化。
IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-12-16 Epub Date: 2024-11-19 DOI: 10.1021/acsabm.4c01294
Sophia Jaeger, Henry Lanquaye, Sushil K Dwivedi, Dilka Liyana Arachchige, James Xia, May Waters, Bella Lyn Bigari, Adenike Mary Olowolagba, Peter Agyemang, Yang Zhang, Yan Zhang, Athar Ata, Ishana Kathuria, Rudy L Luck, Thomas Werner, Haiying Liu

A near-infrared fluorescent probe, A, was designed by substituting the carbonyl group of the coumarin dye's lactone with a 4-cyano-1-methylpyridinium methylene group and then attaching an electron-withdrawing NADH-sensing methylquinolinium acceptor via a vinyl bond linkage to the coumarin dye at the 4-position. The probe exhibits primary absorption maxima at 603, 428, and 361 nm, and fluoresces weakly at 703 nm. The addition of NAD(P)H results in a significant blue shift in the fluorescence peak from 703 to 670 nm, accompanied by a substantial increase in fluorescence intensity. This spectral shift is attributed to the transformation from an A-π-A-π-D configuration to a D-π-A-π-D pyridinium platform in probe AH, owing to the addition of a hydride from NADH to the electron-accepting quinolinium acceptor producing the electron-contributing 1-methyl-1,4-dihydroquinoline donor in probe AH. This conclusion is supported by theoretical calculations. The probe was utilized to investigate NAD(P)H dynamics under various conditions. In HeLa cells, treatment with glucose or maltose resulted in a substantial elevation in near-infrared emission intensity, suggesting increased NAD(P)H levels. Chemotherapeutic agents including cisplatin and fludarabine at concentrations of 5, 10, and 20 μM brought about a dose-dependent increase in emission intensity, reflecting heightened NAD(P)H levels due to drug-induced stress and cellular damage. In vivo experiments with hatched, starved Drosophila melanogaster larvae were also conducted. The results showed a clear relationship between emission intensity and the levels of NADH, glucose, and oxaliplatin, confirming that the probe can detect variations in NAD(P)H levels in a living organism. Our investigation also demonstrates that NAD(P)H levels are significantly elevated in the cystic kidneys of ADPKD mouse models and human patients, indicating substantial metabolic alterations associated with the disease. This near-infrared emissive probe offers a highly sensitive and specific method for monitoring NAD(P)H levels across cellular, tissue and whole-organism systems. The ability to detect NAD(P)H variations in reaction to varying stimuli, including nutrient availability and chemotherapeutic stress, underscores its potential as a valuable resource for biomedical research and therapeutic monitoring.

