Vehicles in construction industry are typically powered by diesel engines and are considered to be an off-road source of air pollution. Air pollutant emissions include nitrogen oxides (NOx), particulate matter (PM), hydrocarbons (HC), and carbon monoxide (CO). Any engine that combusts a nonrenewable carbonaceous fuel will have net emissions of carbon dioxide (CO2). Economic-Energy-Environmental (E3) model, a statistical-modeled tool, is developed by combining a multiple linear regression (MLR) approach for modeling equipment productivity with the emissions calculation algorithm from Environment Protection Agency (EPA)’s NONROAD model. This paper compares emissions data between the field data to E3 model outputs, and determines the similarity of the two sources of fuel use data. It is expected the two data are not narrowly similar since the field data are for individual vehicles, while E3 results are based on NONROAD model, which was intended to estimate average fuel use for a fleet of Heavy-Duty Diesel (HDD) equipment.
{"title":"PEMS-on board and E3 Modeling: A Comparison between Real-World Measurement and Emissions Estimates from Construction Equipment","authors":"A. Hajji, A. Larasati, M. P. Lewis, H. Yue","doi":"10.9744/ced.21.2.59-65","DOIUrl":"https://doi.org/10.9744/ced.21.2.59-65","url":null,"abstract":"Vehicles in construction industry are typically powered by diesel engines and are considered to be an off-road source of air pollution. Air pollutant emissions include nitrogen oxides (NOx), particulate matter (PM), hydrocarbons (HC), and carbon monoxide (CO). Any engine that combusts a nonrenewable carbonaceous fuel will have net emissions of carbon dioxide (CO2). Economic-Energy-Environmental (E3) model, a statistical-modeled tool, is developed by combining a multiple linear regression (MLR) approach for modeling equipment productivity with the emissions calculation algorithm from Environment Protection Agency (EPA)’s NONROAD model. This paper compares emissions data between the field data to E3 model outputs, and determines the similarity of the two sources of fuel use data. It is expected the two data are not narrowly similar since the field data are for individual vehicles, while E3 results are based on NONROAD model, which was intended to estimate average fuel use for a fleet of Heavy-Duty Diesel (HDD) equipment.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43306522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Amirsardari, M. Sofi, E. Lumantarna, I. Imran, C. Duffield
Indonesia is a high seismic region and one of the most vulnerable countries prone to experiencing damaging earthquakes. It is critical that lifeline infrastructure remain operational or is quickly remediated after an earthquake to minimise physical, social, and economical losses. Not much work has been carried out in understanding the effect of earthquakes on transportation infrastructure systems. This study aims to gain a better understanding of the impact of earthquakes on the transportation infrastructure in Indonesia. This is achieved by firstly reviewing the frameworks and tools for conducting seismic risk assessment of lifeline infrastructure. The critical components of the transportation system are then identified. Various forms of transportation infrastructure damage caused by earthquakes are discussed. An overview of the damaging earthquakes for the past 20 years is presented. Finally, conclusions and recommendations are provided about the future work required for conducting risk assessment of the transportation infrastructure in Indonesia
{"title":"Impact of Earthquakes on the Transportation Infrastructure of Indonesia: A Preliminary Study","authors":"A. Amirsardari, M. Sofi, E. Lumantarna, I. Imran, C. Duffield","doi":"10.9744/CED.21.1.19-28","DOIUrl":"https://doi.org/10.9744/CED.21.1.19-28","url":null,"abstract":"Indonesia is a high seismic region and one of the most vulnerable countries prone to experiencing damaging earthquakes. It is critical that lifeline infrastructure remain operational or is quickly remediated after an earthquake to minimise physical, social, and economical losses. Not much work has been carried out in understanding the effect of earthquakes on transportation infrastructure systems. This study aims to gain a better understanding of the impact of earthquakes on the transportation infrastructure in Indonesia. This is achieved by firstly reviewing the frameworks and tools for conducting seismic risk assessment of lifeline infrastructure. The critical components of the transportation system are then identified. Various forms of transportation infrastructure damage caused by earthquakes are discussed. An overview of the damaging earthquakes for the past 20 years is presented. Finally, conclusions and recommendations are provided about the future work required for conducting risk assessment of the transportation infrastructure in Indonesia","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42502524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Kusumastuti, H. Chandra, Kristanto Wibisono, Antonius Christoper Hartono
