The threat posed by light pollution to human health is increasing remarkably. As demand for high-efficiency and bright lighting increases, so does the blue light content from artificial sources. Although animal studies suggested blue light induced depression-like behaviors, human evidence remained limited, and the mechanisms by which blue light affects depression remained elusive. This study aimed to investigate the association between blue light exposure and depression in humans, and explored the underlying mechanisms that driving depression-like behaviors induced by blue light. Our population findings showed that the high-blue-light exposure at night was positively associated with depressive symptoms. Lactic acid was relevant to depression with Mendelian randomization analysis. Moreover, animal studies demonstrated that exposure to blue light during sleep (BLS) induced depression-like behaviors in the animals. Metabolomics and colorimetric analyses revealed elevated levels of lactic acid in the cerebrospinal fluid and lateral habenula (LHb) of rats with depression-like behaviors induced by BLS. The administration of a lactate inhibitor (Oxamate) alleviated these behaviors, along with changes in neuronal excitability, synaptic function, and morphology in the LHb. Overall, our study suggests that excessive exposure to high blue light-content artificial light at night links to increased depressive symptoms, revealing possible molecular mechanisms and prevention strategies, which are crucial for addressing environmentally related mental health issues.
{"title":"Lactic acid contributes to the emergence of depression-like behaviors triggered by blue light exposure during sleep.","authors":"Yinhan Li, Xinhui Zou, Ying Ma, Jiaqi Cheng, Xiangmin Yu, Wenya Shao, Fuli Zheng, Zhenkun Guo, Guangxia Yu, Siying Wu, Huangyuan Li, Hong Hu","doi":"10.1016/j.ecoenv.2024.117643","DOIUrl":"10.1016/j.ecoenv.2024.117643","url":null,"abstract":"<p><p>The threat posed by light pollution to human health is increasing remarkably. As demand for high-efficiency and bright lighting increases, so does the blue light content from artificial sources. Although animal studies suggested blue light induced depression-like behaviors, human evidence remained limited, and the mechanisms by which blue light affects depression remained elusive. This study aimed to investigate the association between blue light exposure and depression in humans, and explored the underlying mechanisms that driving depression-like behaviors induced by blue light. Our population findings showed that the high-blue-light exposure at night was positively associated with depressive symptoms. Lactic acid was relevant to depression with Mendelian randomization analysis. Moreover, animal studies demonstrated that exposure to blue light during sleep (BLS) induced depression-like behaviors in the animals. Metabolomics and colorimetric analyses revealed elevated levels of lactic acid in the cerebrospinal fluid and lateral habenula (LHb) of rats with depression-like behaviors induced by BLS. The administration of a lactate inhibitor (Oxamate) alleviated these behaviors, along with changes in neuronal excitability, synaptic function, and morphology in the LHb. Overall, our study suggests that excessive exposure to high blue light-content artificial light at night links to increased depressive symptoms, revealing possible molecular mechanisms and prevention strategies, which are crucial for addressing environmentally related mental health issues.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117643"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ensuring sustainable management of water is an indispensable part of sustainable development, however, the limelight on long-term health risk of water hardness is essential but remains inadequate. This study estimated effects of water hardness on the brain system to refine its systemic risk assessment. We assembled a cohort of 397,265 participants from the UK Biobank to investigate the associations of water hardness with neurodegenerative diseases and brain imaging phenotypes through modeling. We found water hardness in 0-120 mg/L elevated the incidence risks of Alzheimer's disease and vascular dementia compared to that in 120-300 mg/L, with hazard ratios of 1.13 (1.01, 1.27) and 1.24 (1.05, 1.46), respectively. Furthermore, the associations with partial cerebral atrophy were also observed, including the caudate nucleus and inferior parietal lobule. Our study provides insights into the importance of enacting more precise guidelines about water hardness and contributes to the achievement of the Sustainable Development Goals.
