Pub Date : 2024-11-05DOI: 10.1021/acs.biomac.4c01192
Tianren Zhang, Dai-Bei Yang, Christopher J Kloxin, Darrin J Pochan, Jeffery G Saven
Computationally designed homotetrameric helical peptide bundles have been functionalized at their N-termini to achieve supramolecular polymers, wherein individual bundles ("bundlemers") are the monomeric units. Adjacent bundles are linked via two covalent cross-links. The polymers exhibit a range of conformational properties, including formation of rigid-rods with micrometer-scale persistence lengths. Herein, a coarse-grained model is used to illuminate how molecular features affect the rod-like behavior of the polymers. With increasing affinity between bundlemer ends, a sharp transition in the persistence length is observed. Doubly linked chains exhibit larger persistence lengths and more robust formation of rigid-rod structures than singly linked chains. Chain stiffness increases with decreasing temperatures. Increasing the length of the cross-linker results in more flexible chains. This model provides insights into how molecular features control the structural properties of chains comprising doubly linked rigid bundlemers.
通过计算设计的同四聚体螺旋肽束在其 N 端被功能化,从而形成超分子聚合物,其中单个肽束("bundlemers")是单体单元。相邻的肽束通过两个共价交联连接在一起。聚合物表现出一系列构象特性,包括形成具有微米级持续长度的刚性杆。本文使用粗粒度模型来阐明分子特征如何影响聚合物的杆状行为。随着束聚合物末端之间亲和力的增加,可以观察到持久长度的急剧变化。与单链相比,双链表现出更大的持续长度和更强的刚性杆状结构形成能力。链的硬度随着温度的降低而增加。增加交联剂的长度会使链更柔韧。该模型有助于深入了解分子特征如何控制由双链刚性束膜组成的链的结构特性。
{"title":"Coarse-Grain Model of Ultrarigid Polymer Rods Comprising Bifunctionally Linked Peptide Bundlemers.","authors":"Tianren Zhang, Dai-Bei Yang, Christopher J Kloxin, Darrin J Pochan, Jeffery G Saven","doi":"10.1021/acs.biomac.4c01192","DOIUrl":"10.1021/acs.biomac.4c01192","url":null,"abstract":"<p><p>Computationally designed homotetrameric helical peptide bundles have been functionalized at their N-termini to achieve supramolecular polymers, wherein individual bundles (\"bundlemers\") are the monomeric units. Adjacent bundles are linked via two covalent cross-links. The polymers exhibit a range of conformational properties, including formation of rigid-rods with micrometer-scale persistence lengths. Herein, a coarse-grained model is used to illuminate how molecular features affect the rod-like behavior of the polymers. With increasing affinity between bundlemer ends, a sharp transition in the persistence length is observed. Doubly linked chains exhibit larger persistence lengths and more robust formation of rigid-rod structures than singly linked chains. Chain stiffness increases with decreasing temperatures. Increasing the length of the cross-linker results in more flexible chains. This model provides insights into how molecular features control the structural properties of chains comprising doubly linked rigid bundlemers.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fusion of intrinsically disordered and globular proteins is a powerful strategy to create functional nanomaterials. However, the immutable nature of genetic encoding restricts the dynamic adaptability of nanostructures postexpression. To address this, we envisioned using a myristoyl switch, a protein that combines allostery and post-translational modifications─two strategies that modify protein properties without altering their sequence─to regulate intrinsically disordered protein (IDP)-driven nanoassembly. A typical myristoyl switch, allosterically activated by a stimulus, reveals a sequestered lipid for membrane association. We hypothesize that this conditional exposure of lipids can regulate the assembly of fusion proteins, a concept we term "liposwitching". We tested this by fusing recoverin, a calcium-dependent myristoyl switch, with elastin-like polypeptide, a thermoresponsive model IDP. Biophysical analyses confirmed recoverin's myristoyl-switch functionality, while dynamic light scattering and cryo-transmission electron microscopy showed distinct calcium- and lipidation-dependent phase separation and assembly. This study highlights liposwitching as a viable strategy for controlling DP-driven nanoassembly, enabling applications in synthetic biology and cellular engineering.