Sustainable urban drainage systems (SUDS) or eco-drainage system has been implemented in developed countries. The aims of the construction of the system are: to minimize surface runoff by capturing and temporarily retain it, to improve the quality of surface runoff, to infiltrate stormwater, to increase evapotranspiration, and to enhance landscape aesthetic value. Learning from the success of the implementation of SUDS in developed countries, the paper presents a model of eco-drainage system for residential area in Indonesia, which consists of rainwater harvesting system (RWHS) and retention ponds. A simulation of stormwater and surface runoff utilization is also presented. At 14,602.26 m2 bare land in Mojokerto Regency, East Java, which is transformed into residential area, the model of eco-drainage system could reduce surface runoff volume almost by 70%. It is recommended to adjust the dimension of rainwater storage tank and retention ponds in order to reduce more surface runoff volume.
{"title":"Eco Drainage System for Surface Runoff Reduction in Indonesia","authors":"C. Kusumastuti, H. Chandra, Kristanto Wibisono, Antonius Christoper Hartono","doi":"10.9744/CED.21.1.29-35","DOIUrl":"https://doi.org/10.9744/CED.21.1.29-35","url":null,"abstract":"Sustainable urban drainage systems (SUDS) or eco-drainage system has been implemented in developed countries. The aims of the construction of the system are: to minimize surface runoff by capturing and temporarily retain it, to improve the quality of surface runoff, to infiltrate stormwater, to increase evapotranspiration, and to enhance landscape aesthetic value. Learning from the success of the implementation of SUDS in developed countries, the paper presents a model of eco-drainage system for residential area in Indonesia, which consists of rainwater harvesting system (RWHS) and retention ponds. A simulation of stormwater and surface runoff utilization is also presented. At 14,602.26 m2 bare land in Mojokerto Regency, East Java, which is transformed into residential area, the model of eco-drainage system could reduce surface runoff volume almost by 70%. It is recommended to adjust the dimension of rainwater storage tank and retention ponds in order to reduce more surface runoff volume.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43007462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Research on the utilization of natural rubber for Hot Mixture Asphalt as modifier has been widely carried out, and more intensively since 2016 due to the declining global natural rubber price. Further research conducted is the utilization of pre-vulcanized concentrated rubber latex and rubber compound added with antioxidants and treated through vulcanization process. This study experimentally evaluates the performance of Asphalt Concrete Wearing Course (ACWC) using natural rubber and synthetic polymer as modifier, compared to ACWC without modifier (only petroleum asphalt). The results show that the rubberized asphalt has higher index penetration value as well as higher elasticity compared to petroleum asphalt penetration grade 60, but lower than synthetic polymer modified asphalt. Similarly, the level of performance of rubberized asphalt mixtures, particularly resilient modulus, water resistance, deformation, and fatigue cracking, is between that of petroleum asphalt and synthetic polymer modified asphalt
{"title":"Performance Evaluation of Hot Mixture Asphalt Using Concentrated Rubber Latex, Rubber Compound and Synthetic Polymer as Modifier","authors":"N. Suaryana, Tedi Santo Sofyan","doi":"10.9744/CED.21.1.36-42","DOIUrl":"https://doi.org/10.9744/CED.21.1.36-42","url":null,"abstract":"Research on the utilization of natural rubber for Hot Mixture Asphalt as modifier has been widely carried out, and more intensively since 2016 due to the declining global natural rubber price. Further research conducted is the utilization of pre-vulcanized concentrated rubber latex and rubber compound added with antioxidants and treated through vulcanization process. This study experimentally evaluates the performance of Asphalt Concrete Wearing Course (ACWC) using natural rubber and synthetic polymer as modifier, compared to ACWC without modifier (only petroleum asphalt). The results show that the rubberized asphalt has higher index penetration value as well as higher elasticity compared to petroleum asphalt penetration grade 60, but lower than synthetic polymer modified asphalt. Similarly, the level of performance of rubberized asphalt mixtures, particularly resilient modulus, water resistance, deformation, and fatigue cracking, is between that of petroleum asphalt and synthetic polymer modified asphalt","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44268271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introducing fibers into concrete aims to improve the low tensile strength of concrete and its brittle properties. In