{"title":"Water quality and neurodegenerative disease risk in the middle-aged and elderly population.","authors":"Yujia Bao, Yongxuan Li, Yanqiu Zhou, Jingqi Zhou, Wei Mu, Xiaobei Deng, Chen Shen, Lefei Han, Jinjun Ran","doi":"10.1016/j.ecoenv.2024.117647","DOIUrl":"10.1016/j.ecoenv.2024.117647","url":null,"abstract":"<p><p>Ensuring sustainable management of water is an indispensable part of sustainable development, however, the limelight on long-term health risk of water hardness is essential but remains inadequate. This study estimated effects of water hardness on the brain system to refine its systemic risk assessment. We assembled a cohort of 397,265 participants from the UK Biobank to investigate the associations of water hardness with neurodegenerative diseases and brain imaging phenotypes through modeling. We found water hardness in 0-120 mg/L elevated the incidence risks of Alzheimer's disease and vascular dementia compared to that in 120-300 mg/L, with hazard ratios of 1.13 (1.01, 1.27) and 1.24 (1.05, 1.46), respectively. Furthermore, the associations with partial cerebral atrophy were also observed, including the caudate nucleus and inferior parietal lobule. Our study provides insights into the importance of enacting more precise guidelines about water hardness and contributes to the achievement of the Sustainable Development Goals.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117647"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-07DOI: 10.1016/j.ecoenv.2024.117661
Amir Bostani, Xingying Meng, Le Jiao, Srđan D Rončević, Peng Zhang, Hongwen Sun
To investigate the remediation effects of various modified biochar materials derived from different impregnation agents on Cd- and Pb-contaminated calcareous soil, nitrogen (N-), phosphorus (P-), sulfur (S-), and iron (Fe-) modified biochar materials (NBC, PBC, SBC, FBC) were fabricated through the impregnation-pyrolysis method and employed to immobilize Pb and Cd in the calcareous soil. The characterization results showed that NBC exhibited an uneven pore size distribution and increased aromaticity, while PBC and SBC had increased pH and ash content. Pot experiments demonstrated significantly different effects of various modified biochar materials on soil immobilization and plant uptake of Cd and Pb. With regard to soil pH, FBC caused a notable decrease in both rhizosphere and non-rhizosphere areas, while the other materials showed an increase. NBC, PBC, and SBC effectively immobilized Cd and Pb in the soil and significantly reduced their accumulation in Chinese cabbage by 34.4 %-58.9 % for Cd and 9.2 %-53.1 % for Pb, with PBC having the best effect, attributed to complexation, precipitation, and adsorption. However, FBC had strong acidity and poor immobilization ability, which increased the available concentrations of Cd and Pb in the soil. Additionally, PBC promoted the growth, enzyme activity, and tolerance to Cd- and Pb-contaminated soil of Chinese cabbage. Overall, NBC and PBC were identified as the most effective modified biochar materials for stabilizing Cd and Pb in the soil, reducing heavy metal uptake by Chinese cabbage, and boosting enzyme activity.
{"title":"Differentiated effects and mechanisms of N-, P-, S-, and Fe-modified biochar materials for remediating Cd- and Pb-contaminated calcareous soil.","authors":"Amir Bostani, Xingying Meng, Le Jiao, Srđan D Rončević, Peng Zhang, Hongwen Sun","doi":"10.1016/j.ecoenv.2024.117661","DOIUrl":"10.1016/j.ecoenv.2024.117661","url":null,"abstract":"<p><p>To investigate the remediation effects of various modified biochar materials derived from different impregnation agents on Cd- and Pb-contaminated calcareous soil, nitrogen (N-), phosphorus (P-), sulfur (S-), and iron (Fe-) modified biochar materials (NBC, PBC, SBC, FBC) were fabricated through the impregnation-pyrolysis method and employed to immobilize Pb and Cd in the calcareous soil. The characterization results showed that NBC exhibited an uneven pore size distribution and increased aromaticity, while PBC and SBC had increased pH and ash content. Pot experiments demonstrated significantly different effects of various modified biochar materials on soil immobilization and plant uptake of Cd and Pb. With regard to soil pH, FBC caused a notable decrease in both rhizosphere and non-rhizosphere areas, while the other materials showed an increase. NBC, PBC, and SBC effectively immobilized Cd and Pb in the soil and significantly reduced their accumulation in Chinese cabbage by 34.4 %-58.9 % for Cd and 9.2 %-53.1 % for Pb, with PBC having the best effect, attributed to complexation, precipitation, and adsorption. However, FBC had strong acidity and poor immobilization ability, which increased the available concentrations of Cd and Pb in the soil. Additionally, PBC promoted the growth, enzyme activity, and tolerance to Cd- and Pb-contaminated soil of Chinese cabbage. Overall, NBC and PBC were identified as the most effective modified biochar materials for stabilizing Cd and Pb in the soil, reducing heavy metal uptake by Chinese cabbage, and boosting enzyme activity.