通过用 4-氰基-1-甲基吡啶亚甲基取代香豆素染料内酯的羰基,然后在香豆素染料的 4-位通过乙烯基键连接上一个可吸收电子的 NADH 传感甲基喹啉受体,设计出了一种近红外荧光探针 A。探针在 603、428 和 361 纳米波长处显示出主吸收最大值,在 703 纳米波长处发出微弱的荧光。加入 NAD(P)H 后,荧光峰从 703 纳米明显蓝移到 670 纳米,同时荧光强度大幅增加。这种光谱移动归因于探针 AH 中的 A-π-A-π-D 构型转变为 D-π-A-π-D 吡啶鎓平台,原因是 NADH 向探针 AH 中产生电子贡献的 1-甲基-1,4-二氢喹啉供体的电子接受喹啉受体添加了氢化物。这一结论得到了理论计算的支持。探针被用来研究 NAD(P)H 在不同条件下的动态变化。在 HeLa 细胞中,用葡萄糖或麦芽糖处理会导致近红外发射强度大幅提高,这表明 NAD(P)H 的水平增加了。浓度为 5、10 和 20 μM 的顺铂和氟达拉滨等化疗药物会导致发射强度的剂量依赖性增加,这反映出药物引起的应激和细胞损伤导致 NAD(P)H 水平升高。此外,还对孵化的饥饿果蝇幼虫进行了体内实验。结果表明,发射强度与 NADH、葡萄糖和奥沙利铂的水平之间存在明显的关系,证实该探针可以检测活体中 NAD(P)H 水平的变化。我们的研究还表明,在 ADPKD 小鼠模型和人类患者的囊性肾脏中,NAD(P)H 水平显著升高,这表明与该疾病相关的新陈代谢发生了重大改变。这种近红外发射探针为监测细胞、组织和整个机体系统中的 NAD(P)H 水平提供了一种高灵敏度和特异性的方法。该探针能够检测 NAD(P)H 在不同刺激下的变化,包括营养供应和化疗压力,这凸显了它作为生物医学研究和治疗监测宝贵资源的潜力。
{"title":"Near-Infrared Visualization of NAD(P)H Dynamics in Live Cells and <i>Drosophila melanogaster</i> Larvae Using a Coumarin-Based Pyridinium Fluorescent Probe.","authors":"Sophia Jaeger, Henry Lanquaye, Sushil K Dwivedi, Dilka Liyana Arachchige, James Xia, May Waters, Bella Lyn Bigari, Adenike Mary Olowolagba, Peter Agyemang, Yang Zhang, Yan Zhang, Athar Ata, Ishana Kathuria, Rudy L Luck, Thomas Werner, Haiying Liu","doi":"10.1021/acsabm.4c01294","DOIUrl":"10.1021/acsabm.4c01294","url":null,"abstract":"<p><p>A near-infrared fluorescent probe, <b>A</b>, was designed by substituting the carbonyl group of the coumarin dye's lactone with a 4-cyano-1-methylpyridinium methylene group and then attaching an electron-withdrawing NADH-sensing methylquinolinium acceptor via a vinyl bond linkage to the coumarin dye at the 4-position. The probe exhibits primary absorption maxima at 603, 428, and 361 nm, and fluoresces weakly at 703 nm. The addition of NAD(P)H results in a significant blue shift in the fluorescence peak from 703 to 670 nm, accompanied by a substantial increase in fluorescence intensity. This spectral shift is attributed to the transformation from an A-π-A-π-D configuration to a D-π-A-π-D pyridinium platform in probe <b>AH</b>, owing to the addition of a hydride from NADH to the electron-accepting quinolinium acceptor producing the electron-contributing 1-methyl-1,4-dihydroquinoline donor in probe <b>AH</b>. This conclusion is supported by theoretical calculations. The probe was utilized to investigate NAD(P)H dynamics under various conditions. In HeLa cells, treatment with glucose or maltose resulted in a substantial elevation in near-infrared emission intensity, suggesting increased NAD(P)H levels. Chemotherapeutic agents including cisplatin and fludarabine at concentrations of 5, 10, and 20 μM brought about a dose-dependent increase in emission intensity, reflecting heightened NAD(P)H levels due to drug-induced stress and cellular damage. In vivo experiments with hatched, starved <i>Drosophila melanogaster</i> larvae were also conducted. The results showed a clear relationship between emission intensity and the levels of NADH, glucose, and oxaliplatin, confirming that the probe can detect variations in NAD(P)H levels in a living organism. Our investigation also demonstrates that NAD(P)H levels are significantly elevated in the cystic kidneys of ADPKD mouse models and human patients, indicating substantial metabolic alterations associated with the disease. This near-infrared emissive probe offers a highly sensitive and specific method for monitoring NAD(P)H levels across cellular, tissue and whole-organism systems. The ability to detect NAD(P)H variations in reaction to varying stimuli, including nutrient availability and chemotherapeutic stress, underscores its potential as a valuable resource for biomedical research and therapeutic monitoring.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8465-8478"},"PeriodicalIF":4.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Microengineering of Epithelial Barriers for Biomedical and Pharmaceutical Research. 上皮屏障微工程用于生物医学和制药研究综述。
IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-12-16 Epub Date: 2024-11-20 DOI: 10.1021/acsabm.4c00813
Ruchira Chakraborty, Pragyan Ray, Swagatika Barik, Oindrila Banik, Chinmaya Mahapatra, Earu Banoth, Prasoon Kumar

Epithelial tissue forms a barrier around the human body and visceral organs, providing protection, permeation, sensation, and secretion. It is vital for our sustenance as it protects the tissue from harm and injury by restricting the entry of foreign bodies inside. Furthermore, it is a strong barrier to drugs, nutrients, and other essential deliverables. This layer also houses a large consortium of microbes, which thrive in tandem with human tissue, providing several health benefits. Moreover, the complex interplay of the microbiome with the barrier tissue is poorly understood. Therefore, replicating these barrier tissues on microdevices to generate physiological and pathophysiological models has been a huge interest for researchers over the last few decades. The artificially engineered reconstruction of these epithelial cellular barriers on microdevices could help underpin the host-microbe interaction, generating a physiological understanding of the tissue, tissue remodeling, receptor-based selective diffusion, drug testing, and others. In addition, these devices could reduce the burden of animal sacrifices for similar research and minimize the failure rate in drug discovery due to the use of primary human cells and others. This review discusses the nature of the epithelial barrier at different tissue sites, the recent developments in creating engineered barrier models, and their applications in pathophysiology, host-microbe interactions, drug discovery, and cytotoxicity. The review aims to provide know-how and knowledge behind engineered epithelial barrier tissue to bioengineers, biotechnologists, and scientists in allied fields.