this research, readily available PVC coated welded wire mesh with diameter of 1 mm was used as fibers in concrete. There are several variations of concrete samples prepared for this study, i.e. based on the fiber’s volume fraction, length and interlocking schemes. Concrete samples were subjected to tensile and compressive strength, and elastic modulus tests. The results show that the incorporation of PVC coated welded wire mesh slightly increases the tensile strength of concrete, with the optimum fiber volume fraction of 1.5%; with the fiber length of 3.6 cm, and with the interlocking of 1.2 cm. However, the concrete compressive strength is slightly reduced, compared to the normal ones. The presence of PVC coated welded wire mesh as fiber also tends to reduce the elastic modulus of fiber reinforced concrete.
{"title":"Characteristics of PVC Coated Welded Wire Mesh Fiber Reinforced Concrete","authors":"Indradi Wijatmiko, A. Wibowo, C. Nainggolan","doi":"10.9744/CED.21.1.50-56","DOIUrl":"https://doi.org/10.9744/CED.21.1.50-56","url":null,"abstract":"Introducing fibers into concrete aims to improve the low tensile strength of concrete and its brittle properties. In this research, readily available PVC coated welded wire mesh with diameter of 1 mm was used as fibers in concrete. There are several variations of concrete samples prepared for this study, i.e. based on the fiber’s volume fraction, length and interlocking schemes. Concrete samples were subjected to tensile and compressive strength, and elastic modulus tests. The results show that the incorporation of PVC coated welded wire mesh slightly increases the tensile strength of concrete, with the optimum fiber volume fraction of 1.5%; with the fiber length of 3.6 cm, and with the interlocking of 1.2 cm. However, the concrete compressive strength is slightly reduced, compared to the normal ones. The presence of PVC coated welded wire mesh as fiber also tends to reduce the elastic modulus of fiber reinforced concrete.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43498304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modern seismic design and technologies have undergone tremendous developments. In modern design codes, building structures subjected to high earthquake loads are allowed to experience plastic deformations without collapsing, and the design is permitted up to the ultimate strength. According to comparative results in Japan, the number of humans injured due to earthquakes is higher than the number of deaths/missing. Likewise, the number of residential buildings that collapsed are less than the partially damaged buildings. This outcome implies that residential buildings designed based on the revised seismic standards have good earthquake resistances. It also infers that the human deaths/injury casualties were not a result of the collapsed the structure, but due to the strong vibrations originated from the earthquake, yielding in the collapse of non-structural elements such as ceilings and bookshelves. This paper presents a proposed design philosophy that attempts to implement the effect of earthquakes to non-fatal human casualties
{"title":"Proposed Design Philosophy for Seismic-Resistant Buildings","authors":"Nanang Gunawan, A. Han, B. Gan","doi":"10.9744/CED.21.1.1-5","DOIUrl":"https://doi.org/10.9744/CED.21.1.1-5","url":null,"abstract":"Modern seismic design and technologies have undergone tremendous developments. In modern design codes, building structures subjected to high earthquake loads are allowed to experience plastic deformations without collapsing, and the design is permitted up to the ultimate strength. According to comparative results in Japan, the number of humans injured due to earthquakes is higher than the number of deaths/missing. Likewise, the number of residential buildings that collapsed are less than the partially damaged buildings. This outcome implies that residential buildings designed based on the revised seismic standards have good earthquake resistances. It also infers that the human deaths/injury casualties were not a result of the collapsed the structure, but due to the strong vibrations originated from the earthquake, yielding in the collapse of non-structural elements such as ceilings and bookshelves. This paper presents a proposed design philosophy that attempts to implement the effect of earthquakes to non-fatal human casualties","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42942319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. S. Budi, Alvin Gilbert Tandiputra, Haven Kusuma Markho