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117661"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phthalates (PAEs) are a group of endocrine-disrupting environmental chemicals (EEDs) that pose significant risks to human health. PAEs are widespread in various environmental media, including air, dust, water, and soil, and are subject to both horizontal and vertical migration. Human activities significantly influence the distribution of PAEs, yet current research on this relationship remains limited. In this study, we first describe the hot issues of PAEs in the environment through bibliometrics, and then review published related studies. We outline the global distribution of PAEs in different media and conducted a comparative analysis of their composition. Principal component analysis (PCA) revealed PAEs differences in environmental mediums and geographic locations. Correlation analysis between PAEs composition and human activities in China further demonstrated that PAE concentrations were closely linked to agricultural and industrial activities. We also discussed the biodegradation and abiotic degradation of PAEs, finding that bacteria play a crucial role in their degradation in soil. This study aims to assess the distribution, transfer, impact, and degradation of PAEs, providing insights for the prevention and remediation of PAE pollution.
{"title":"Phthalates in the environment of China: A scoping review of distribution, anthropogenic impact, and degradation based on meta-analysis.","authors":"Zhigang Cui, Ce Shi, Lanting Zha, Jiaman Liu, Yinchu Guo, Xiaohan Li, Enjiao Zhang, Zhihua Yin","doi":"10.1016/j.ecoenv.2024.117659","DOIUrl":"10.1016/j.ecoenv.2024.117659","url":null,"abstract":"<p><p>Phthalates (PAEs) are a group of endocrine-disrupting environmental chemicals (EEDs) that pose significant risks to human health. PAEs are widespread in various environmental media, including air, dust, water, and soil, and are subject to both horizontal and vertical migration. Human activities significantly influence the distribution of PAEs, yet current research on this relationship remains limited. In this study, we first describe the hot issues of PAEs in the environment through bibliometrics, and then review published related studies. We outline the global distribution of PAEs in different media and conducted a comparative analysis of their composition. Principal component analysis (PCA) revealed PAEs differences in environmental mediums and geographic locations. Correlation analysis between PAEs composition and human activities in China further demonstrated that PAE concentrations were closely linked to agricultural and industrial activities. We also discussed the biodegradation and abiotic degradation of PAEs, finding that bacteria play a crucial role in their degradation in soil. This study aims to assess the distribution, transfer, impact, and degradation of PAEs, providing insights for the prevention and remediation of PAE pollution.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117659"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of Bisphenol A (BPA) has been widely restricted due to its adverse health effects. Bisphenol Z (BPZ) is used as an alternative to BPA, and humans are widely exposed to BPZ through various routes. Recent studies have shown that BPZ exposure adversely affects mouse oocyte meiotic maturation. This study investigates the impact of BPZ exposure on early mouse embryonic development alongside an exploration of the underlying mechanisms. The findings reveal that exposure to BPZ leads to a reduction in early embryo quality and hinders developmental progression. RNA sequencing analysis has identified 593 differentially expressed genes as a result of BPZ exposure, highlighting considerable changes in early embryonic gene expression. Mechanistically, BPZ exposure inhibits the activation of the zygotic genome and impedes maternal mRNA degradation, thereby interfering with maternal-to-zygotic transition (MZT). Further analysis indicates compromised mitochondrial function, as evidenced by abnormal distribution, diminished membrane potential, and lower ATP levels. Consequently, BPZ-exposed embryos exhibit elevated levels of reactive oxygen species, superoxide anions, and oxidative DNA damage. Moreover, BPZ exposure is associated with an increase in γ-H2A.X expression. Additionally, BPZ exposure alters the expression levels of histone modifications, including H3K27me2, H3K27me3, H3K9me3, and H3K27ac, in early embryos. Collectively, BPZ exposure significantly impairs early embryo quality by disrupting mitochondrial function, inducing oxidative stress and DNA damage, altering histone modifications, and inhibiting MZT, ultimately resulting in hindered blastocyst formation. These findings underscore the profound adverse effects of BPZ on early embryonic development, indicating the need for caution when considering it as a safe alternative to BPA.