{"title":"Genetically Engineered Liposwitch-Based Nanomaterials.","authors":"Md Shahadat Hossain, Alex Wang, Salma Anika, Zhe Zhang, Davoud Mozhdehi","doi":"10.1021/acs.biomac.4c01388","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01388","url":null,"abstract":"<p><p>Fusion of intrinsically disordered and globular proteins is a powerful strategy to create functional nanomaterials. However, the immutable nature of genetic encoding restricts the dynamic adaptability of nanostructures postexpression. To address this, we envisioned using a myristoyl switch, a protein that combines allostery and post-translational modifications─two strategies that modify protein properties without altering their sequence─to regulate intrinsically disordered protein (IDP)-driven nanoassembly. A typical myristoyl switch, allosterically activated by a stimulus, reveals a sequestered lipid for membrane association. We hypothesize that this conditional exposure of lipids can regulate the assembly of fusion proteins, a concept we term \"liposwitching\". We tested this by fusing recoverin, a calcium-dependent myristoyl switch, with elastin-like polypeptide, a thermoresponsive model IDP. Biophysical analyses confirmed recoverin's myristoyl-switch functionality, while dynamic light scattering and cryo-transmission electron microscopy showed distinct calcium- and lipidation-dependent phase separation and assembly. This study highlights liposwitching as a viable strategy for controlling DP-driven nanoassembly, enabling applications in synthetic biology and cellular engineering.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1021/acs.biomac.4c00944
Marika Avitabile, Ana Aleksov, C Valeria L Giosafatto, Odile Francesca Restaino, Marija Lesjak, Nemanja Živanović, Loredana Mariniello, Nataša Simin
This study explored the potential of rose aqueous extract (RE), a byproduct of rose essential oil extraction, to enhance the properties of biobased food packaging materials. RE contained a high phenolic content (153 mg of GAE/g of dw), rich in hydroxybenzoic acids and flavonols. The antioxidant potential of RE, assessed by DPPH assay, was evaluated (IC50 = 2.85 μg/mL). Edible pectin films fortified with RE were prepared, and their mechanical, physical, and chemical characteristics were evaluated. RE addition increased the moisture content from 14 to 28%, while moisture uptake remained stable at around 10%. Zeta potential remained below -30 mV, indicating that particle aggregation and particle size decreased with higher RE concentrations. Scanning electron microscopy showed an improved homogeneity of the films. RE retained its antioxidant properties, enhancing the mechanical resistance of the films and offering protection against oxidative damage and UV radiation. These findings suggest the potential of RE in developing functional, eco-friendly food packaging.
本研究探讨了玫瑰水提取物(RE)(玫瑰精油提取的副产品)在提高生物基食品包装材料性能方面的潜力。RE 含有较高的酚类物质含量(153 毫克 GAE/克干重),其中富含羟基苯甲酸和黄酮醇。用 DPPH 法评估了 RE 的抗氧化潜力(IC50 = 2.85 μg/mL)。制备了添加 RE 的食用果胶薄膜,并对其机械、物理和化学特性进行了评估。添加 RE 后,水分含量从 14% 增加到 28%,而吸湿率则稳定在 10% 左右。Zeta 电位保持在 -30 mV 以下,表明随着 RE 浓度的升高,颗粒聚集和粒径减小。扫描电子显微镜显示薄膜的均匀性有所提高。RE 保持了其抗氧化特性,增强了薄膜的机械耐受性,并提供了抗氧化损伤和紫外线辐射的保护。这些研究结果表明了 RE 在开发功能性环保食品包装方面的潜力。
{"title":"Pectin-Based Bioplastics Functionalized with Polyphenols from Rose Oil Distillation Wastewater Exhibit Antioxidant Activity.","authors":"Marika Avitabile, Ana Aleksov, C Valeria L Giosafatto, Odile Francesca Restaino, Marija Lesjak, Nemanja Živanović, Loredana Mariniello, Nataša Simin","doi":"10.1021/acs.biomac.4c00944","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00944","url":null,"abstract":"<p><p>This study explored the potential of rose aqueous extract (RE), a byproduct of rose essential oil extraction, to enhance the properties of biobased food packaging materials. RE contained a high phenolic content (153 mg of GAE/g of dw), rich in hydroxybenzoic acids and flavonols. The antioxidant potential of RE, assessed by DPPH assay, was evaluated (IC<sub>50</sub> = 2.85 μg/mL). Edible pectin films fortified with RE were prepared, and their mechanical, physical, and chemical characteristics were evaluated. RE addition increased the moisture content from 14 to 28%, while moisture uptake remained stable at around 10%. Zeta potential remained below -30 mV, indicating that particle aggregation and particle size decreased with higher RE concentrations. Scanning electron microscopy showed an improved homogeneity of the films. RE retained its antioxidant properties, enhancing the mechanical resistance of the films and offering protection against oxidative damage and UV radiation. These findings suggest the potential of RE in developing functional, eco-friendly food packaging.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1021/acs.biomac.4c01149