上皮组织在人体和内脏器官周围形成一道屏障,提供保护、渗透、感觉和分泌。它对我们的生存至关重要,因为它通过限制异物进入内部来保护组织免受伤害和损伤。此外,它还是药物、营养物质和其他必需品的坚固屏障。这一层还容纳了大量微生物,它们与人体组织共同繁衍,为健康带来多种益处。此外,人们对微生物群与屏障组织之间复杂的相互作用知之甚少。因此,在微型装置上复制这些屏障组织以生成生理和病理生理学模型,在过去几十年里一直是研究人员的巨大兴趣所在。在微装置上以人工工程方式重建这些上皮细胞屏障有助于巩固宿主与微生物之间的相互作用,产生对组织、组织重塑、基于受体的选择性扩散、药物测试等方面的生理学理解。此外,这些设备还能减少类似研究中牺牲动物的负担,并最大限度地降低药物发现过程中因使用原代人类细胞和其他细胞而导致的失败率。本综述讨论了不同组织部位上皮屏障的性质、创建工程屏障模型的最新进展及其在病理生理学、宿主与微生物相互作用、药物发现和细胞毒性方面的应用。这篇综述旨在为生物工程师、生物技术专家和相关领域的科学家提供工程上皮屏障组织背后的诀窍和知识。
{"title":"A Review on Microengineering of Epithelial Barriers for Biomedical and Pharmaceutical Research.","authors":"Ruchira Chakraborty, Pragyan Ray, Swagatika Barik, Oindrila Banik, Chinmaya Mahapatra, Earu Banoth, Prasoon Kumar","doi":"10.1021/acsabm.4c00813","DOIUrl":"10.1021/acsabm.4c00813","url":null,"abstract":"<p><p>Epithelial tissue forms a barrier around the human body and visceral organs, providing protection, permeation, sensation, and secretion. It is vital for our sustenance as it protects the tissue from harm and injury by restricting the entry of foreign bodies inside. Furthermore, it is a strong barrier to drugs, nutrients, and other essential deliverables. This layer also houses a large consortium of microbes, which thrive in tandem with human tissue, providing several health benefits. Moreover, the complex interplay of the microbiome with the barrier tissue is poorly understood. Therefore, replicating these barrier tissues on microdevices to generate physiological and pathophysiological models has been a huge interest for researchers over the last few decades. The artificially engineered reconstruction of these epithelial cellular barriers on microdevices could help underpin the host-microbe interaction, generating a physiological understanding of the tissue, tissue remodeling, receptor-based selective diffusion, drug testing, and others. In addition, these devices could reduce the burden of animal sacrifices for similar research and minimize the failure rate in drug discovery due to the use of primary human cells and others. This review discusses the nature of the epithelial barrier at different tissue sites, the recent developments in creating engineered barrier models, and their applications in pathophysiology, host-microbe interactions, drug discovery, and cytotoxicity. The review aims to provide know-how and knowledge behind engineered epithelial barrier tissue to bioengineers, biotechnologists, and scientists in allied fields.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8107-8125"},"PeriodicalIF":4.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Water-Based Alcoholized Poly(butylene succinate-co-adipate) Submicron Particles as Green Coating Agents for Sustainable Paper Packaging. 制备水基醇化聚(丁二酸丁二醇酯-共己二酸丁二醇酯)亚微米颗粒,作为可持续纸包装的绿色涂层剂。
IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-12-16 Epub Date: 2024-11-25 DOI: 10.1021/acsabm.4c01125
Zaw Winn Kyaw, Pakorn Opaprakasit, Duangporn Polpanich, Paiboon Sreearunothai, Abdelhamid Elaissari, Chariya Kaewsaneha

This work aims to fabricate the water-based suspension of poly(butylene succinate-co-adipate) (PBSA) particles by an oil-in-water emulsion technique for use as coating agents to enhance paper-based packaging performances and sustainability. A commercial PBSA resin is functionalized by sizing down an approach via microwave-assisted alcoholysis using propylene glycol (PG). The effect of PBSA/PG feed ratio on the structures, properties, and particle formability of the alcoholized (aPBSA) products is examined. 1H NMR results reveal that the average molecular weight of the aPBSA product decreases to half that of neat PBSA when using a ratio of 24:1 and further decreases to a quarter at 6:1. By using small-size aPBSA, the obtained water-based particles show high stability due to high hydroxyl content and poly(vinyl alcohol) assistance. The suspension is then sprayed on a kraft paper substrate and heated at 60 and 100 °C. SEM results reveal that the submicron aPBSA particles penetrate the paper matrix, filling the paper's pores and forming a protective, smooth layer on the paper surfaces. The coated paper shows high water resistance (Cobb60 value of 19.6 g/m2) and water vapor transmission rate (1160 g/(m2 day)). In addition, the aPBSA-coated layers do not impede the paper's repulping and recycling processes, making it a promising solution for improving the sustainability of paper-based packaging.