{"title":"BPZ inhibits early mouse embryonic development by disrupting maternal-to-zygotic transition and mitochondrial function.","authors":"Zhiming Ding, Huilei Chen, Huiru Cheng, Caiyun Wu, Hongzhen Ruan, Bingjing Zhu, Ping Zhou, Zuying Xu, Huifen Xiang","doi":"10.1016/j.ecoenv.2025.117693","DOIUrl":"10.1016/j.ecoenv.2025.117693","url":null,"abstract":"<p><p>The use of Bisphenol A (BPA) has been widely restricted due to its adverse health effects. Bisphenol Z (BPZ) is used as an alternative to BPA, and humans are widely exposed to BPZ through various routes. Recent studies have shown that BPZ exposure adversely affects mouse oocyte meiotic maturation. This study investigates the impact of BPZ exposure on early mouse embryonic development alongside an exploration of the underlying mechanisms. The findings reveal that exposure to BPZ leads to a reduction in early embryo quality and hinders developmental progression. RNA sequencing analysis has identified 593 differentially expressed genes as a result of BPZ exposure, highlighting considerable changes in early embryonic gene expression. Mechanistically, BPZ exposure inhibits the activation of the zygotic genome and impedes maternal mRNA degradation, thereby interfering with maternal-to-zygotic transition (MZT). Further analysis indicates compromised mitochondrial function, as evidenced by abnormal distribution, diminished membrane potential, and lower ATP levels. Consequently, BPZ-exposed embryos exhibit elevated levels of reactive oxygen species, superoxide anions, and oxidative DNA damage. Moreover, BPZ exposure is associated with an increase in γ-H2A.X expression. Additionally, BPZ exposure alters the expression levels of histone modifications, including H3K27me2, H3K27me3, H3K9me3, and H3K27ac, in early embryos. Collectively, BPZ exposure significantly impairs early embryo quality by disrupting mitochondrial function, inducing oxidative stress and DNA damage, altering histone modifications, and inhibiting MZT, ultimately resulting in hindered blastocyst formation. These findings underscore the profound adverse effects of BPZ on early embryonic development, indicating the need for caution when considering it as a safe alternative to BPA.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117693"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: Identifying the common functional single-nucleotide polymorphisms (SNPs) that can both affect the susceptibility to idiopathic pulmonary fibrosis (IPF) and silicosis.
Methods: We first integrated the genome-wide association studies (GWASs) of IPF and silicosis to obtain the shared SNPs. Following this, functional expression quantitative trait locus (eQTL)-SNPs were identified by the GTEx database. This was followed by the validation of the correlation between these eQTL-SNPs and silicosis susceptibility through an additional case-control study including 194 silicosis cases and 235 healthy controls.
Results: A total of 10 eQTL-SNPs that may affect silicosis susceptibility (P < 0.05) were obtained after the integration of the GWASs of IPF and silicosis, and a series of rigorous selection principles. Subsequently, the results of integrating the validation stage and the screening stage indicated that the variant T allele of rs1620530 located in the MAD1L1 (additive model: OR= 1.56, 95 % CI = 1.21-2.01, P = 0.001) and the variant G allele of rs2070063 located in the SERTAD2 (additive model: OR= 1.60, 95 % CI = 1.24-2.06, P < 0.001) were associated with increased silicosis susceptibility. The joint analysis indicated the risk of developing silicosis was higher in individuals who carried more unfavorable alleles of rs1620530 and rs2070063.
Conclusions: The rs1620530 and rs2070063 may affect the silicosis susceptibility by regulating the expression of the MAD1L1 and SERTAD2, respectively. Further biological experiments are warranted to elucidate the underlying biological mechanisms between these two SNPs and the increased susceptibility to silicosis.