Yi Ju, Junjie Wang, Yang Lei, Yunbing Wang
Medical adhesives have been used under surgical conditions. However, it is always a big challenge to maintain long-term adhesion in a water environment. Besides, it usually takes a long time to complete the adhesion, and the operation might be complicated. In this study, tannic acid and gelatin solution under acidic conditions were mixed, flocculated, lyophilized, and crushed; thus, a powdered medical adhesive (POWDER) was prepared with long-lasting adhesion in a water environment, convenience, and low price. Tannic acid bound gelatin and maintained adhesive force primarily through hydrogen bonding and reacted with amino sulfhydryl and other amino acid residues after oxidation into aldehyde, exhibiting excellent underwater adhesion. Oxidized dextran (ODex) powder rich in an aldehyde group was introduced to provide covalent binding in the adhesive. In vitro and in vivo studies showed that POWDER could quickly adhere to various tissues in the water environment. In vitro skin adhesion experiments demonstrated that it could achieve effective adhesion in a water environment for up to 60 days. Its blood compatibility, low cytotoxicity, and biodegradability were also verified. The POWDER developed in this study is of great significance for patients who need rapid wound treatments.
{"title":"Powdered Medical Adhesive with Long Lasting Adhesion in Water Environment.","authors":"Yi Ju, Junjie Wang, Yang Lei, Yunbing Wang","doi":"10.1021/acs.biomac.4c01149","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01149","url":null,"abstract":"<p><p>Medical adhesives have been used under surgical conditions. However, it is always a big challenge to maintain long-term adhesion in a water environment. Besides, it usually takes a long time to complete the adhesion, and the operation might be complicated. In this study, tannic acid and gelatin solution under acidic conditions were mixed, flocculated, lyophilized, and crushed; thus, a powdered medical adhesive (POWDER) was prepared with long-lasting adhesion in a water environment, convenience, and low price. Tannic acid bound gelatin and maintained adhesive force primarily through hydrogen bonding and reacted with amino sulfhydryl and other amino acid residues after oxidation into aldehyde, exhibiting excellent underwater adhesion. Oxidized dextran (ODex) powder rich in an aldehyde group was introduced to provide covalent binding in the adhesive. In vitro and in vivo studies showed that POWDER could quickly adhere to various tissues in the water environment. In vitro skin adhesion experiments demonstrated that it could achieve effective adhesion in a water environment for up to 60 days. Its blood compatibility, low cytotoxicity, and biodegradability were also verified. The POWDER developed in this study is of great significance for patients who need rapid wound treatments.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1021/acs.biomac.4c00985
Gayatri Prakash, Aaron J Clasky, Kunal Gadani, Mohammad Nazeri, Frank X Gu
Hyaluronic acid (HA) is a biomedically relevant polymer widely explored as a component of hydrogels. The prevailing approaches for cross-linking HA into hydrogels require chemically modifying the polymer, which can increase processing steps and complicate biocompatibility. Herein, we demonstrate an alternative approach to cross-link HA that eliminates the need for chemical modifications by leveraging the interactions between metal cations and the negatively charged, ionizable functional groups on HA. We demonstrate that HA can be cross-linked with the bivalent metal cations Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), and notably Mg(II). Using Mg(II) as a model, we show that ion-HA hydrogel rheological properties can be tuned by altering the HA molecular weight and concentrations of ions, NaOH, and HA. Mg(II)-HA hydrogels showed the potential for self-healing and stimulus response. Our findings lay the groundwork for developing a new class of HA-based hydrogels for use in biomedical applications and beyond.