本研究旨在通过水包油型乳液技术制备聚丁二酸丁二醇酯(PBSA)颗粒的水基悬浮液,并将其用作涂层剂,以提高纸质包装的性能和可持续性。通过使用丙二醇(PG)进行微波辅助醇解的方法,对商用 PBSA 树脂进行了功能化。研究了 PBSA/PG 进料比对醇化(aPBSA)产品的结构、性能和颗粒成型性的影响。1H NMR 结果显示,当 PBSA/PG 的进料比为 24:1 时,aPBSA 产物的平均分子量降至纯 PBSA 的一半,而当 PBSA/PG 的进料比为 6:1 时,aPBSA 产物的平均分子量进一步降至纯 PBSA 的四分之一。通过使用小尺寸的 aPBSA,所获得的水基颗粒因羟基含量高和聚乙烯醇的辅助作用而表现出很高的稳定性。然后将悬浮液喷洒在牛皮纸基底上,并在 60 和 100 °C 温度下加热。扫描电子显微镜结果显示,亚微米级的 aPBSA 粒子可渗透纸张基质,填充纸张孔隙,并在纸张表面形成一层光滑的保护层。涂布纸具有很高的耐水性(Cobb60 值为 19.6 克/平方米)和水蒸气透过率(1160 克/(平方米-天))。此外,aPBSA 涂层不会妨碍纸张的再制浆和回收过程,使其成为提高纸质包装可持续发展能力的一种有前途的解决方案。
{"title":"Fabrication of Water-Based Alcoholized Poly(butylene succinate-<i>co</i>-adipate) Submicron Particles as Green Coating Agents for Sustainable Paper Packaging.","authors":"Zaw Winn Kyaw, Pakorn Opaprakasit, Duangporn Polpanich, Paiboon Sreearunothai, Abdelhamid Elaissari, Chariya Kaewsaneha","doi":"10.1021/acsabm.4c01125","DOIUrl":"10.1021/acsabm.4c01125","url":null,"abstract":"<p><p>This work aims to fabricate the water-based suspension of poly(butylene succinate-<i>co</i>-adipate) (PBSA) particles by an oil-in-water emulsion technique for use as coating agents to enhance paper-based packaging performances and sustainability. A commercial PBSA resin is functionalized by sizing down an approach via microwave-assisted alcoholysis using propylene glycol (PG). The effect of PBSA/PG feed ratio on the structures, properties, and particle formability of the alcoholized (aPBSA) products is examined. <sup>1</sup>H NMR results reveal that the average molecular weight of the aPBSA product decreases to half that of neat PBSA when using a ratio of 24:1 and further decreases to a quarter at 6:1. By using small-size aPBSA, the obtained water-based particles show high stability due to high hydroxyl content and poly(vinyl alcohol) assistance. The suspension is then sprayed on a kraft paper substrate and heated at 60 and 100 °C. SEM results reveal that the submicron aPBSA particles penetrate the paper matrix, filling the paper's pores and forming a protective, smooth layer on the paper surfaces. The coated paper shows high water resistance (Cobb<sub>60</sub> value of 19.6 g/m<sup>2</sup>) and water vapor transmission rate (1160 g/(m<sup>2</sup> day)). In addition, the aPBSA-coated layers do not impede the paper's repulping and recycling processes, making it a promising solution for improving the sustainability of paper-based packaging.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8328-8340"},"PeriodicalIF":4.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Time-Programming Circuit for Encoding Information, Programming Dissipative Systems, and Delaying Release of Cargo.
IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-12-16 Epub Date: 2024-12-04 DOI: 10.1021/acsabm.4c01366
Luojia Wang, Zhongzhong Wang, Wang Luo, Heping Zhao, Guoming Xie

Living systems have some of the most sophisticated reaction circuits in the world, realizing many incredibly complex functions through a variety of simple molecular reactions, in which the most notable feature that distinguishes them from artificial molecular reaction networks is the precise control of reaction times and programmable expression. Here, we exploit the hydrolysis-directed nature of λ exonuclease and the programmed responses of the dynamic nanotechnology of nucleic acids to construct a simple, complete, and powerful set of temporally programmed circuits. This system can arbitrarily regulate the degradation rate of the blocker, thereby delaying the nucleic acid chain substitution reaction with less signal leakage. In addition, the powerful dynamic reaction network of nucleic acids enabled us to control the programmed execution of a wide range of reactions in different fields. We have developed a simple strategy to introduce precise control of the time dimension into nucleic acid reaction circuits, which greatly enriches the functionality and applicability of the reaction programs, which can be easily used as timers, compilers, converters, etc. The simplicity, precision, stability, and versatility of such dynamic temporal programming circuits greatly expand the potential of artificial molecular reaction networks for more complex practical applications in biochemistry and molecular biology.