目的:确定可影响特发性肺纤维化(IPF)和矽肺易感性的常见功能单核苷酸多态性(snp)。方法:我们首先整合IPF和矽肺的全基因组关联研究(GWASs),以获得共享的snp。随后,通过GTEx数据库鉴定功能表达数量性状位点(eQTL)- snp。随后,通过一项额外的病例对照研究验证了这些eqtl - snp与矽肺易感性之间的相关性,该研究包括194例矽肺病例和235例健康对照。结果:共有10个可能影响矽肺易感性的eqtl - snp (P )结论:rs1620530和rs2070063可能分别通过调控MAD1L1和SERTAD2的表达影响矽肺易感性。需要进一步的生物学实验来阐明这两个snp与矽肺易感性增加之间的潜在生物学机制。
{"title":"Novel functional eQTL-SNPs associated with susceptibility to occupational pulmonary fibrosis: A multi-stage study.","authors":"Rui Zhao, Xiaobo Tao, Wendi Zhang, Siqi Li, Shenxuan Zhou, Anhui Ning, Zhenyu Li, Minjie Chu, Wei Wang, Junhong Jiang","doi":"10.1016/j.ecoenv.2025.117679","DOIUrl":"10.1016/j.ecoenv.2025.117679","url":null,"abstract":"<p><strong>Aim: </strong>Identifying the common functional single-nucleotide polymorphisms (SNPs) that can both affect the susceptibility to idiopathic pulmonary fibrosis (IPF) and silicosis.</p><p><strong>Methods: </strong>We first integrated the genome-wide association studies (GWASs) of IPF and silicosis to obtain the shared SNPs. Following this, functional expression quantitative trait locus (eQTL)-SNPs were identified by the GTEx database. This was followed by the validation of the correlation between these eQTL-SNPs and silicosis susceptibility through an additional case-control study including 194 silicosis cases and 235 healthy controls.</p><p><strong>Results: </strong>A total of 10 eQTL-SNPs that may affect silicosis susceptibility (P < 0.05) were obtained after the integration of the GWASs of IPF and silicosis, and a series of rigorous selection principles. Subsequently, the results of integrating the validation stage and the screening stage indicated that the variant T allele of rs1620530 located in the MAD1L1 (additive model: OR= 1.56, 95 % CI = 1.21-2.01, P = 0.001) and the variant G allele of rs2070063 located in the SERTAD2 (additive model: OR= 1.60, 95 % CI = 1.24-2.06, P < 0.001) were associated with increased silicosis susceptibility. The joint analysis indicated the risk of developing silicosis was higher in individuals who carried more unfavorable alleles of rs1620530 and rs2070063.</p><p><strong>Conclusions: </strong>The rs1620530 and rs2070063 may affect the silicosis susceptibility by regulating the expression of the MAD1L1 and SERTAD2, respectively. Further biological experiments are warranted to elucidate the underlying biological mechanisms between these two SNPs and the increased susceptibility to silicosis.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117679"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-10DOI: 10.1016/j.ecoenv.2025.117708
Qian Su, Jinzhu Luo, You Zhou, Miao Liu, Shaohua Zeng, Yin Li, Jieying Gao
Background: Neonicotinoids are the most widely used insecticide worldwide. Toxicological and epidemiological studies suggest that exposure to neonicotinoid may be linked to the development of childhood obesity. However, the evidence is limited.
Objective: To investigate the association between neonicotinoid exposure and obesity among U.S. children and adolescents and to explore underlying mechanism mediated by serum sex steroid hormones in these associations.
Methods: Data from the 2015-2016 National Health and Nutrition Examination Survey were used for the analysis. Generalized linear regression was used to investigate the association between detectable neonicotinoids and ten measures of obesity. The interaction effects of multiple neonicotinoids were determined by Chi-squared Automatic Interaction Detection method. Mediation analysis was used to assess potential mediators of sex steroid hormones, including testosterone (T), estradiol (E2), T/E2, sex hormone-binding globulin (SHBG), and free androgen index (FAI).
Results: Clothianidin (β = -0.29, 95 % CI: -0.57, -0.01) and N-desmethyl-acetamiprid (β = -0.19, 95 % CI: -0.35, -0.03) were associated with reduced VFI z-score. After stratification, 5-hydroxy-imidacloprid was positively associated with the risk of general obesity in males (OR=2.24, 95 % CI: 1.20, 4.20) with a probability of 52.5 %. FAI mediated 15 % of the association between neonicotinoid exposure and reduced risk of obesity, and SHBG mediated 30 % of the association between neonicotinoid exposure and increased risk of obesity.