One of the common methods used to install pile foundation is hydraulic jacked-in machine. In this method, a pile is pushed down into the ground up to the predetermined depth. The method has similar principle to that of Cone Penetration Test (CPT). This paper presents the correlation between the mobilize pressure required to install pile foundations and that required to push the bi-cones that attached at the tip of CPT rod. The results show that the penetration pressure required to install the pile into very soft clay layer is independent of pile diameter. The penetration pressure required to install the pile into soft to stiff clay layers depends on the pile diameter. The larger the diameter of piles, the smaller the penetration pressures required. The penetration pressure required to install the pile into stiff expansive clay layer beyond the depth of active zone can be predicted as high as the pressure calculated form CPT.
{"title":"The Correlation between Penetration Pressure Required to Install Pile Foundation and to Insert Bi-cones in Cone Penetration Test","authors":"G. S. Budi, Alvin Gilbert Tandiputra, Haven Kusuma Markho","doi":"10.9744/CED.21.1.13-18","DOIUrl":"https://doi.org/10.9744/CED.21.1.13-18","url":null,"abstract":"One of the common methods used to install pile foundation is hydraulic jacked-in machine. In this method, a pile is pushed down into the ground up to the predetermined depth. The method has similar principle to that of Cone Penetration Test (CPT). This paper presents the correlation between the mobilize pressure required to install pile foundations and that required to push the bi-cones that attached at the tip of CPT rod. The results show that the penetration pressure required to install the pile into very soft clay layer is independent of pile diameter. The penetration pressure required to install the pile into soft to stiff clay layers depends on the pile diameter. The larger the diameter of piles, the smaller the penetration pressures required. The penetration pressure required to install the pile into stiff expansive clay layer beyond the depth of active zone can be predicted as high as the pressure calculated form CPT.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46870052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A series of three reinforced concrete beams without shear reinforcement were tested to failure under a centre-span monotonic load, a centre-span pulsating load, and a stepwise-moving pulsating load. During each experiment, load-deflection response was continuously monitored and at several stages during the experiment, the load was briefly stopped for crack observations. In addition to this manual crack mapping, more detailed crack mappings were undertaken using the digital image correlation (DIC) technique, employing the open-source DIC software Ncorr. It was shown that while the three beams exhibited a similar mode of failure (i.e. shear), each beam displayed a rather distinctive overall behaviour, particularly with regard to the load-deflection response and the nature of crack initiation and propagation. Results from the DIC analysis are presented to provide direct evidence on the damage progression during the load cycles and discuss the reduced fatigue life exhibited by the beam subjected to stepwise-moving pulsating load
{"title":"Monitoring the Shear Fatigue Response of Reinforced Concrete Beams Subjected to Moving Loads using Digital Image Correlation","authors":"B. Suryanto, George Staniforth","doi":"10.9744/ced.21.1.6-12","DOIUrl":"https://doi.org/10.9744/ced.21.1.6-12","url":null,"abstract":"A series of three reinforced concrete beams without shear reinforcement were tested to failure under a centre-span monotonic load, a centre-span pulsating load, and a stepwise-moving pulsating load. During each experiment, load-deflection response was continuously monitored and at several stages during the experiment, the load was briefly stopped for crack observations. In addition to this manual crack mapping, more detailed crack mappings were undertaken using the digital image correlation (DIC) technique, employing the open-source DIC software Ncorr. It was shown that while the three beams exhibited a similar mode of failure (i.e. shear), each beam displayed a rather distinctive overall behaviour, particularly with regard to the load-deflection response and the nature of crack initiation and propagation. Results from the DIC analysis are presented to provide direct evidence on the damage progression during the load cycles and discuss the reduced fatigue life exhibited by the beam subjected to stepwise-moving pulsating load","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47856967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bad scheduling and resource management can cause delays or cost overruns. Optimization in solving resource leveling is necessary to avoid those problems. Several objective criteria are used to solve resource leveling. Each of them has the same objective, which is to reduce the fluctuation of resource demand of the project. This study compares the performance of particle swarm optimization (PSO) and symbiotic organisms search (SOS) in solving resource leveling problems using separate objective functions in order to find which one produces a better solution. The results show that SOS produced a better solution than PSO, and one objective function is better in solving resource leveling than the others.