{"title":"Dynamic Time-Programming Circuit for Encoding Information, Programming Dissipative Systems, and Delaying Release of Cargo.","authors":"Luojia Wang, Zhongzhong Wang, Wang Luo, Heping Zhao, Guoming Xie","doi":"10.1021/acsabm.4c01366","DOIUrl":"10.1021/acsabm.4c01366","url":null,"abstract":"<p><p>Living systems have some of the most sophisticated reaction circuits in the world, realizing many incredibly complex functions through a variety of simple molecular reactions, in which the most notable feature that distinguishes them from artificial molecular reaction networks is the precise control of reaction times and programmable expression. Here, we exploit the hydrolysis-directed nature of λ exonuclease and the programmed responses of the dynamic nanotechnology of nucleic acids to construct a simple, complete, and powerful set of temporally programmed circuits. This system can arbitrarily regulate the degradation rate of the blocker, thereby delaying the nucleic acid chain substitution reaction with less signal leakage. In addition, the powerful dynamic reaction network of nucleic acids enabled us to control the programmed execution of a wide range of reactions in different fields. We have developed a simple strategy to introduce precise control of the time dimension into nucleic acid reaction circuits, which greatly enriches the functionality and applicability of the reaction programs, which can be easily used as timers, compilers, converters, etc. The simplicity, precision, stability, and versatility of such dynamic temporal programming circuits greatly expand the potential of artificial molecular reaction networks for more complex practical applications in biochemistry and molecular biology.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8599-8607"},"PeriodicalIF":4.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Evaluation of Antimicrobial Potency Through Bacterial Collective Motion Analysis.
IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-12-13 DOI: 10.1021/acsabm.4c01442
Yuqian Sang, Ziyang Zhang, Qian Ren, Junlun Zhu, Yan He

The growing threat of bacterial resistance is a critical global health concern, necessitating the development of more efficient methods for evaluating antimicrobial efficacy. Here, we introduce a technique based on the sensitivity of bacterial collective motion to environmental changes, using motion trajectory analysis for swift antibiotic susceptibility appraisal within a simple spread-out of bacterial droplet. By single cell tracking in bacterial fluids near the droplet edge or boundary-detection of the colony expansion, we achieved rapid evaluation of antibiotic efficacy in under 60 min. This method is not only faster than traditional assays but also provides insights into drug-bacterial interactions, offering a powerful tool for advancing both diagnostic testing and the development of antimicrobial agents.

{"title":"Rapid Evaluation of Antimicrobial Potency Through Bacterial Collective Motion Analysis.","authors":"Yuqian Sang, Ziyang Zhang, Qian Ren, Junlun Zhu, Yan He","doi":"10.1021/acsabm.4c01442","DOIUrl":"https://doi.org/10.1021/acsabm.4c01442","url":null,"abstract":"<p><p>The growing threat of bacterial resistance is a critical global health concern, necessitating the development of more efficient methods for evaluating antimicrobial efficacy. Here, we introduce a technique based on the sensitivity of bacterial collective motion to environmental changes, using motion trajectory analysis for swift antibiotic susceptibility appraisal within a simple spread-out of bacterial droplet. By single cell tracking in bacterial fluids near the droplet edge or boundary-detection of the colony expansion, we achieved rapid evaluation of antibiotic efficacy in under 60 min. This method is not only faster than traditional assays but also provides insights into drug-bacterial interactions, offering a powerful tool for advancing both diagnostic testing and the development of antimicrobial agents.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Antibacterial Activity Evaluation of Daphnetin-Loaded Poloxamers/Polyvinylpyrrolidone Thermosensitive Hydrogels.
IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-12-12 DOI: 10.1021/acsabm.4c01348
Junhong Fan, Fengli An, Shaohua Li, Yuqin Guo, Haolan Zhang, Yaxin Zhang, Yujie Cao, Lan Yu

Antibiotic misuse and bacterial resistance are pressing issues threatening public health. Natural plant extracts with bactericidal properties offer potential alternatives to reduce or replace antibiotic use. This study aims to develop a thermosensitive hydrogel containing daphnetin (DAP-TG) using poloxamers 407 (P407), polyvinylpyrrolidone (PVP), and poloxamers 188 (P188). We systematically evaluated the gel's antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), as well as its antibacterial mechanisms. By examining the gelation temperature and time, degradation time, and in vitro release performance of DAP-TG, we produced a sustained-release DAP-TG with a rapid phase transition at (31.6 ± 0.1) °C. Its structure was characterized through Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The results indicated that the DAP thermosensitive hydrogel was formed and presented a 3D network spatial structure. The biocompatibility of DAP-TG was explored through the hemolysis test and cytotoxicity test. The results indicated that DAP-TG possessed excellent biocompatibility. The antibacterial efficacy of DAP-TG against E. coli and S. aureus was assessed using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), growth curve, and inhibition zone tests. Results showed that DAP-TG exhibited excellent antibacterial activity against both E. coli and S. aureus, with MIC values of 1.28 and 0.32 mg/mL. The antibacterial mechanism of DAP-TG was preliminarily explored through the investigation of bacterial cell content leakage, AKP leakage, membrane permeability, SEM, ROS production, and biofilm inhibition activity. DAP-TG induced irreversible damage to the cell membranes of E. coli and S. aureus, resulting in enhanced permeability, elevated ROS levels, and inhibited biofilm formation. Our study indicates that DAP-TG exhibits effective sustained-release and antibacterial properties against E. coli and S. aureus in vitro, making it a promising candidate for antibacterial applications in food and pharmaceutical products.