Conclusion: Neonicotinoids showed associations with obesity, but the results were mixed and sex-specific. Sex steroid hormones may play a role in mediating the effects of neonicotinoids on obesity.
{"title":"Sex steroid hormones mediate the association between neonicotinoids and obesity among children and adolescents.","authors":"Qian Su, Jinzhu Luo, You Zhou, Miao Liu, Shaohua Zeng, Yin Li, Jieying Gao","doi":"10.1016/j.ecoenv.2025.117708","DOIUrl":"10.1016/j.ecoenv.2025.117708","url":null,"abstract":"<p><strong>Background: </strong>Neonicotinoids are the most widely used insecticide worldwide. Toxicological and epidemiological studies suggest that exposure to neonicotinoid may be linked to the development of childhood obesity. However, the evidence is limited.</p><p><strong>Objective: </strong>To investigate the association between neonicotinoid exposure and obesity among U.S. children and adolescents and to explore underlying mechanism mediated by serum sex steroid hormones in these associations.</p><p><strong>Methods: </strong>Data from the 2015-2016 National Health and Nutrition Examination Survey were used for the analysis. Generalized linear regression was used to investigate the association between detectable neonicotinoids and ten measures of obesity. The interaction effects of multiple neonicotinoids were determined by Chi-squared Automatic Interaction Detection method. Mediation analysis was used to assess potential mediators of sex steroid hormones, including testosterone (T), estradiol (E<sub>2</sub>), T/E<sub>2</sub>, sex hormone-binding globulin (SHBG), and free androgen index (FAI).</p><p><strong>Results: </strong>Clothianidin (β = -0.29, 95 % CI: -0.57, -0.01) and N-desmethyl-acetamiprid (β = -0.19, 95 % CI: -0.35, -0.03) were associated with reduced VFI z-score. After stratification, 5-hydroxy-imidacloprid was positively associated with the risk of general obesity in males (OR=2.24, 95 % CI: 1.20, 4.20) with a probability of 52.5 %. FAI mediated 15 % of the association between neonicotinoid exposure and reduced risk of obesity, and SHBG mediated 30 % of the association between neonicotinoid exposure and increased risk of obesity.</p><p><strong>Conclusion: </strong>Neonicotinoids showed associations with obesity, but the results were mixed and sex-specific. Sex steroid hormones may play a role in mediating the effects of neonicotinoids on obesity.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117708"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As one of the neonicotinoid insecticides, thiacloprid (THI) is extensively used in agriculture and frequently detected in various aquatic environments, posing a potential threat to aquatic organisms. However, the effects of THI exposure on aquatic turtles remain unknown. In this study, we focused on investigating whether THI has a toxic effect on the gut-liver axis in aquatic turtles. The Reeves' turtles (Mauremys reevesii) were exposed to 0.0178 μM, 6 μM, and 60 μM THI for 5 consecutive weeks. The results revealed that THI altered the composition of intestinal flora, with a decrease in the relative abundance of Romboutsia, and an increase in Clostridium_sensu_stricto_1, Cetobacterium, Enterococcus. This disruption of the intestinal barrier led to an increase in lipopolysaccharide (LPS), THI, and other harmful substances entering the liver. Metabolomic and transcriptomic analyses indicated that metabolic dysregulation and differences in gene expression were concentrated in amino acid metabolism and lipid metabolism, ultimately resulting in severe liver damage and steatosis. Furthermore, elevated levels of liver function indicators, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bile acid (TBA), and triglyceride (TG), were positively correlated with increased THI concentrations. Our findings demonstrate that THI impairs the intestinal barrier and causes liver dysfunction and damage in turtles, providing new insights into evaluating the toxic effects of thiacloprid on aquatic organisms.