透明质酸(HA)是一种生物医学相关聚合物,被广泛用作水凝胶的成分。将透明质酸交联成水凝胶的主流方法需要对聚合物进行化学修饰,这可能会增加加工步骤并使生物相容性复杂化。在此,我们展示了一种交联 HA 的替代方法,它利用金属阳离子与 HA 上带负电荷的可电离官能团之间的相互作用,无需进行化学修饰。我们证明了 HA 可以与二价金属阳离子 Mn(II)、Fe(II)、Co(II)、Ni(II)、Cu(II)、Zn(II)、Pd(II),尤其是 Mg(II)交联。以 Mg(II) 为模型,我们发现离子-HA 水凝胶的流变特性可以通过改变 HA 分子重量以及离子、NaOH 和 HA 的浓度来调节。镁(II)-HA 水凝胶具有自我修复和刺激响应的潜力。我们的研究结果为开发一类新的基于 HA 的水凝胶奠定了基础,这种水凝胶可用于生物医学应用及其他领域。
{"title":"Ion-Mediated Cross-Linking of Hyaluronic Acid into Hydrogels without Chemical Modification.","authors":"Gayatri Prakash, Aaron J Clasky, Kunal Gadani, Mohammad Nazeri, Frank X Gu","doi":"10.1021/acs.biomac.4c00985","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00985","url":null,"abstract":"<p><p>Hyaluronic acid (HA) is a biomedically relevant polymer widely explored as a component of hydrogels. The prevailing approaches for cross-linking HA into hydrogels require chemically modifying the polymer, which can increase processing steps and complicate biocompatibility. Herein, we demonstrate an alternative approach to cross-link HA that eliminates the need for chemical modifications by leveraging the interactions between metal cations and the negatively charged, ionizable functional groups on HA. We demonstrate that HA can be cross-linked with the bivalent metal cations Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), and notably Mg(II). Using Mg(II) as a model, we show that ion-HA hydrogel rheological properties can be tuned by altering the HA molecular weight and concentrations of ions, NaOH, and HA. Mg(II)-HA hydrogels showed the potential for self-healing and stimulus response. Our findings lay the groundwork for developing a new class of HA-based hydrogels for use in biomedical applications and beyond.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1021/acs.biomac.4c00753
Sheila Bhatt, Peter A. Smethurst, Gil Garnier, Alexander F. Routh
Recently developed imaging techniques have been used to examine the redistribution of human red blood cells and comparator particles dispersed in carrier fluids within evaporating droplets. We demonstrate that progressive gelation initiates along an annular front, isolating a central pool that briefly remains open to particulate advection before gelation completes across the droplet center. Transition to an elastic solid is evidenced by cracking initiating proximal to front locations. The arrested flow of cellular components, termed a “halted front”, has been investigated using a time-lapse analysis “signature”. The presence of a deformable biocellular component is seen to be essential for front-halting. We show a dependence of front-halt radius on cell volume-fraction, potentially offering a low-cost means of measuring hematocrit. A simple model yields an estimate of the gel zero-shear yield-stress. This approach to understanding the drying dynamics of blood droplets may lead to a new generation of point-of-care diagnostics.