{"title":"Preparation and Antibacterial Activity Evaluation of Daphnetin-Loaded Poloxamers/Polyvinylpyrrolidone Thermosensitive Hydrogels.","authors":"Junhong Fan, Fengli An, Shaohua Li, Yuqin Guo, Haolan Zhang, Yaxin Zhang, Yujie Cao, Lan Yu","doi":"10.1021/acsabm.4c01348","DOIUrl":"https://doi.org/10.1021/acsabm.4c01348","url":null,"abstract":"<p><p>Antibiotic misuse and bacterial resistance are pressing issues threatening public health. Natural plant extracts with bactericidal properties offer potential alternatives to reduce or replace antibiotic use. This study aims to develop a thermosensitive hydrogel containing daphnetin (DAP-TG) using poloxamers 407 (P407), polyvinylpyrrolidone (PVP), and poloxamers 188 (P188). We systematically evaluated the gel's antibacterial activity against <i><i>Escherichia coli</i></i> (<i>E. coli</i>) and <i>Staphylococcus aureus</i> (<i>S. aureus</i>), as well as its antibacterial mechanisms. By examining the gelation temperature and time, degradation time, and in vitro release performance of DAP-TG, we produced a sustained-release DAP-TG with a rapid phase transition at (31.6 ± 0.1) °C. Its structure was characterized through Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The results indicated that the DAP thermosensitive hydrogel was formed and presented a 3D network spatial structure. The biocompatibility of DAP-TG was explored through the hemolysis test and cytotoxicity test. The results indicated that DAP-TG possessed excellent biocompatibility. The antibacterial efficacy of DAP-TG against <i>E. coli</i> and <i>S. aureus</i> was assessed using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), growth curve, and inhibition zone tests. Results showed that DAP-TG exhibited excellent antibacterial activity against both <i>E. coli</i> and <i>S. aureus</i>, with MIC values of 1.28 and 0.32 mg/mL. The antibacterial mechanism of DAP-TG was preliminarily explored through the investigation of bacterial cell content leakage, AKP leakage, membrane permeability, SEM, ROS production, and biofilm inhibition activity. DAP-TG induced irreversible damage to the cell membranes of <i>E. coli</i> and <i>S. aureus</i>, resulting in enhanced permeability, elevated ROS levels, and inhibited biofilm formation. Our study indicates that DAP-TG exhibits effective sustained-release and antibacterial properties against <i>E. coli</i> and <i>S. aureus</i> in vitro, making it a promising candidate for antibacterial applications in food and pharmaceutical products.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Plasmonic Gold- and Silver-Assisted Raman Spectra for Advanced SARS-CoV-2 Detection.
IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-12-12 DOI: 10.1021/acsabm.4c01457
Nguyễn Hoàng Ly, Jaebum Choo, Lalitha Gnanasekaran, Tejraj Malleshappa Aminabhavi, Yasser Vasseghian, Sang-Woo Joo

COVID-19 has become one of the deadliest epidemics in the past years. In efforts to combat the deadly disease besides vaccines, drug therapies, and facemasks, significant focus has been on designing specific methods for the sensitive and accurate detection of SARS-CoV-2. Of these, surface-enhanced Raman scattering (SERS) is an attractive analytical tool for the identification of SARS-CoV-2. SERS is the phenomenon of enhancement of Raman intensity signals from molecular analytes anchored onto the surfaces of roughened plasmonic nanomaterials. This work gives an updated summary of plasmonic gold nanomaterials (AuNMs) and silver nanomaterials (AgNMs)-based SERS technologies to identify SARS-CoV-2. Due to extreme "hot spots" promoting higher electromagnetic fields on their surfaces, different shapes of AuNMs and AgNMs combined with Raman probes have been reviewed for enhancing Raman signals of probe molecules for quantifying the virus. It also reviews progress made recently in the design of certain specific Raman probe molecules capable of imparting characteristic SERS response/tags for SARS-CoV-2 detection.