{"title":"Thiacloprid exposure disrupts the gut-liver axis and induces liver dysfunction in the Reeves' turtles (Mauremys reevesii).","authors":"Shuqin Lin, Yunjuan Xiao, Siyu Li, Liyan Tang, Haitao Shi, Meiling Hong, Li Ding","doi":"10.1016/j.ecoenv.2025.117710","DOIUrl":"10.1016/j.ecoenv.2025.117710","url":null,"abstract":"<p><p>As one of the neonicotinoid insecticides, thiacloprid (THI) is extensively used in agriculture and frequently detected in various aquatic environments, posing a potential threat to aquatic organisms. However, the effects of THI exposure on aquatic turtles remain unknown. In this study, we focused on investigating whether THI has a toxic effect on the gut-liver axis in aquatic turtles. The Reeves' turtles (Mauremys reevesii) were exposed to 0.0178 μM, 6 μM, and 60 μM THI for 5 consecutive weeks. The results revealed that THI altered the composition of intestinal flora, with a decrease in the relative abundance of Romboutsia, and an increase in Clostridium_sensu_stricto_1, Cetobacterium, Enterococcus. This disruption of the intestinal barrier led to an increase in lipopolysaccharide (LPS), THI, and other harmful substances entering the liver. Metabolomic and transcriptomic analyses indicated that metabolic dysregulation and differences in gene expression were concentrated in amino acid metabolism and lipid metabolism, ultimately resulting in severe liver damage and steatosis. Furthermore, elevated levels of liver function indicators, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bile acid (TBA), and triglyceride (TG), were positively correlated with increased THI concentrations. Our findings demonstrate that THI impairs the intestinal barrier and causes liver dysfunction and damage in turtles, providing new insights into evaluating the toxic effects of thiacloprid on aquatic organisms.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117710"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-13DOI: 10.1016/j.ecoenv.2025.117703
Yingying Xing, Xiukang Wang, Adnan Mustafa
Understanding the complex interactions of plants and soils in the face of global food security and environmental degradation challenges is critical to the future of sustainable agriculture. This review discusses the important link between soil health and crop productivity by providing and comprehensive assessment of soil properties and management methods. By examining the physical, chemical, and biological properties of soil, it uncovers the key limitations posed by the soil environment on crop growth. The review highlights how soil texture, nutrient availability, and moisture levels directly impact on root growth, water uptake, and nutrient use efficiencies, while also exploring how diverse cropping systems enhance soil ecology and biodiversity. By utilizing state-of-the-art bioinformatics, we offer an in-depth exploration of rhizosphere microbial communities, emphasizing the functions of phosphate-solubilizing and nitrogen-fixing bacteria in promoting vital nutrient cycles. The potential of using microbial fertilizers to increase crop resistance to disease and stress hold a major premise for future sustainability in agriculture. In this regard, this review highlights the long-term impacts of crop cultivation on soil microbial diversity, revealing intricate selection processes between crops and their microbial partners in shaping crop-soil-microbe interactions. In terms of soil management, practical nutrient management strategies are proposed based on soil testing, emphasizing the benefits of organic farming and conservation tillage for soil health. Modern precision agricultural tools and remote sensing technologies are encouraged to be refined for effective nutrient management. At the policy level, we evaluate international guidelines aimed at fostering agricultural sustainability, suggesting new research pathways for crop-soil dynamics and offering approaches for developing soil health indicators in the face of global environmental challenges.