{"title":"Front-Tracking and Gelation in Sessile Droplet Suspensions: What Can They Tell Us about Human Blood?","authors":"Sheila Bhatt, Peter A. Smethurst, Gil Garnier, Alexander F. Routh","doi":"10.1021/acs.biomac.4c00753","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00753","url":null,"abstract":"Recently developed imaging techniques have been used to examine the redistribution of human red blood cells and comparator particles dispersed in carrier fluids within evaporating droplets. We demonstrate that progressive gelation initiates along an annular front, isolating a central pool that briefly remains open to particulate advection before gelation completes across the droplet center. Transition to an elastic solid is evidenced by cracking initiating proximal to front locations. The arrested flow of cellular components, termed a “halted front”, has been investigated using a time-lapse analysis “signature”. The presence of a deformable biocellular component is seen to be essential for front-halting. We show a dependence of front-halt radius on cell volume-fraction, potentially offering a low-cost means of measuring hematocrit. A simple model yields an estimate of the gel zero-shear yield-stress. This approach to understanding the drying dynamics of blood droplets may lead to a new generation of point-of-care diagnostics.","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"16 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polyzwitterions that show the alternation of net charge in response to external stimuli have attracted great attention as a new class of surface-polymers on nanomedicines. However, the correlation between their detailed molecular structures and expression of antifouling properties under physiological condition remain controversial. Herein, we synthesized a series of ethylenediamine-based polyzwitterions with carboxy groups/sulfonic groups and ethylene, propylene, and butylene spacers as potential surface-polymers for nanomedicines, allowing sensitive recognition of tumor acidic environments (pH = 6.5-5.5). Then, we evaluated their structure-based characteristics, including pH-dependent cellular uptakes and intracellular distributions. Additionally, the role of conformation stability, i.e., Gibbs free energy changes, was to induce an intramolecular electrostatic interaction in the zwitterionic moieties. These results highlight the practicality of fine-tuning the design of zwitterionic moieties on polymers for the future development of nanomedicines that can recognize the narrow pH window in tumor acidic environments.
{"title":"Synthesis and Optimization of Ethylenediamine-Based Zwitterion on Polymer Side Chain for Recognizing Narrow Tumorous pH Windows.","authors":"Masahiro Toyoda, Yutaka Miura, Motoaki Kobayashi, Masato Tsuda, Takahiro Nomoto, Yuto Honda, Hiroyuki Nakamura, Hiroyasu Takemoto, Nobuhiro Nishiyama","doi":"10.1021/acs.biomac.4c01086","DOIUrl":"10.1021/acs.biomac.4c01086","url":null,"abstract":"<p><p>Polyzwitterions that show the alternation of net charge in response to external stimuli have attracted great attention as a new class of surface-polymers on nanomedicines. However, the correlation between their detailed molecular structures and expression of antifouling properties under physiological condition remain controversial. Herein, we synthesized a series of ethylenediamine-based polyzwitterions with carboxy groups/sulfonic groups and ethylene, propylene, and butylene spacers as potential surface-polymers for nanomedicines, allowing sensitive recognition of tumor acidic environments (pH = 6.5-5.5). Then, we evaluated their structure-based characteristics, including pH-dependent cellular uptakes and intracellular distributions. Additionally, the role of conformation stability, <i>i.e.</i>, Gibbs free energy changes, was to induce an intramolecular electrostatic interaction in the zwitterionic moieties. These results highlight the practicality of fine-tuning the design of zwitterionic moieties on polymers for the future development of nanomedicines that can recognize the narrow pH window in tumor acidic environments.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1021/acs.biomac.4c00828
Jane Yang, Madeline B Gelb, Kyle Tamshen, Neil L Forsythe, Jeong Hoon Ko, Ellie G Puente, Emma Pelegri-O'Day, Stephen M F Jamieson, Jo K Perry, Heather D Maynard
Zwitterionic polymers have been found to be biocompatible alternatives to poly(ethylene glycol) (PEG) for conjugation to proteins. This work reports the site-selective conjugation of poly(caprolactone-carboxybetaine) (pCLZ) to human growth hormone receptor antagonist (GHA) B2036-alkyne and investigation of safety, activity, and pharmacokinetics. Azide-end-functionalized pCLZs were synthesized and conjugated to GHA B2036-alkyne via copper-catalyzed click reaction. The resulting inhibitory bioactivity concentration responses in Ba/F3-GHR cells were compared to those of PEGylated GHA B2036. IgG and IgM antibody production was tested in mice, and no measurable antibody or cytokine production was detected for the pCLZ conjugate. Using 18F-labeled PET/CT imaging, the pCLZ conjugate showed an increase in circulation time compared to that of GHA B2036. Acute toxicity of the polymer was investigated in vivo and found to be nontoxic. Ex vivo degradation of the polymer on the conjugate was investigated. The results suggest that pCLZ-GHA is a potentially safe alternative to PEG-GHA.