{"title":"Recent Plasmonic Gold- and Silver-Assisted Raman Spectra for Advanced SARS-CoV-2 Detection.","authors":"Nguyễn Hoàng Ly, Jaebum Choo, Lalitha Gnanasekaran, Tejraj Malleshappa Aminabhavi, Yasser Vasseghian, Sang-Woo Joo","doi":"10.1021/acsabm.4c01457","DOIUrl":"https://doi.org/10.1021/acsabm.4c01457","url":null,"abstract":"<p><p>COVID-19 has become one of the deadliest epidemics in the past years. In efforts to combat the deadly disease besides vaccines, drug therapies, and facemasks, significant focus has been on designing specific methods for the sensitive and accurate detection of SARS-CoV-2. Of these, surface-enhanced Raman scattering (SERS) is an attractive analytical tool for the identification of SARS-CoV-2. SERS is the phenomenon of enhancement of Raman intensity signals from molecular analytes anchored onto the surfaces of roughened plasmonic nanomaterials. This work gives an updated summary of plasmonic gold nanomaterials (AuNMs) and silver nanomaterials (AgNMs)-based SERS technologies to identify SARS-CoV-2. Due to extreme \"hot spots\" promoting higher electromagnetic fields on their surfaces, different shapes of AuNMs and AgNMs combined with Raman probes have been reviewed for enhancing Raman signals of probe molecules for quantifying the virus. It also reviews progress made recently in the design of certain specific Raman probe molecules capable of imparting characteristic SERS response/tags for SARS-CoV-2 detection.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitive Detection of Hg2+ and l-Cysteine through Optical Asymmetry-Tuned Fluorescence Switch Off-On Behavior in N-Doped Chiral Carbon Dot.
IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-12-12 DOI: 10.1021/acsabm.4c01416
Angana Bhattacharya, Dipanjan Samanta, Manisha Shaw, Md Abdus Salam Shaik, Rajarshi Basu, Imran Mondal, Amita Pathak

Blue-emissive nitrogen-doped chiral carbon dots (d-NCD230 and l-NCD230) exhibiting antipodal chiroptical activity, synthesized from the thermal pyrolysis of citric acid and d/l-aspartic acid in 1:2 molar ratios, have been explored as chirality-based fluorescent turn-off/on probes for the detection of Hg2+ and l-cysteine (l-Cys). Circular dichroism (CD) spectroscopy revealed that the chiroptical activity originates from a synergy among intrinsic chirality, chiral precursors on the NCD surface, and hybridization of lower energy levels within the embedded chiral chromophore. Quantitative analysis of optical asymmetry using the Kuhn asymmetry factor (g) at the CD signal of 312 nm showed a higher value for d-NCD230 (1.03 × 10-4) compared to l-NCD230 (1.13 × 10-5). Moreover, we have demonstrated chirality transfer and chiral inversion phenomena in d/l-NCDs by preparing carbon dots with different precursor ratios at different temperatures and probing them through CD spectroscopy. The NCDs exhibited selective fluorescence quenching in the presence of Hg2+, demonstrating linearity in the Stern-Volmer plot. Limits of detection (LODs) for Hg2+ were calculated to be 129 and 192 nM for d-NCD230 and l-NCD230, respectively, in the 0-150 μM concentration range. The quenching mechanism involves nonradiative electron transfer due to Hg2+ binding to oxygen-rich functional groups on the d/l-NCD230 surface. The slight variation in LOD values between d-NCD230 and l-NCD230 indicates the negligible effect of the chirality on Hg2+ sensing. Notably, the fluorescence intensity of d/l-NCD230 could be restored upon adding l-cysteine, with d-NCD230 showing a more pronounced enhancement than l-NCD230. This differential response is attributed to a preferential stereoselective interaction arising from the homochirality of d-NCD230/Hg2+ and l-cysteine. These findings demonstrate the potential of chiral nitrogen-doped carbon dots as sensitive and selective probes for Hg2+ and l-cysteine, with implications for environmental monitoring and biological sensing applications.