{"title":"Exploring the link between soil health and crop productivity.","authors":"Yingying Xing, Xiukang Wang, Adnan Mustafa","doi":"10.1016/j.ecoenv.2025.117703","DOIUrl":"10.1016/j.ecoenv.2025.117703","url":null,"abstract":"<p><p>Understanding the complex interactions of plants and soils in the face of global food security and environmental degradation challenges is critical to the future of sustainable agriculture. This review discusses the important link between soil health and crop productivity by providing and comprehensive assessment of soil properties and management methods. By examining the physical, chemical, and biological properties of soil, it uncovers the key limitations posed by the soil environment on crop growth. The review highlights how soil texture, nutrient availability, and moisture levels directly impact on root growth, water uptake, and nutrient use efficiencies, while also exploring how diverse cropping systems enhance soil ecology and biodiversity. By utilizing state-of-the-art bioinformatics, we offer an in-depth exploration of rhizosphere microbial communities, emphasizing the functions of phosphate-solubilizing and nitrogen-fixing bacteria in promoting vital nutrient cycles. The potential of using microbial fertilizers to increase crop resistance to disease and stress hold a major premise for future sustainability in agriculture. In this regard, this review highlights the long-term impacts of crop cultivation on soil microbial diversity, revealing intricate selection processes between crops and their microbial partners in shaping crop-soil-microbe interactions. In terms of soil management, practical nutrient management strategies are proposed based on soil testing, emphasizing the benefits of organic farming and conservation tillage for soil health. Modern precision agricultural tools and remote sensing technologies are encouraged to be refined for effective nutrient management. At the policy level, we evaluate international guidelines aimed at fostering agricultural sustainability, suggesting new research pathways for crop-soil dynamics and offering approaches for developing soil health indicators in the face of global environmental challenges.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117703"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-13DOI: 10.1016/j.ecoenv.2024.117613
Yunlei Zhang, Shiru Lin, Yaolu Niu, Xiaoping Zhou, Qingxian Lin
Due to anthropogenic activities, coastal areas have been challenged with multi-stresses such as ocean warming and nickel (Ni) pollution. Currently, studies have concerned the combined effects of Ni and warming in marine organisms at the phenotypic level; however, the underlying molecular mechanisms are poorly known. In this study, a marine copepod Tigriopus japonicus was maintained under warming (+ 4℃) and an environmentally realistic level of Ni (20 μg/L) alone or combined for three generations (F0-F2). Transcriptome analysis was performed for the F2 individuals. We found that the gene transcripts of copepods were predominantly down-regulated after Ni and warming exposure. Based on the results of GO and KEGG analysis, chitin metabolism, detoxification, antioxidant, apoptosis, and energy metabolism were screened in this study. Among the above functions, the combined exposure enriched more differential expression genes and had a larger fold change compared to Ni exposure alone, suggesting that warming increased the negative effect of Ni on marine copepods from a molecular perspective. Specifically, the combined exposure exacerbated the down-regulation of defense, apoptosis, xenobiotic efflux, GSH system, and energy metabolism, as well as the up-regulation of detoxification and peroxidase system. Overall, this study indicates that both ocean warming and Ni pollution adversely affect the marine copepod T. japonicus from multigenerational transcriptome analysis, especially warming increased Ni toxicity to marine copepods, and our results also provide references to the mechanism concerning the effects of Ni and warming on marine copepods.
{"title":"Transcriptome response in a marine copepod under multigenerational exposure to ocean warming and Ni at an environmentally realistic concentration.","authors":"Yunlei Zhang, Shiru Lin, Yaolu Niu, Xiaoping Zhou, Qingxian Lin","doi":"10.1016/j.ecoenv.2024.117613","DOIUrl":"10.1016/j.ecoenv.2024.117613","url":null,"abstract":"<p><p>Due to anthropogenic activities, coastal areas have been challenged with multi-stresses such as ocean warming and nickel (Ni) pollution. Currently, studies have concerned the combined effects of Ni and warming in marine organisms at the phenotypic level; however, the underlying molecular mechanisms are poorly known. In this study, a marine copepod Tigriopus japonicus was maintained under warming (+ 4℃) and an environmentally realistic level of Ni (20 μg/L) alone or combined for three generations (F0-F2). Transcriptome analysis was performed for the F2 individuals. We found that the gene transcripts of copepods were predominantly down-regulated after Ni and warming exposure. Based on the results of GO and KEGG analysis, chitin metabolism, detoxification, antioxidant, apoptosis, and energy metabolism were screened in this study. Among the above functions, the combined exposure enriched more differential expression genes and had a larger fold change compared to Ni exposure alone, suggesting that warming increased the negative effect of Ni on marine copepods from a molecular perspective. Specifically, the combined exposure exacerbated the down-regulation of defense, apoptosis, xenobiotic efflux, GSH system, and energy metabolism, as well as the up-regulation of detoxification and peroxidase system. Overall, this study indicates that both ocean warming and Ni pollution adversely affect the marine copepod T. japonicus from multigenerational transcriptome analysis, especially warming increased Ni toxicity to marine copepods, and our results also provide references to the mechanism concerning the effects of Ni and warming on marine copepods.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117613"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}