{"title":"Site-Selective Zwitterionic Poly(caprolactone-carboxybetaine)-Growth Hormone Receptor Antagonist Conjugate: Synthesis and Biological Evaluation.","authors":"Jane Yang, Madeline B Gelb, Kyle Tamshen, Neil L Forsythe, Jeong Hoon Ko, Ellie G Puente, Emma Pelegri-O'Day, Stephen M F Jamieson, Jo K Perry, Heather D Maynard","doi":"10.1021/acs.biomac.4c00828","DOIUrl":"10.1021/acs.biomac.4c00828","url":null,"abstract":"<p><p>Zwitterionic polymers have been found to be biocompatible alternatives to poly(ethylene glycol) (PEG) for conjugation to proteins. This work reports the site-selective conjugation of poly(caprolactone-carboxybetaine) (pCLZ) to human growth hormone receptor antagonist (GHA) B2036-alkyne and investigation of safety, activity, and pharmacokinetics. Azide-end-functionalized pCLZs were synthesized and conjugated to GHA B2036-alkyne via copper-catalyzed click reaction. The resulting inhibitory bioactivity concentration responses in Ba/F3-GHR cells were compared to those of PEGylated GHA B2036. IgG and IgM antibody production was tested in mice, and no measurable antibody or cytokine production was detected for the pCLZ conjugate. Using <sup>18</sup>F-labeled PET/CT imaging, the pCLZ conjugate showed an increase in circulation time compared to that of GHA B2036. Acute toxicity of the polymer was investigated in vivo and found to be nontoxic. Ex vivo degradation of the polymer on the conjugate was investigated. The results suggest that pCLZ-GHA is a potentially safe alternative to PEG-GHA.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1021/acs.biomac.4c00936
Niannian Lv, Zhuo-Ran Yang, Jing-Wen Fan, Teng Ma, Kehan Du, Huimin Qin, Hao Jiang, Jintao Zhu
In situ polymerization on cell membranes can decrease cell mobility, which may inhibit tumor growth and invasion. However, the initiation of radical polymerization traditionally requires exogenous catalysts or free radical initiators, which might cause side effects in normal tissues. Herein, we synthesized a Y-type diacetylene-containing lipidated peptide amphiphile (TCDA-KFFFFK(GRGDS)-YIGSR, Y-DLPA) targeting integrins and laminin receptors on murine mammary carcinoma 4T1 cells, which underwent nanoparticle-to-nanofiber morphological transformation and in situ polymerization on cell membranes. Specifically, the polymerized Y-DLPA induced 4T1 cell apoptosis and disturbed the substance exchange and metabolism. In vitro assays demonstrated that the polymerized Y-DLPA nanofibers decreased the migration capacity of 4T1 cells, potentially suppressing tumor invasion and metastasis. When administered locally to 4T1 tumor-bearing mice, the Y-DLPA nanoparticles formed a biomimetic extracellular matrix that effectively suppressed tumor growth. This study provides an in situ polymerization strategy that can serve as an effective drug-free biomaterial with low side effects for antitumor therapy.