{"title":"Sensitive Detection of Hg<sup>2+</sup> and l-Cysteine through Optical Asymmetry-Tuned Fluorescence Switch Off-On Behavior in N-Doped Chiral Carbon Dot.","authors":"Angana Bhattacharya, Dipanjan Samanta, Manisha Shaw, Md Abdus Salam Shaik, Rajarshi Basu, Imran Mondal, Amita Pathak","doi":"10.1021/acsabm.4c01416","DOIUrl":"https://doi.org/10.1021/acsabm.4c01416","url":null,"abstract":"<p><p>Blue-emissive nitrogen-doped chiral carbon dots (d-NCD230 and l-NCD230) exhibiting antipodal chiroptical activity, synthesized from the thermal pyrolysis of citric acid and d/l-aspartic acid in 1:2 molar ratios, have been explored as chirality-based fluorescent turn-off/on probes for the detection of Hg<sup>2+</sup> and l-cysteine (l-Cys). Circular dichroism (CD) spectroscopy revealed that the chiroptical activity originates from a synergy among intrinsic chirality, chiral precursors on the NCD surface, and hybridization of lower energy levels within the embedded chiral chromophore. Quantitative analysis of optical asymmetry using the Kuhn asymmetry factor (<i>g</i>) at the CD signal of 312 nm showed a higher value for d-NCD230 (1.03 × 10<sup>-4</sup>) compared to l-NCD230 (1.13 × 10<sup>-5</sup>). Moreover, we have demonstrated chirality transfer and chiral inversion phenomena in d/l-NCDs by preparing carbon dots with different precursor ratios at different temperatures and probing them through CD spectroscopy. The NCDs exhibited selective fluorescence quenching in the presence of Hg<sup>2+</sup>, demonstrating linearity in the Stern-Volmer plot. Limits of detection (LODs) for Hg<sup>2+</sup> were calculated to be 129 and 192 nM for d-NCD230 and l-NCD230, respectively, in the 0-150 μM concentration range. The quenching mechanism involves nonradiative electron transfer due to Hg<sup>2+</sup> binding to oxygen-rich functional groups on the d/l-NCD230 surface. The slight variation in LOD values between d-NCD230 and l-NCD230 indicates the negligible effect of the chirality on Hg<sup>2+</sup> sensing. Notably, the fluorescence intensity of d/l-NCD230 could be restored upon adding l-cysteine, with d-NCD230 showing a more pronounced enhancement than l-NCD230. This differential response is attributed to a preferential stereoselective interaction arising from the homochirality of d-NCD230/Hg<sup>2+</sup> and l-cysteine. These findings demonstrate the potential of chiral nitrogen-doped carbon dots as sensitive and selective probes for Hg<sup>2+</sup> and l-cysteine, with implications for environmental monitoring and biological sensing applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Performance of Microbial Fuel Cell by Binder-Free Modification of Anode with Reduced Graphene Oxide through One-Step Electrochemical Exfoliation and In Situ Electrodeposition.
IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-12-12 DOI: 10.1021/acsabm.4c01502
Longxin Li, Xinyuan He, Huahua Li, Yi Lu, Hao Song, Shaoan Cheng

As the core component of microbial fuel cells, the conductivity and biocompatibility of anode are hard to achieve simultaneously but significantly influence the power generation performance and the overall cost of microbial fuel cells. Stainless steel felt has a low price and high conductivity, making it a potential anode for the large-scale application of microbial fuel cells. However, its poor biocompatibility limits its application. This study provides a one-step binder-free modification method of a stainless steel felt anode with reduced graphene oxide to retain the high conductivity while greatly improving biocompatibility. The maximum power density achieved by reduced graphene oxide modified stainless steel felt was 951.89 mW/m2, 5.49 and 1.91 times higher than the unmodified stainless steel felt anode and reduced graphene oxide coated stainless steel felt by Nafion, respectively. The robust reduced graphene oxide modification markedly improved the biocompatibility by forming a uniform biofilm and utilizing the high conductivity of reduced graphene oxide to enhance the charge transfer rate. It led to 92.7 and 37.9% decreases in charge transfer resistance of reduced graphene oxide modified stainless steel felt compared to the unmodified one and the anode modified with reduced graphene oxide by Nafion, respectively. The excellent performance and green synthesis method of the anode validated its potential as a high-performance anode material for scaled-up microbial fuel cell applications.

{"title":"Enhancing Performance of Microbial Fuel Cell by Binder-Free Modification of Anode with Reduced Graphene Oxide through One-Step Electrochemical Exfoliation and In Situ Electrodeposition.","authors":"Longxin Li, Xinyuan He, Huahua Li, Yi Lu, Hao Song, Shaoan Cheng","doi":"10.1021/acsabm.4c01502","DOIUrl":"https://doi.org/10.1021/acsabm.4c01502","url":null,"abstract":"<p><p>As the core component of microbial fuel cells, the conductivity and biocompatibility of anode are hard to achieve simultaneously but significantly influence the power generation performance and the overall cost of microbial fuel cells. Stainless steel felt has a low price and high conductivity, making it a potential anode for the large-scale application of microbial fuel cells. However, its poor biocompatibility limits its application. This study provides a one-step binder-free modification method of a stainless steel felt anode with reduced graphene oxide to retain the high conductivity while greatly improving biocompatibility. The maximum power density achieved by reduced graphene oxide modified stainless steel felt was 951.89 mW/m<sup>2</sup>, 5.49 and 1.91 times higher than the unmodified stainless steel felt anode and reduced graphene oxide coated stainless steel felt by Nafion, respectively. The robust reduced graphene oxide modification markedly improved the biocompatibility by forming a uniform biofilm and utilizing the high conductivity of reduced graphene oxide to enhance the charge transfer rate. It led to 92.7 and 37.9% decreases in charge transfer resistance of reduced graphene oxide modified stainless steel felt compared to the unmodified one and the anode modified with reduced graphene oxide by Nafion, respectively. The excellent performance and green synthesis method of the anode validated its potential as a high-performance anode material for scaled-up microbial fuel cell applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Applied Bio Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1