{"title":"Optimization of resource leveling problem under multiple objective criteria using a symbiotic organisms search","authors":"D. Prayogo, Christianto Tirta Kusuma","doi":"10.9744/CED.21.1.43-49","DOIUrl":"https://doi.org/10.9744/CED.21.1.43-49","url":null,"abstract":"Bad scheduling and resource management can cause delays or cost overruns. Optimization in solving resource leveling is necessary to avoid those problems. Several objective criteria are used to solve resource leveling. Each of them has the same objective, which is to reduce the fluctuation of resource demand of the project. This study compares the performance of particle swarm optimization (PSO) and symbiotic organisms search (SOS) in solving resource leveling problems using separate objective functions in order to find which one produces a better solution. The results show that SOS produced a better solution than PSO, and one objective function is better in solving resource leveling than the others.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44037678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Pudjisuryadi, B. Lumantarna, Tjhai Ferlinda Hermawan, Teddy Tirta Gunawan
Buildings designed using older code should be checked against the higher demand required by newer code. In this study, performance of Building T of Petra Christian University, Surabaya, Indonesia, which was designed with older Indonesian Seismic Code (PPTGIUG 1983) is investigated. The effectiveness of VSL-Gensui Damper application is also investigated as an effort to enhance the performance of the building. Nonlinear time history analysis was conducted to analyze the building. Spectrum consistent ground acceleration generated from El Centro 18 May 1940 North-South component in accordance to current seismic code was used for analysis. The result shows that the existing building cannot resist the demand specified by current code (SNI 1726:2012) as some frame element failures are detected. The performance is greatly enhanced after installation of VSL-Gensui Dampers. Roof story drift and displacement decreased as much as 9% and 14%, respectively as compared to existing building, and structural element failures were no longer observed.
{"title":"Seismic Performance of Existing Building Retrofitted with VSL-Gensui Damper","authors":"P. Pudjisuryadi, B. Lumantarna, Tjhai Ferlinda Hermawan, Teddy Tirta Gunawan","doi":"10.9744/CED.20.2.86-90","DOIUrl":"https://doi.org/10.9744/CED.20.2.86-90","url":null,"abstract":"Buildings designed using older code should be checked against the higher demand required by newer code. In this study, performance of Building T of Petra Christian University, Surabaya, Indonesia, which was designed with older Indonesian Seismic Code (PPTGIUG 1983) is investigated. The effectiveness of VSL-Gensui Damper application is also investigated as an effort to enhance the performance of the building. Nonlinear time history analysis was conducted to analyze the building. Spectrum consistent ground acceleration generated from El Centro 18 May 1940 North-South component in accordance to current seismic code was used for analysis. The result shows that the existing building cannot resist the demand specified by current code (SNI 1726:2012) as some frame element failures are detected. The performance is greatly enhanced after installation of VSL-Gensui Dampers. Roof story drift and displacement decreased as much as 9% and 14%, respectively as compared to existing building, and structural element failures were no longer observed.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45257665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}