{"title":"Tumor Receptor-Mediated Morphological Transformation and <i>In Situ</i> Polymerization of Diacetylene-Containing Lipidated Peptide Amphiphile on Cell Membranes for Tumor Suppression.","authors":"Niannian Lv, Zhuo-Ran Yang, Jing-Wen Fan, Teng Ma, Kehan Du, Huimin Qin, Hao Jiang, Jintao Zhu","doi":"10.1021/acs.biomac.4c00936","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00936","url":null,"abstract":"<p><p><i>In situ</i> polymerization on cell membranes can decrease cell mobility, which may inhibit tumor growth and invasion. However, the initiation of radical polymerization traditionally requires exogenous catalysts or free radical initiators, which might cause side effects in normal tissues. Herein, we synthesized a Y-type diacetylene-containing lipidated peptide amphiphile (TCDA-KFFFFK(GRGDS)-YIGSR, Y-DLPA) targeting integrins and laminin receptors on murine mammary carcinoma 4T1 cells, which underwent nanoparticle-to-nanofiber morphological transformation and <i>in situ</i> polymerization on cell membranes. Specifically, the polymerized Y-DLPA induced 4T1 cell apoptosis and disturbed the substance exchange and metabolism. <i>In vitro</i> assays demonstrated that the polymerized Y-DLPA nanofibers decreased the migration capacity of 4T1 cells, potentially suppressing tumor invasion and metastasis. When administered locally to 4T1 tumor-bearing mice, the Y-DLPA nanoparticles formed a biomimetic extracellular matrix that effectively suppressed tumor growth. This study provides an <i>in situ</i> polymerization strategy that can serve as an effective drug-free biomaterial with low side effects for antitumor therapy.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1021/acs.biomac.4c00883
Liliana B Hurtado, Mercedes Jiménez-Rosado, Maryam Nejati, Faiza Rasheed, Thomas Prade, Amparo Jiménez-Quero, Marcos A Sabino, Antonio J Capezza
Proteins derived from agroindustrial coproducts and a natural cross-linking agent (genipap oil containing genipin) were used to develop porous materials by reactive extrusion for replacing fossil-based absorbents. Incorporating genipap oil allowed the production of lightweight structures with high saline uptake (above 1000%) and competing retention capacity despite their porous nature. The mechanical response of the genipap-cross-linked materials was superior to that of the noncross-linked ones and comparable to those cross-linked using commercial genipin. The extruded products were hemocompatible and soil-biodegradable in less than 6 weeks. The compounds generated by the degradation process were not found to be toxic to the soil, showing a high bioassimilation capacity by promoting grass growth. The results demonstrate the potential of biopolymers and new green cross-linkers to produce fully renewable-based superabsorbents in hygiene products with low ecotoxicity. The study further promotes the production of these absorbents using low-cost proteins and continuous processing such as reactive extrusion.
{"title":"Genipap Oil as a Natural Cross-Linker for Biodegradable and Low-Ecotoxicity Porous Absorbents via Reactive Extrusion.","authors":"Liliana B Hurtado, Mercedes Jiménez-Rosado, Maryam Nejati, Faiza Rasheed, Thomas Prade, Amparo Jiménez-Quero, Marcos A Sabino, Antonio J Capezza","doi":"10.1021/acs.biomac.4c00883","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00883","url":null,"abstract":"<p><p>Proteins derived from agroindustrial coproducts and a natural cross-linking agent (genipap oil containing genipin) were used to develop porous materials by reactive extrusion for replacing fossil-based absorbents. Incorporating genipap oil allowed the production of lightweight structures with high saline uptake (above 1000%) and competing retention capacity despite their porous nature. The mechanical response of the genipap-cross-linked materials was superior to that of the noncross-linked ones and comparable to those cross-linked using commercial genipin. The extruded products were hemocompatible and soil-biodegradable in less than 6 weeks. The compounds generated by the degradation process were not found to be toxic to the soil, showing a high bioassimilation capacity by promoting grass growth. The results demonstrate the potential of biopolymers and new green cross-linkers to produce fully renewable-based superabsorbents in hygiene products with low ecotoxicity. The study further promotes the production of these absorbents using low-cost proteins and continuous processing such as reactive extrusion.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}